
A CTL* Model Checker for Petri Nets

Elvio Gilberto Amparore, Susanna Donatelli(B), and Francesco Gallà

Dipartimento di Informatica, Università di Torino, Turin, Italy
{amparore,susi,galla}@di.unito.it

Abstract. This tool paper describes RGMEDD*, a CTL* model checker
that computes the set of states (sat-sets) of a Petri net that satisfy a
CTL* formula. The tool can be used as a stand-alone program or from
the GreatSPN graphical interface. The tool is based on the decision dia-
gram library Meddly, it uses Spot to translate (sub)formulae into Büchi
automata and a variation of the Emerson-Lei algorithm to compute the
sat-sets. Correctness has been assessed based on the Model Checking
Context 2018 results (for LTL and CTL queries), the sat-set computa-
tion of GreatSPN (for CTL) and LTSmin (for LTL), and the μ-calculus
model checker of LTSmin for proper CTL* formulae (using a transla-
tor from CTL* to μ-calculus available in LTSmin). As far as we know,
RGMEDD* is the only available Büchi-based CTL* model checker.

1 Introduction

In recent years, the model checking of CTL [10] and LTL [22] temporal logics
for (colored) Petri nets (PN) has seen a boost in interest, and several tools and
methods have been developed. Efficiency has been a main driving force behind
this effort, also motivated by the lively Model Checking Competition (MCC) [19].
MCC models, formulae, and their evaluations are publicly available, making
MCC data a very valuable benchmark for (Petri net) tools. The MCC includes
LTL and CTL properties, but does not consider CTL* [15] ones. CTL* is a
temporal logic strictly more expressive than CTL and LTL. Although various
theoretical aspects of CTL* model checking have been extensively studied in the
past, very few CTL* model checkers exist, despite the fact that CTL* properties
are of practical interests, for example for modelling fairness constraints for CTL
properties. It is well known that various forms of fairness constraints are directly
expressible in LTL, while this is not the case for CTL.

Algorithms for CTL* model checking can either be based on Büchi automata,
as illustrated in [6](page 429), or they can rely on the translation from CTL*
into μ-calculus [20], as done in the work of Dam [11,12], using the standard fixed
point iteration of μ-calculus to compute the sat-set.

RGMEDD*, the CTL* model checker described in this paper, computes the
sat-sets using a Büchi-based model checking algorithm. Given a CTL* for-
mula, the algorithm identifies the LTL sub-formulae of maximal length and uses
Spot [14] to translate each of them into a Büchi automaton. States are encoded
as Decision Diagrams (DD), using the Meddly [5] library. RGMEDD* can be run
c© Springer Nature Switzerland AG 2020
R. Janicki et al. (Eds.): PETRI NETS 2020, LNCS 12152, pp. 403–413, 2020.
https://doi.org/10.1007/978-3-030-51831-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51831-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-51831-8_21

404 E. G. Amparore et al.

as a stand-alone tool or as part of the GreatSPN [2] tool suite, called from a
“check property” window of the GreatSPN graphical interface [1].

We could only find another Petri net tool that can deal directly with CTL*:
LTSmin [18]. This tool translates CTL* into μ-calculus, using the procedures
defined in [11,12]). Note that μ-calculus for Petri nets is available also in
TINA [7], but no translator from CTL* to μ-calculus is provided. We could
not find any CTL* tool based on Büchi automata. the set of available tools does
not change even when looking to model checkers with input languages other
than Petri Nets. There are papers on CTL* for Spin [17,25], but we could not
find any implementation available. There is an implementation of μ-calculus for
nuXmv [8], which could lead to a CTL* model checker but, for the time being,
only CTL* formulae that are either LTL or CTL are actually processed.

Validation of RGMEDD* has been achieved taking advantage of the MCC2018
models, LTL and CTL formulae, and associated truth values for the models’
initial state. Computations of the sat-sets of CTL* formulae have been checked
in two ways: sat-sets of formulae that are plain CTL have been compared with the
sat-set computed by RGMEDD3, the existing CTL model checker of GreatSPN,
and LTSmin, while for CTL*-only formulae the comparison has been conducted
against LTSmin, using its CTL* module.

