
Matrix Multiplication: Verifying Strong
Uniquely Solvable Puzzles

Matthew Anderson(B), Zongliang Ji, and Anthony Yang Xu

Department of Computer Science, Union College,
Schenectady, NY, USA

{andersm2,jiz,xua}@union.edu

Abstract. Cohn and Umans proposed a framework for developing fast
matrix multiplication algorithms based on the embedding computation
in certain groups algebras [9]. In subsequent work with Kleinberg and
Szegedy, they connected this to the search for combinatorial objects
called strong uniquely solvable puzzles (strong USPs) [8]. We begin a sys-
tematic computer-aided search for these objects. We develop and imple-
ment algorithms based on reductions to SAT and IP to verify that puz-
zles are strong USPs and to search for large strong USPs. We produce
tight bounds on the maximum size of a strong USP for width k < 6,
and construct puzzles of small width that are larger than previous work.
Although our work only deals with puzzles of small-constant width and
does not produce a new, faster matrix multiplication algorithm, we pro-
vide evidence that there exist families of strong USPs that imply matrix
multiplication algorithms that are more efficient than those currently
known.

Keywords: Matrix multiplication · Strong uniquely solvable puzzle ·
Arithmetic complexity · Integer programming · Satisfiability ·
Reduction · Application

1 Introduction

An optimal algorithm for matrix multiplication remains elusive despite substan-
tial effort. We focus on the square variant of the matrix multiplication problem,
i.e., given two n-by-n matrices A and B over a field F , the goal is to com-
pute the matrix product C = A × B. The outstanding open question is: How
many field operations are required to compute C? The long thought-optimal
näıve algorithm based on the definition of matrix product is O(n3) time. The
groundbreaking work of Strassen showed that it can be done in time O(n2.808)
[24] using a divide-and-conquer approach. A long sequence of work concluding
with Coppersmith and Winograd’s algorithm (CW) reduced the running time
to O(n2.376) [10,21,22,25]. Recent computer-aided refinements of CW by others
reduced the exponent to ω ≤ 2.3728639 [13,18,26].

c© Springer Nature Switzerland AG 2020
L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 464–480, 2020.
https://doi.org/10.1007/978-3-030-51825-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51825-7_32&domain=pdf
https://doi.org/10.1007/978-3-030-51825-7_32

Matrix Multiplication: Verifying Strong Uniquely Solvable Puzzles 465

Fig. 1. The leftmost diagram is a width-4 size-5 puzzle P . The middle three diagrams
are the three sets of subrows of P . The rightmost diagram is the puzzle P ′ resulting from
reordering the subrows of P as indicated by the arrows and then recombining them.
Since P can be rearranged as P ′ �= P without overlap, P is not uniquely solvable.

Approach. Cohn and Umans [9] introduced a framework for developing faster
algorithms for matrix multiplication by reducing this to a search for groups
with subsets that satisfy an algebraic property called the triple-product property
that allows matrix multiplication to be embedded in the group algebra. Their
approach takes inspiration from the O(n log n) algorithm for multiplying degree-
n univariate polynomials by embedding in the group algebra of the fast Fourier
transform, c.f., e.g., [11, Chapter 30]. Subsequent work [8] elaborated on this
idea and developed the notion of combinatorial objects called strong uniquely
solvable puzzles (strong USPs). These objects imply a group algebra embedding
for matrix multiplication, and hence give a matrix multiplication algorithm as
well.

A width-k puzzle P is a subset of {0, 1, 2}k, and the cardinality of P is
the puzzle’s size. Each element of P is called a row of P , and each row con-
sists of three subrows that are elements of {0, ∗}k, {1, ∗}k, {2, ∗}k respectively.
Informally, a puzzle P is a uniquely solvable puzzle (USP) if there is no way to
permute the subrows of P to form a distinct puzzle P ′ without cells with num-
bers overlapping. Figure 1 demonstrates a puzzle that is not a USP. A uniquely
solvable puzzle is strong if a tighter condition for non-overlapping holds (see
Definition 2). For a fixed width k, the larger the size of a strong USP, the faster
matrix multiplication algorithm it gives [8]. In fact Cohn et al. show that there
exist an infinite family of strong USPs that achieves ω < 2.48.

We follow Cohn et al.’s program by: (i) developing verification algorithms
to determine whether a puzzle is a strong USP, (ii) developing search algo-
rithms to find large strong USPs, and (iii) implementing and running practical
implementations of these algorithms. The most successful of the verification
algorithms function by reducing the problem through 3D matching to SAT and
IP which are then solved with existing tools. The algorithms we develop are not
efficient—they run in worst-case exponential time in the natural parameters.
However, the goal is to find a sufficiently large strong USP that would provide

466 M. Anderson et al.

a faster matrix multiplication algorithm, and the resulting algorithm’s running
time is independent of the running time of our algorithms. The inefficiency of
our algorithms limit the search space that we can feasibly examine.

Results. Our experimental results give new bounds on the size of the largest
strong USP for small-width puzzles. For small-constant width, k ≤ 12, we beat
the largest sizes of [8, Proposition 3.8]. Our lower bounds on maximum size are
witnessed by strong USPs we found via search. For k ≤ 5 we give tight upper
bounds determined by exhaustively searching all puzzles up to isomorphism.
Although our current experimental results do not beat [8] for unbounded k,
they give evidence that there may exist families of strong USPs that give matrix
multiplication algorithms that are more efficient than those currently known.

Related Work. There are a number of negative results known. Näıvely, the
dimensions of the output matrix C implies that the problem requires at least
Ω(n2) time. Slightly better lower bounds are known in general and also for
specialized models of computation, c.f., e.g., [16,23]. There are also lower bounds
known for a variety of algorithmic approaches to matrix multiplication. Ambainis
et al. showed that the laser method cannot alone achieve an algorithm with
ω ≤ 2.3078 [4]. A recent breakthrough on arithmetic progressions in cap sets [12]
combined with a conditional result on the Erdös-Szemeredi sunflower conjecture
[3] imply that Cohn et al.’s strong USP approach cannot achieve ω = 2 + ε for
some ε > 0 [7]. Subsequent work has generalized this barrier [1,2] to a larger
class of algorithmic techniques. Despite this, we are unaware of a concrete lower
bound on ε implied by these negative results. There remains a substantial gap in
our understanding between what has been achieved by the positive refinements
of LeGall, Williams, and Stothers, and the impossibility of showing ω = 2 using
the strong USP approach.

Organization. Section 2 begins with the formal definition of a strong USP.
Sections 3 and 4, respectively, discuss our algorithms and heuristics for verifying
that and searching for a puzzle that is a strong USP. Section 5 discusses our
experimental results.

2 Preliminaries

For an integer k, we use [k] to denote the set {0, 1, 2, . . . , k − 1}. For a set Q,
SymQ denotes the symmetric group on the elements of Q, i.e., the group of
permutations acting on Q. Cohn et al. introduced the idea of a puzzle [8].

Definition 1 (Puzzle). For s, k ∈ N , an (s, k)-puzzle is a subset P ⊆ [3]k

with |P | = s. We call s the size of P , and k the width of P .

Matrix Multiplication: Verifying Strong Uniquely Solvable Puzzles 467

We say that an (s, k)-puzzle has s rows and k columns. The columns of a puzzle
are inherently ordered and indexed by [k]. The rows of a puzzle have no inherent
ordering, however, it is often convenient to assume that they are ordered and
indexed by the set of natural numbers [s].

Cohn et al. establish a particular combinatorial property of puzzles that
allows one to derive group algebras that matrix multiplication can be efficiently
embedded into. Such puzzles are called strong uniquely solvable puzzles.

Definition 2 (Strong USP). An (s, k)-puzzle P is strong uniquely solvable
if for all π0, π1, π2 ∈ SymP : Either (i) π0 = π1 = π2, or (ii) there exists r ∈ P
and i ∈ [k] such that exactly two of the following hold: (π0(r))i = 0, (π1(r))i = 1,
(π2(r))i = 2.

Note that strong uniquely solvability is invariant to the (re)ordering of the rows
or columns of a puzzle. We use this fact implicitly.

Cohn et al. show the following connection between the existence of strong
USPs and upper bounds on the exponent of matrix multiplication ω.

Lemma 1 ([8, Corollary 3.6]). Let ε > 0, if there is a strong uniquely solv-
able (s, k)-puzzle, there is an algorithm for multiplying n-by-n matrices in time
O(nω+ε) where

ω ≤ min
m≥3,m∈N

3 log m

log(m − 1)
− 3 log s!

sk log(m − 1)
.

This result motivates the search for large strong USPs that would result in faster
algorithms for matrix multiplication. In the same article, the authors also demon-
strate the existence of an infinite family of strong uniquely solvable puzzles, for
width k divisible by three, that achieves a non-trivial bound on ω.

Lemma 2 ([8, Proposition 3.8]). There is an infinite family of strong
uniquely solvable puzzles that achieves ω < 2.48.

3 Verifying Strong USPs

The core focus of this article is the problem of verifying strong USPs, i.e., given
an (s, k)-puzzle P , output YES if P is a strong USP, and NO otherwise. In this
section we discuss the design of algorithms to solve this computational problem
as a function of the natural parameters s and k. Along the way we also discuss
some aspects of our practical implementation that informed or constrained our
designs. All the exact algorithms we develop in this section have exponential
running time. However, asymptotic worst-case running time is not the metric we
are truly interested in. Rather we are interested in the practical performance of
our algorithms and their capability for locating new large strong USPs. The algo-
rithm that we ultimately develop is a hybrid of a number of simpler algorithms
and heuristics.

468 M. Anderson et al.

Algorithm 1: Brute Force
Input: An (s, k)-puzzle P .
Output: YES, if P is a strong USP and NO otherwise.
1: function VerifyBruteForce(P)
2: for π1 ∈ SymP do
3: for π2 ∈ SymP do
4: if π1 �= 1 ∨ π2 �= 1 then
5: found = false.
6: for r ∈ P do
7: for i ∈ [k] do
8: if δri,0 + δ(π1(r))i,1 + δ(π2(r))i,2 = 2 then found = true.

9: if not found then return NO.

10: return YES.

3.1 Brute Force

The obvious algorithm for verification comes directly from the definition of a
strong USP. Informally, we consider all ways of permuting the ones and twos
pieces relative to the zeroes pieces and check whether the non-overlapping con-
dition of Definition 2 is met. A formal description of the algorithm is found in
Algorithm 1.