We undertook the construction of a CTL* model checker to use it: 1) to test
the efficiency of a DD-based implementation of LTL and CTL*; 2) to explore
whether a Büchi automata approach can favour the formulation of counterex-
amples and witnesses; 3) to investigate the efficacy for CTL* of the variable
ordering techniques developed in [3]; and 4) to support teaching: following the
effort in [4] the users of GreatSPN to experiment (within the same window of
the GUI) formulae of multiple logics: LTL, (fair)CTL and CTL*.

The paper is organized as follows: Sect. 2 introduces basic definitions, Sect. 3
reviews the algorithm for CTL* model checking, the symbolic data structures
used to implement it, the tool architecture and the integration into the Great-
SPN graphical interface. Section 4 describes the testing performed, while Sect. 5
concludes the paper.

2 Background

PT-nets. A place-transition (PT) Petri net M is defined [21] as a tuple M =
〈P, T,A,W,m0〉, where P is the set of places, T is the set of transitions, A ⊆
(P × T) ∪ (T × P) is the set of arcs, W : A → N≥1 is the arc weight function,
and m0 : P → N is the initial marking. Markings represent states of the system,
i.e. assignments of tokens to places. A transition t ∈ T is enabled if and only
if all input places of t contain at least W (p, t) tokens. The firing of t removes
such tokens from the input places, and adds to each output place p′ an amount
of W (t, p′) new tokens. Notation m

t−→ m′ indicates the firing of t from marking
m to m′. The reachability set (RS) is the set of all markings reachable from m0.
Figure 1(A) shows a simple Petri net model M with 3 places and 4 transitions,
with a RS of 4 markings.

A CTL* Model Checker for Petri Nets 405

GBA. A Generalized Büchi Automaton (GBA) is a tuple A = 〈Q,Σ, δ,Q0,F〉,
where Q is a finite set of locations, Σ is a set of atomic proposition labels,
δ : Q × Σ → 2Q is a total transition function, q0 ⊆ Q is the set of initial
locations, and F is a subset of 2Q and each element of F is called an acceptance
set. Every LTL formula φ can be translated into an equivalent GBA [23]. The
details of this translation are outside the scope of this paper. Figure 1(B) shows
a GBA with 3 locations and a single atomic proposition #P2=1, corresponding
to a boolean formula on M . Location 1 is q0, and F =

{{0}}
.

CTL*. The language of CTL* formulae of RGMEDD* is inductively defined by:

Ψ ::= � | ⊥ | dead | en(τ) | Θ �	 Θ | Ψ ∧ Ψ | Ψ ∨ Ψ | ¬Ψ | ∃φ | ∀φ

φ ::= Ψ | φ ∧ φ | φ ∨ φ | ¬φ | Xφ | Fφ | Gφ | φ Uφ

Θ ::= n | #p | bounds(π) | − Θ | Θ ◦ Θ

where n ∈ N, p ∈ P , π ⊆ P , τ ⊆ T , �	 ∈ {=, �=, >,<,≥,≤} is a comparison
operator, and ◦ ∈ {+,−, ∗, /} is an arithmetic operator. The rules Ψ , φ and Θ are
the rules for the state, path and integer formulae, respectively. The state formula
dead is a special label for all RS states that do not enable any transition; en(τ)
is satisfied in all RS states enabling at least one transition t ∈ τ ; #p evaluates to
the cardinality of place p in the current marking; bounds(π) is the maximum sum
of token counts of all places in π in every reachable marking. A CTL* formula
with no quantifiers but the initial one is an LTL formula.