The ones in Line 4 of Algorithm 1 denote the identity in SymP , and δa,b is
the Kronecker delta function which is one if a = b and zero otherwise. Observe
that Algorithm 1 does not refer to the π0 of Definition 2. This is because the
strong USP property is invariant to permutations of the rows and so π0 can be
thought of as an arbitrary phase. Hence, we fix π0 = 1 to simplify the algorithm.
Seeing that |SymP | = s!, we conclude that the algorithm runs in time O((s!)2 ·
s · k · poly(s)) where the last factor accounts for the operations on permutations
of s elements. The dominant term in the running time is the contribution from
iterating over pairs of permutations. Finally, notice that if P is a strong USP,
then the algorithm runs in time Θ((s!)2·s·k·poly(s)), and that if P is not a strong
USP the algorithm terminates early. The algorithm’s poor performance made it
unusable in our implementation, however, its simplicity and direct connection to
the definition made its implementation a valuable sanity check against later more
elaborate algorithms (and it served as effective onboarding to the undergraduate
students collaborating on this project).

Although Algorithm 1 performs poorly, examining the structure of a seem-
ingly trivial optimization leads to substantially more effective algorithms. Con-
sider the following function on triples of rows a, b, c ∈ P : f(a, b, c) = ∨i∈[k](δai,0 +
δbi,1 + δci,2 = 2). We can replace the innermost loop in Lines 7 & 8 of Algo-
rithm 1 with the statement found = found ∨ f(r, π1(r), π2(r)). Observe that f
neither depends on P , r, nor the permutations, and that Algorithm 1 no longer
depends directly on k. To slightly speed up Algorithm 1 we can precompute and
cache f before the algorithm starts and then look up values as the algorithm
runs. We precompute f specialized to the rows in the puzzle P , and call it fP .

Matrix Multiplication: Verifying Strong Uniquely Solvable Puzzles 469

Fig. 2. An example hypergraph G with edges E = {(r1, r1, r2), (r1, r3, r3), (r2, r2, r1),
(r2, r3, r1), (r3, r2, r3)}. The highlighted edges are a non-trivial 3D matching M =
{(r1, r1, r2), (r2, r3, r1), (r3, r2, r3)} of G.

3.2 Strong USP Verification to 3D Matching

It turns out to be more useful to work with fP than with P . It is convenient
to think of fP as a function fP : P × P × P → {0, 1} that is the complement
of the characteristic function of the relations of a tripartite hypergraph HP =
〈P 	 P 	 P, f̄P 〉 where the vertex set is the disjoint union of three copies of P
and fP indicates the edges that are not present in HP .

Let H = 〈P 	 P 	 P,E ⊆ P 3〉 be a tripartite 3-hypergraph. We say H has
a 3D matching (3DM) iff there exists a subset M ⊆ E with |M | = |P | and for
all distinct edges e1, e2 ∈ M , e1 and e2 are vertex disjoint, i.e., e1 ∩ e2 = ∅.
Determining whether a hypergraph has a 3D matching is a well-known NP-
complete problem (c.f., e.g., [14]). We say that a 3D matching is non-trivial if
it is not the set {(r, r, r) | r ∈ P}. Figure 2 demonstrates a 3-hypergraph with a
non-trivial 3D matching.

The existence of non-trivial 3D matchings in HP is directly tied to whether
P is a strong USP.

Lemma 3. A puzzle P is a strong USP iff HP has no non-trivial 3D matching.

Proof. We first argue the reverse. Suppose that Hp has a non-trivial 3D matching
M . We show that P is not a strong USP by using M to construct π0, π1, π2 ∈
SymP that witness this. Let π0 be the identity permutation. For each r ∈ P ,
define π1(r) = q where (r, q, ∗) ∈ M . Note that q is well defined and unique
because M is 3D matching and so has vertex disjoint edges. Similarly define
π2(r) = q where (r, ∗, q) ∈ M . Observe that by construction

M = {(π0(r), π1(r), π2(r)) | r ∈ P}.

Since M is a matching of HP , M ⊆ f̄P . Because M is a non-trivial matching
at least one edge in (a, b, c) ∈ M has either a
= b, a
= c, or b
= c. This implies,
respectively, that as constructed π0
= π1, π0
= π2, or π1
= π2. In each case we
have determined that π0, π1, and π2 are not all identical. Thus we determined
permutations such that for all r ∈ P , f(π0(r), π1(r), π2(r)) = 0. This violates
Condition (ii) of Definition 2, hence P is not a strong USP.

470 M. Anderson et al.

The forward direction is symmetric. Suppose that P is not a strong USP. We
show that HP has a 3D matching. For P not to be a strong USP there must exist
π0, π1, π2 ∈ SymP not all identical such that Condition (ii) of Definition 2 fails.
Define e(r) = (π0(r), π1(r), π2(r)) and M = {e(r) | r ∈ P}. Since Condition (ii)
fails, we have that fP (e(r)) = false for all r ∈ P . This means that for all r ∈ P ,
e(r) ∈ f̄P and hence M ⊆ f̄P . Since π0 is a permutation, |M | = |P |. Observe
that M is non-trivial because not all the permutations are identical and there
must be some r ∈ P with e(r) having non-identical coordinates. Thus M is a
non-trivial 3D matching. �	

Note that although 3D matching is an NP-complete problem, Lemma 3 does
not immediately imply that verification of strong USPs is coNP-complete because
HP is not an arbitrary hypergraph. As a consequence of Definition 2, verification
is in coNP. It remains open whether verification is coNP-complete. Lemma 3
implies that to verify P is a strong USP it suffices to determine whether HP has
a 3D matching. In the subsequent sections we examine algorithms for the later
problem. We can, in retrospect, view Algorithm 1 as an algorithm for solving
3D matching.

The realization that verification of strong USPs is a specialization of 3D
matching leads to a dynamic programming algorithm for verification that runs
in linear-exponential time O(22spoly(s) + poly(s, k)). Applying more advanced
techniques like those of Björklund et al. can achieve a better asymptotic time of
O(2spoly(s) + poly(s, k)) [6]. For brevity, we defer the details of our algorithm
to the long version of this article.

3.3 3D Matching to Satisfiability

By Lemma 3, one can determine whether a puzzle P is a strong USP by con-
structing the graph HP and deciding whether it has a non-trivial 3D matching.
Here we reduce our 3D matching problem to the satisfiability (SAT) problem on
conjunctive normal form (CNF) formulas and then use a state-of-the-art SAT
solver to resolve the reduced problem. To perform the reduction, we convert
the graph HP into a CNF formula ΨP , a depth-2 formula that is the AND of
ORs of Boolean literals. We construct ΨP so that ΨP is satisfiable iff HP has a
non-trivial 3D matching.

Let HP = 〈V = P 	 P 	 P,E ⊆ P 3〉 be the 3D matching instance associated
with the puzzle P . Our goal is to determine whether there is a non-trivial 3D
matching M ⊆ E. A näıve reduction would be to have variables Mu,v,w indicating
inclusion of each edge (u, v, w) ∈ P 3 in the matching. This results in a formula ΨP

with s3 variables and size Θ(s5) because including an edge e ∈ P 3 excludes the
Θ(s2) edges e′ with e ∩ e′
= ∅. To decrease the size of ΨP we instead use sets of
variables to indicate which vertices in the second and third part of V are matched
with each vertex in the first part. In particular we have Boolean variables M1

u,v

and M2
u,w for all u, v, w ∈ P , and these variable map to assignments in the näıve

scheme in the following way: M1
u,v ∧ M2

u,w ⇔ Mu,v,w.

Matrix Multiplication: Verifying Strong Uniquely Solvable Puzzles 471

We now write our CNF formula for 3D matching. First, we have clauses that
prevents non-edges from being in the matching:

Ψnon-edge
P =

∧

(u,v,w)∈E

(¬M1
u,v ∨ ¬M2

u,w). (1)

Second, we add clauses require that every vertex in HP is matched with some
edge:

Ψ≥1
P =

(
∧

u∈P

(∨v∈P M1
u,v) ∧ (∨w∈P M2

u,w)

)

∧
(

∧

v∈P

(∨u∈P M1
u,v)

)
∧

(
∧

w∈P

(∨u∈P M2
u,w)

)
.

(2)

Third, we require that each vertex be matched with at most one edge and so
have clauses that exclude matching edges that overlap on one or two coordinates.

Ψ≤1
P =

∧

i∈{1,2}

∧

(u,v),(u′,v′)∈P2

(u = u′ ∨ v = v′) ∧ (u, v �= u′, v′) ⇒ ¬M i
u,v ∨ ¬M i

u′,v′ .

(3)

Fourth, we exclude the trivial 3D matching by requiring that at least one of the
diagonal edges not be used: Ψnon-trivial

P =
∨

u∈P ¬M1
u,u∨¬M2

u,u. Finally, we AND
these into the overall CNF formula: ΨP = Ψnon-edge

P ∧ Ψ≤1
P ∧ Ψ≥1

P ∧ Ψnon-trivial
P .

The size of the CNF formula ΨP is Θ(s3), has 2s2 variables, and is a factor of s2

smaller than the näıve approach. Thus we reduce 3D matching to satisfiability
by converting the instance HP into the CNF formula ΨP .

To solve the reduced satisfiability instance we used the open-source solver
MapleCOMPSPS from the 2016 International SAT Competition [5]. This solver
is conflict driven and uses a learning rate branching heuristic to decide which
variables are likely to lead to conflict and has had demonstrable success in prac-
tice [19]. We chose MapleCOMPSPS because it was state of the art at the
time our project started. It is likely that more recently-developed solvers would
achieve similar or better performance on our task.

3.4 3D Matching to Integer Programming

In parallel to the previous subsection, we use the connection between verifi-
cation of strong USPs and 3D matching to reduce the former to integer pro-
gramming, another well-known NP-complete problem (c.f., e.g., [17]). Again, let
HP = 〈V,E〉 be the 3D matching instance associated with P . We construct an
integer program QP over {0, 1} that is infeasible iff P is a strong USP. Here the
reduction is simpler than the previous one because linear constraints naturally
capture matching.