0 1 P2

0 1 0 P1

T

0 P0

0 1

0 1

0 1

P2'

1 P1

1 0 0 P1'

1 0 1 P0

0 0 1 P0'

T

P2

`

0 2

1 0 1 P2

00 1 P1

0 P0

T

ext

0 1 2

0 1

2 0 2 extr

0 1

0 1

1 P2'

0 1 0 P2

0 11 P1

0 1 0

0

0 P1'

1 0 1 P0

T

0 0 1 P0'

extr

0 1 2

T

0 1 P2

0 1

0

P1

1 P0

ext

0 1 P2

0 1 0 P1

1 0 P0

T

(A) A Petri net model M. (C) RS MDD.

(D) NSF MxD.

(E) RSTS MDD.

(F) NSFTS MxD.

(G) FSTS MDD.

(B) atamotuaihcüB A for
φ := F X (#P2=1).

(H) MDD of
Sat∃LTL(M, φ).Loc

Loc

Loc

Loc

1 2 0
T

T

0

Acceptance: Inf()0

#P2=1

#P2�=1

Fig. 1. An example of the MDDs and MxDs generated for CTL* evaluation.

Product RS ⊗ A. Model checking of properties expressed using Büchi automata
follows the schema of [24]. A Transition System (TS) is generated from the cross
product RS ⊗ A between a path-formula GBA A and the RS of M . States of
this TS are pairs 〈m, q〉, with m a Petri net marking and q a GBA location.

MDD and MxD. Decision Diagrams (DD) are a data structure used to encode
large sets of structured data. GreatSPN uses the DD library Meddly [5], which

406 E. G. Amparore et al.

Algorithm 1. Sat-set generation of a maximal proper state subformula φ.
1: procedure Sat∃LTL((M, φ))
2: A ← translate φ into a Büchi Automaton
3: 〈STS

0 ,NSF TS, ASTS
F 〉 ← BuildTransitionSystem(M, A)

4: RSTS ← Saturate(STS
0 ,NSFTS)

5: switch type(A) do
6: case StrongBüchi:
7: FSTS ← RSTS |= EfairG(true, fair=ASTS

F) � Emerson Lei Algorithm

8: case WeakBüchi:
9: FSTS ← RSTS |= EF EG(ASTS

F [0])

10: case TerminalBüchi:
11: FSTS ← RSTS |= EF (ASTS

F [0])

12: Sat(φ) ← relabel(FSTS ∩ STS
0 , none)

13: return Sat(φ)
14: end procedure

supports, among others, binary (BDD) and multivalued (MDD) DDs. We shall
use MDD to encode both the RS of the Petri net, and the TS of the product
RS ⊗ A. MDDs encoding a relation function are called MxD, and are used by
the tool to represent transitions and their union as a transition relation. An
MxD has twice the levels of an MDD, and in each pair of levels it encodes the
before/after relations of a variable (i.e. a place or a location).

Figure 1(C) and (D) shows the RS and the transition relation of M encoded
as a MDD and as a MxD, respectively. A reachable state corresponds to a path
in the MDD of (C): so, taking the rightmost path, we have that (1, 0, 0) is a
reachable state. The MDD are fully-reduce, so the leftmost path encodes both
(0, 0, 0) and (0, 0, 1).

3 The RGMEDD* Architecture

Given a Petri net model M and a CTL* formula ψ, the solver first descends
recursively through the syntax tree of ψ to extract each maximal proper state
subformula [6, pp. 427], and then model checks each maximal proper state subfor-
mula ψ independently, in a bottom up process. Let ψ′ be a maximal proper state
subformula where all inner maximal proper state subformulae have been replaced
with atomic propositions. For example if a and b are atomic propositions, then
∃XX(∀ aUFb) has two maximal subformulas: ∀ aUFb and ∃XXc, where c is the
atomic proposition that stands for the sat-set of ∀ aUFb. If ψ′ only contain logical
operations, it is trivially checked by applying the corresponding logical functions.
Therefore, it remains to treat only the quantified cases ψ′ = ∃φ and ψ′ = ∀φ. For
the first case the model checker implements a single function to compute the set
of states of M satisfying φ, denoted Sat∃LTL(M,φ). The method Sat∃LTL(M,φ)
identifies the set of all markings m that have at least one path starting in m
satisfying φ, which gives the semantics for the CTL* expression ∃φ. The CTL*

A CTL* Model Checker for Petri Nets 407

expression ∀φ, corresponding to the more usual LTL semantics, is obtained from
∀φ = ¬(∃¬φ), which is computed as Sat(∀φ) = RS \ Sat∃LTL(M,¬φ).