We use Mu,v,w to denote a variable with values in {0, 1} to indicate whether
the edge (u, v, w) ∈ P 3 is present in the matching. To ensure that M is a subset
of E we add the following edge constraints to QP : ∀u, v, w ∈ P,∀(u, v, w)
∈

472 M. Anderson et al.

E,Mu,v,w = 0. We also require that each vertex in each of the three parts
of the graph is incident to exactly one edge in M . This is captured by the
following vertex constraints in QP : ∀w ∈ P,

∑
u,v∈P Mu,v,w =

∑
u,v∈P Mu,w,v =∑

u,v∈P Mw,u,v = 1. Lastly, since we need that the 3D matching be non-trivial
we add the constraint:

∑
u∈P Mu,u,u < |P |.

To check whether P is a strong USP we determine whether QP is not feasi-
ble, i.e., that no assignment to the variables M satisfy all constraints. In practice
this computation is done using the commercial, closed-source, mixed-integer pro-
gramming solver Gurobi [15]. We note that reduction from 3D matching to IP
is polynomial time and that there are s3 variables in QP , and that the total size
of the constraints is s3 · Θ(1) + 3s · Θ(s2) + 1 · Θ(s3) = Θ(s3), similar to size of
ΨP in the SAT reduction.

3.5 Heuristics

Although the exact algorithms presented in the previous sections make sub-
stantial improvements over the brute force approach, the resulting performance
remains impractical. To resolve this, we also develop several fast verification
heuristics that may produce the non-definitive answer MAYBE in place of YES
or NO. Then, to verify a puzzle P we run this battery of fast heuristics and
return early if any of the heuristics produce a definitive YES or NO. When all
the heuristics result in MAYBE, we then run one of the slower exact algorithms
that were previously discussed. The heuristics have different forms, but all rely
on the structural properties of a strong USP. Here we discuss the two most effec-
tive heuristics, downward closure and greedy, and defer a deeper discussion of
these and several less effective heuristics, including projection to 2D matching,
to the full version of this article.

Downward Closed. The simplest heuristics we consider is based on the fact
that strong USPs are downward closed.

Lemma 4. If P is a strong USP, then so is every subpuzzle P ′ ⊆ P .

Proof. Let P be a strong USP and P ′ ⊆ P . By Definition 2, for every
(π1, π2, π3) ∈ Sym3

P not all identity, there exist r ∈ P and i ∈ [k] such that
exactly two of the following hold: (π0(r))i = 0, (π1(r))i = 1, (π2(r))i = 2. Con-
sider restricting the permutations to those that fix the elements of P\P ′. For
these permutations it must be the case that r ∈ P ′ because otherwise r ∈ P\P ′

and there is exactly one j ∈ [3] for which (πj(r))i = j holds. Thus we can drop
the elements of P\P ′ and conclude that for every tuple of permutations in SymP ′

the conditions of Definition 2 hold for P ′, and hence that P ′ is a strong USP. �	
This leads to a polynomial-time heuristic that can determine that a puzzle

is not a strong USP. Informally, the algorithm takes an (s, k)-puzzle P and
s′ ≤ s, and verifies that all subsets P ′ ⊆ P with size |P ′| = s′ are strong USPs.
If any subset P ′ is not a strong USP, the heuristic returns NO, otherwise it

Matrix Multiplication: Verifying Strong Uniquely Solvable Puzzles 473

returns MAYBE. This algorithm runs in time O(
(

s
s′
) · T (s′, k)) where T (s′, k)

is the runtime for verifying an (s′, k)-puzzle. In practice we did not apply this
heuristic for s′ larger than 3, so the effective running time was O(s3 · T (3, k)),
which is polynomial in s and k using the verification algorithms from the previous
subsections that eliminate dependence on k for polynomial cost. This heuristic
can be made even more practical by caching the results for puzzles of size s′,
reducing the verification time per iteration to constant in exchange for Θ(

(
3k

s′
) ·

T (s′, k)) time and Θ(
(
3k

s′
)
) space to precompute the values for all puzzles of size

s′. From a practical point of view, running this heuristic is free for small constant
s′ ≤ 3, as even the reductions in the exact verification algorithms have a similar
or higher running time.

Greedy. This heuristic attempts to greedily solve the 3D matching instance HP .
The heuristic proceeds iteratively, determining the vertex of the first part of the
3D matching instance with the least edges and randomly selecting an edge of that
vertex to put into the 3D matching. If the heuristic successfully constructs a 3D
matching it returns NO indicating that the input puzzle P is not a strong USP.
If the heuristic reaches a point were prior commitments have made the matching
infeasible, the heuristic starts again from scratch. This process is repeated some
number of times before it gives up and returns MAYBE. In our implementation
we use s3 attempts because it is similar to the running time of the reductions
and it empirically reduced the number of instances requiring full verification in
the domain of puzzles with k = 6, 7, 8 while not increasing the running time by
too much.

3.6 Hybrid Algorithm

Our final verification algorithm (Algorithm 2) is a hybrid of several exact algo-
rithms and heuristics. The size thresholds for which algorithm and heuristic to
apply were determined experimentally for small k and were focused on the values
were our strong USP search algorithms were tractable k ≤ 6 (or nearly tractable
k ≤ 8). We decided to run both the reduction to SAT and IP in parallel because
it was not clear which algorithm performed better. Since verification halts when
either algorithm completes, the wasted effort is within a factor of two of what
the better algorithm could have done alone. We also chose to do this because we
experimentally observed that there were many instances that one of the algo-
rithms struggled with that the other did not—this resulted in a hybrid algorithm
that out performed the individual exact algorithms on average.

4 Searching for Strong USPs

In some ways the problem of constructing a large strong USP is similar to the
problem of constructing a large set of linearly independent vectors. In both cases,
the object to be constructed is a set, the order that elements are added does not

474 M. Anderson et al.

Algorithm 2: Hybrid Verification Algorithm
Input: An (s, k)-puzzle P .
Output: YES, if P is found to be strong USP, and NO otherwise.
1: if s ≤ 2 then return VerifyBruteForce(P).

2: if s ≤ 7 then return VerifyDynamicProgramming(P).

3: if s ≤ 10 then
4: Return result if HeuristicDownwardClosed(P, 2) is not MAYBE.
5: return VerifyDynamicProgramming(P).

6: Return result if HeuristicDownwardClosed(P, 3) is not MAYBE.
7: Return result if HeuristicGreedy(P) is not MAYBE.
8: Run VerifySAT(P) and VerifyIP(P) in parallel and return the first result.

matter, the underlying elements are sequences of numbers, and there is a notion
of (in)dependence among sets of elements. There are well-known polynomial-time
algorithms for determining whether a set of vectors are independent, e.g., Gaus-
sian elimination, and we have a practical implementation for deciding whether
a puzzle is a strong USP.

There is a straightforward greedy algorithm for constructing maximum-size
sets of independent vectors: Start with an empty set S, and repeatedly add
vectors to S that are linearly independent of S. After this process completes
S is a largest set of linearly independent vectors. This problem admits such a
greedy algorithm because the family of sets of linearly independent vectors form
a matroid. The vector to be added each step can be computed efficiently by
solving a linear system of equations for vectors in the null space of S.

Unfortunately this same approach does not work for generating maximum-
size strong USPs. The set of strong USPs does not form a matroid, rather it is
only an independence system, c.f., e.g., [20]. In particular, (i) the empty puzzle
is a strong USP and (ii) the set of strong USP are downward closed by Lemma 4.
The final property required to be a matroid, the augmentation property, requires
that for every pair of strong USPs P1, P2 with |P1| ≤ |P2| there is a row of
r ∈ P2\P1 such that P1 ∪ {r} is also a strong USP. A simple counterexample
with the strong USPs P1 = {32} and P2 = {12, 23} concludes that neither
P1 ∪ {12} = {12, 32} nor P1 ∪ {23} = {23, 32} are strong USPs, and hence the
augmentation property fails. One consequence is that näıve greedy algorithms
will likely be ineffective for finding maximum-size strong USPs. Furthermore, we
do not currently have an efficient algorithm that can take a strong USP P and
determine a row r such that P ∪ {r} is a strong USP aside from slight pruning
of the ≤ 3k possible next rows r.

That said, we have had some success applying general purpose search tech-
niques together with our practical verification algorithm to construct maximum-
size strong USPs for small k. In particular, we implemented variants of depth-first
search (DFS) and breadth-first search (BFS). We defer the details of this to the
full version of this article.

Matrix Multiplication: Verifying Strong Uniquely Solvable Puzzles 475

Fig. 3. Representative maximum-size strong USPs found for width k = 1, 2, . . . , 6.

The actual running times of both of these algorithms are prohibitive even for
k > 5, and the greater memory usage of BFS to store the entire search frontier
is in the tens of terabytes even for k = 6. There are some silver linings, DFS

can report intermediate results which are the maximally strong USPs that it has
discovered so far. Both algorithms admit the possibility of eliminating puzzles
from the search that are equivalent to puzzles that have already been searched,
though it is easier to fit into the structure BFS as the puzzles are already being
stored in a queue.

5 Experimental Results

Our experimental results come in three flavors for small-constant width k: (i)
constructive lower bounds on the maximum size of width-k strong USPs wit-
nessed by found puzzles, (ii) exhaustive upper bounds on the maximum size of
width-k strong USPs, and (iii) experimental run times comparing the algorithms
for verifying width-k strong USPs. BFS and DFS when able to run to comple-
tion search the entire space, up to puzzle isomorphism, and provide tight upper
and lower bounds. When unable to run to completion they provide only results
of form (i) and are not guaranteed to be tight.

5.1 New Bounds on the Size of Strong USPs

Figure 3 contains representative examples of maximum-size strong USPs we
found for k ≤ 6. Table 1 summarizes our main results in comparison with [8].
The lower bounds of [8] are from the constructions in their Propositions 3.1 and
3.8 that give families of strong USPs for k even or k divisible by three. The
upper bounds of [8] follow from their Lemma 3.2 (and the fact that the capacity
of strong USPs is bounded above by the capacity of USPs). The values of ω in
this table are computed by plugging s and k into Lemma 1 and optimizing over
m. For clarity we omit ω’s that would be larger than previous lines.

We derive tight bounds for all k ≤ 5 and constructively improve the known
lower bounds for 4 ≤ k ≤ 12. The strong uniquely solvable (14, 6)-puzzles we

476 M. Anderson et al.

Table 1. Comparison of bounds on maximum size of strong USPs with [8] for small k.