A pseudo-code of the Sat∃LTL(M,φ) function is given in Algorithm1. The
function first translates the path formula φ into a GBA A using Spot (line 2).
It then encodes (line 3) the transition system RS ⊗ A: each TS state 〈m, q〉, is
encoded in a MDD with |P | + 1 levels. The set of reachable states in RS ⊗ A
is generated using saturation [9] (line 4). An infinite path meets the state-based
acceptance condition of a GBA if it visits infinitely often at least one state in each
acceptance set F ∈ F . The work in [16] shows that the set of states originating
accepting paths can be computed by the fair CTL formula EfairG(true,F) on
the TS. For some subclasses of GBAs (weak and terminal), a simplified procedure
(lines 5–11) can be used [26]. The final set Sat(φ) is obtained by taking all the
fair states (i.e. those that satisfy the acceptance condition of the GBA) that are
also initial states of the RS (line 12).

Most of the complexity resides in the generation of RS ⊗ A with Decision
Diagrams, summarized in Algorithm 2. Its generation requires both the MDD of
the RS and the MxD of the transition relation, referred to as the Next-State-
Function [9] (NSF) of the Petri net model. Each edge q

s−→ q′ of A is encoded
as a new MxD (line 5), by modifying the transition relation of the Petri net to
reach only Sat(s) markings, and at the same time by moving the GBA location
from q to q′. To ensure that the generated transition system is a proper Kripke
structure, all deadlock states of the Petri net model must be closed by a self-
loop, which is built separately for each edge (lines 6–7). The transition relation
NSFTS of the TS is created from the union of all the edge’s MxD (line 8). The
function relabel(d, q) takes a MDD d and sets the location level to q, while the
loc change(x, q, q′) takes a MxD x and replaces for the location level the relation

Algorithm 2. Encoding of the RS ⊗ A transition system.
1: procedure BuildTransitionSystem((M, A))
2: STS

0 ← MDD()
3: NSFTS ← MxD()
4: for each edge e = q

s−→ q′ in δ: do
5: edgeMxDe ← loc change

(
NSF ∩ (

RS × Sat(s)
)
, q, q′)

6: b ← Sat(s) ∩ deadlock � Self loops
7: selfLoopMxDe ← loc change(b × b, q, q′)
8: NSFTS ← NSFTS ∪ (edgeMxDe ∪ selfLoopMxDe)
9: if q ∈ Q0 then

10: STS
0 ← STS

0 ∪ relabel(Sat(s), q′)
11: end if
12: end for
13: for each accepting set F ∈ F : do
14: ASS

F ← ⋃{
edgeForVar(l) | for each l ∈ F

}
� MDD of all the locations in F

15: end for
16: return 〈STS

0 ,NSF TS, ASTS
F 〉

17: end procedure

408 E. G. Amparore et al.

Fig. 2. A screenshot of the CTL/CTL* interface of RGMEDD* in GreatSPN.

q → q′. The encoded TS is a tuple made by the transition relation NSFTS , the
set of initial states STS

0 of the TS, which is the set of markings that are accepted
by an edge leaving an initial location of the GBA (line 10), and the encoding
ASTS

F of the accepting sets F of the TS as MDDs (line 14).

Example. Figure 1 shows in (E) the MDD of RSTS , generated as a fixed-point
image of the MxD NSFTS shown in (F). The DDs of RS ⊗ A encode both the
places of M and the locations of A, and therefore have an additional level of
nodes. The set of fair states FSTS visited infinitely often are also encoded as a
MDD, shown in (G). Finally (H) shows the MDD of the sat-set of the CTL*
formula ∃φ, encoding the 3 satisfying markings (all markings of RS except the
one where all places have zero tokens).