[8] This work

k Maximum s ω Maximum s ω

1 1 = s 3.000 1 = s 3.000

2 2 ≤ s ≤ 3 2.875 2 = s 2.875

3 3 ≤ s ≤ 6 2.849 3 = s 2.849

4 4 ≤ s ≤ 12 2.850 5 = s 2.806

5 4 ≤ s ≤ 24 8 = s 2.777

6 10 ≤ s ≤ 45 2.792 14 ≤ s 2.733

7 10 ≤ s ≤ 86 21 ≤ s 2.722

8 16 ≤ s ≤ 162 30 ≤ s 2.719

9 36 ≤ s ≤ 307 2.739 42 ≤ s 2.718

10 36 ≤ s ≤ 581 64 ≤ s 2.706

11 36 ≤ s ≤ 1098 112 ≤ s 2.678

12 136 ≤ s ≤ 2075 2.696 196 ≤ s 2.653

found represent the greatest improvement in ω versus the construction of [8].
Further, our puzzle for k = 12 is the result of taking the Cartesian product of
two copies of a strong uniquely solvable (14, 6)-puzzle. Repeating this process
with more copies of the puzzle gives a strong USP implying ω < 2.522. Note
that Proposition 3.8 of [8] gives an infinite family of strong USPs that achieves
ω < 2.48 in the limit.

Based on the processing time we spent on k = 6, we conjecture that s = 14 is
tight for k = 6 and that our lower bounds for k > 6 are not. Our results suggests
there is considerable room for improvement in the construction of strong USPs,
and that it is likely that there exist large puzzles for k = 7, 8, 9 that would
beat [8]’s construction and perhaps come close to the Coppersmith-Winograd
refinements. It seems that new insights into the search problem are required to
proceed for k > 6.

5.2 Algorithm Performance

We implemented our algorithms in C++ (source code to be made available on
github) and ran them on a 2010 MacPro running Ubuntu 16.04 with dual Xeon
E5620 2.40 Ghz processors and 16 GB of RAM. Figure 4 contains log plots that
describe the performance of our algorithms on sets of 10000 random puzzles at
each point on a sweep through parameter space for width k = 5 . . . 10 and size
s = 1 . . . 30. We chose to test performance via random sampling because we do
not have access to a large set of solved instances. This domain coincides with
the frontier of our search space, and we tuned the parameters of the heuristics
and algorithms in the hybrid algorithm to perform well in this domain. We did
not deeply investigate performance characteristics outside of this domain.

Matrix Multiplication: Verifying Strong Uniquely Solvable Puzzles 477

(a) Width-5 Strong USP.

0 10 20 30

1

10−1

10−2

10−3

10−4

10−5

10−6

10−7

A
ve
ra
ge

T
im

e
(s
ec
)

BF DP
SAT IP
HYB SUSP %

(b) Width-6 Strong USP.

0 10 20 30
0

20

40

60

80

100

P
er
ce
nt

SU
SP

(c) Width-7 Strong USP.

0 10 20 30

1

10−1

10−2

10−3

10−4

10−5

10−6

10−7

A
ve
ra
ge

T
im

e
(s
ec
)

(d) Width-8 Strong USP.

0 10 20 30
0

20

40

60

80

100

P
er
ce
nt

SU
SP

(e) Width-9 Strong USP.

0 10 20 30

1

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Puzzle Size

A
ve
ra
ge

T
im

e
(s
ec
)

(f) Width-10 Strong USP.

0 10 20 30

Puzzle Size

0

20

40

60

80

100

P
er
ce
nt

SU
SP

Fig. 4. Log plots of the average running times for verifying 10000 random puzzles
of widths five to ten. Note that the legend in (a) applies to all six plots, and that
the axes are named and labeled only on the edges of the page. Each plot describes the
behavior of five algorithms brute force (BF), dynamic programming (DP), reduction to
satisfiability (SAT), reduction to integer programming (IP), and the hybrid algorithm
(HYB). The final dashed line indicates the percentage of strong USP found among the
10000 random puzzles.

478 M. Anderson et al.

The brute force and dynamic programming algorithms perform poorly except
for very small size, s ≤ 8, and their curves loosely match the 2Ω(n) time bounds
we have. The plots for the two reduction-based algorithms (SAT and IP) behave
similarly to each other. They are slower than brute force and dynamic program-
ming for small values of s, and their behavior for large s is quite a bit faster. We
speculate that the former is due to the cost of constructing the reduced instance
and overhead of the third party tools. Further observe that the SAT reduction
handily beats the IP reduction on large size for k = 5, but as k increases, the IP
reduction becomes faster. We also note that across the six plots the IP reduc-
tion has effectively the same running time and is independent of k, this is likely
because the size of the IP instance depends only on s. The hybrid algorithm
generally performs best or close to best. Notice that it matches the dynamic
programming algorithm closely for small values of s and then diverges when the
reduction-based algorithms and heuristics are activated around s = 10. Observe
that the hybrid algorithm is effectively constant time for large s. We expect
this is because the density of strong USPs decreases rapidly with s, and that
the randomly selected puzzles are likely far from satisfying Definition 2 and are
quickly rejected by the downward closure heuristic.

Overall, our hybrid verification algorithm performs reasonably well in prac-
tice, despite reductions through NP-complete problems.

6 Conclusions

We initiated the first study of the verification of strong USPs and developed
practical software for both verifying and searching for them. We give tight results
on the maximum size of width-k strong USPs for k ≤ 5. Although our results do
not produce a new upper bound on the running time of matrix multiplication,
they demonstrate there is promise in this approach. There are a number of open
questions. Is strong USP verification coNP-complete? What are tight bounds on
maximum size strong USPs for k ≥ 6 and do these bound lead to asymptotically
faster algorithms for matrix multiplication? The main bottleneck in our work is
the size of the search space—new insights seem to be required to substantially
reduce it. We have preliminary results that indicate that the size of the search
space can be reduced by modding out by the symmetries of puzzles, though this
has not yet led to new lower bounds.

Acknowledgments. The second and third authors thank Union College for Under-
graduate Summer Research Fellowships funding their work. The authors thank the
anonymous reviewers for their detailed and thoughtful suggestions for improving this
work.

References

1. Alman, J., Williams, V.V.: Further limitations of the known approaches for matrix
multiplication. In: Leibniz International Proceedings Information LIPIcs of the 9th

Matrix Multiplication: Verifying Strong Uniquely Solvable Puzzles 479

Innovations in Theoretical Computer Science (ITCS), vol. 94, p. 15, Article no. 25.
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2018)

2. Alman, J., Williams, V.V.: Limits on all known (and some unknown) approaches
to matrix multiplication. In: 59th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 580–591, October 2018. https://doi.org/10.1109/
FOCS.2018.00061

3. Alon, N., Shpilka, A., Umans, C.: On sunflowers and matrix multiplication. Com-
put. Complex. 22(2), 219–243 (2013)

4. Ambainis, A., Filmus, Y., Le Gall, F.: Fast matrix multiplication: limitations of
the coppersmith-winograd method. In: 47th Annual ACM Symposium on Theory
of Computing (STOC), pp. 585–593. ACM (2015)

5. Balyo, T., Heule, M.J., Jarvisalo, M.: SAT competition 2016: recent developments.
In: 31st AAAI Conference on Artificial Intelligence (AAAI) (2017)

6. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameter-
ized paths and packings. J. Comput. Syst. Sci. 87, 119–139 (2017)

7. Blasiak, J., Church, T., Cohn, H., Grochow, J.A., Umans, C.: Which groups
are amenable to proving exponent two for matrix multiplication? arXiv preprint
arXiv:1712.02302 (2017)

8. Cohn, H., Kleinberg, R., Szegedy, B., Umans, C.: Group-theoretic algorithms for
matrix multiplication. In: 46th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 379–388, October 2005. https://doi.org/10.1109/SFCS.
2005.39

9. Cohn, H., Umans, C.: A group-theoretic approach to fast matrix multiplication.
In: 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 438–449, October 2003. https://doi.org/10.1109/SFCS.2003.1238217

10. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symbolic Comput. 9(3), 251–280 (1990)

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

12. Croot, E., Lev, V.F., Pach, P.P.: Progression-free sets in are exponentially small.
Ann. Math. 185, 331–337 (2017)

13. Davie, A.M., Stothers, A.J.: Improved bound for complexity of matrix multiplica-
tion. Proc. R. Soc. Edinb. Sect. A Math. 143(2), 351–369 (2013)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness (1979)

15. Gurobi Optimization LLC: Gurobi optimizer reference manual (2018). http://
www.gurobi.com

16. Kaminski, M.: A lower bound on the complexity of polynomial multiplication over
finite fields. SIAM J. Comput. 34(4), 960–992 (2005)

17. Korte, B., Vygen, J.: Combinatorial Optimization, vol. 2. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-24488-9

18. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: 39th International
Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 296–303. ACM
(2014)

19. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 123–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 9

20. Oxley, J.G.: Matroid Theory, vol. 3. Oxford University Press, USA (2006)

https://doi.org/10.1109/FOCS.2018.00061
https://doi.org/10.1109/FOCS.2018.00061
http://arxiv.org/abs/1712.02302
https://doi.org/10.1109/SFCS.2005.39
https://doi.org/10.1109/SFCS.2005.39
https://doi.org/10.1109/SFCS.2003.1238217
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1007/978-3-642-24488-9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9

480 M. Anderson et al.

21. Pan, V.Y.: Strassen’s algorithm is not optimal trilinear technique of aggregating,
uniting and canceling for constructing fast algorithms for matrix operations. In:
19th Annual Symposium on Foundations of Computer Science (FOCS), pp. 166–
176. IEEE (1978)

22. Schönhage, A.: Partial and total matrix multiplication. SIAM J. Comput. 10(3),
434–455 (1981)

23. Shpilka, A.: Lower bounds for matrix product. SIAM J. Comput. 32(5), 1185–1200
(2003)

24. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356
(1969)

25. Strassen, V.: The asymptotic spectrum of tensors and the exponent of matrix
multiplication. In: 27th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 49–54. IEEE (1986)

26. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: 44th
Annual ACM Symposium on Theory of Computing (STOC), pp. 887–898. ACM
(2012)

	Matrix Multiplication: Verifying Strong Uniquely Solvable Puzzles
	1 Introduction
	2 Preliminaries
	3 Verifying Strong USPs
	3.1 Brute Force
	3.2 Strong USP Verification to 3D Matching
	3.3 3D Matching to Satisfiability
	3.4 3D Matching to Integer Programming
	3.5 Heuristics
	3.6 Hybrid Algorithm

	4 Searching for Strong USPs
	5 Experimental Results
	5.1 New Bounds on the Size of Strong USPs
	5.2 Algorithm Performance

	6 Conclusions
	References