Tool. The CTL* model checker is available both as a command line tool and
inside the integrated GUI. Figure 2 shows the interface. For each model, a list
of queries can be inserted, following the grammar given in Sect. 2. Queries are
declared as either CTL or CTL*, which changes the model checking algorithm
used. The algorithm described in Sect. 3 is used for CTL* queries only.

4 Testing

We have tested different aspects of RGMEDD*: the correctness of the results and
the performance of the tool. MCC2018 models and relative model instances and
formulae were used. We have considered only instances for which GreatSPN is
able to build the RS, since the RS is required for sat-set computation.

The reported tests are the final ones, but the MCC instances have been exten-
sively used also during the debugging phase allowing to discover both technical
errors (in the implementation of the algorithm) and semantics ones (different

A CTL* Model Checker for Petri Nets 409

behaviour for systems with deadlocks). Indeed Petri net models with deadlocks
do not feature only infinite paths, as per the semantics of LTL and CTL. A
standard way to turn around this problem is to “stutter” deadlock states by
adding a self-loop. MCC assumes that deadlock states are stuttered only for
LTL model checking, since this is required by the Büchi-based construction.
RGMEDD* assumes deadlocks are stuttered, which may cause discrepancies when
comparing RGMEDD* on CTL formulae. Therefore the MCC instances consid-
ered have been split in two sets: deadlock-free models (DFM), with 408 instances,
and non deadlock-free models (DM), with 539 instances.

4.1 Testing of Truth Values for CTL and LTL Formulae

This test is based on the MCC2018 results for four categories of queries: CTL-
Cardinality, CTLFireability, LTLCardinality and LTLFireability. Each category
has 16 queries. A pair 〈model instance, category〉 is called an examination. For
each examination an expected result is provided, that was used to check the
correctness of RGMEDD*. To limit resource consumption we set a time limit of
300s and a memory limit of 2GB. With these limitations we could complete 360
examinations, that is to say 5760 (=360 ∗ 16) queries. For LTL categories we
have used instances of both DFM and DF models, while for CTL only DFM
ones have been used. Over all the 5760 tests performed we have got a single
mismatch, but this is query for which there is a mismatch also among the three
tools that were able to evaluate the query in MCC2018.

4.2 Testing of Sat-Sets Computation of CTL Formulae

GreatSPN has a CTL model checker called RGMEDD3 that recursively computes
the sat-set of CTL formulae. With a timeout of 60 seconds and 2GB of memory,
RGMEDD3 completes 3544 queries from 168 different model instances from the
DF set. RGMEDD* timeout-out on 10.05% of the queries. RGMEDD3 was faster
than RGMEDD* in 92.65% of all queries completed by both tools.

Figure 3 (A) shows the execution times of the two tools, each query being a
dot. In all completed tests the tools produce sat-sets of equal cardinality.

4.3 Assessment on CTL* Formulae

Here we report the assessment of RGMEDD* against LTSmin, run using the
pins2lts-sym interface with the –ctlstar option which first converts CTL* into μ-
calculus (which may incur an exponential cost). Also LTSmin is based on decision
diagrams (of the Sylvan [13] library) and to make a more realistic comparison
we have enforced the use of the same variable order by the two tools. Before
checking CTL* formulae we have tested their behaviours on known results.

1. Tool validation against MCC results. We computed the sat-sets generated by
RGMEDD* and pnml2lts-sym when provided with the same queries from the
MCC examination of LTLCardinality and CTLCardinality (DF only models)

410 E. G. Amparore et al.

Fig. 3. Execution times of RGMEDD* vs. RGMEDD3 (A) and vs. LTSmin (B).

set for which the RS can be built. With the same resource limits as before,
of the 1248 formulae considered (covering instances from 32 different mod-
els), RGMEDD* completed 1162 and LTSmin 702. Among these 702 formulae
successfully completed by both model checkers, there were 7, from different
models, over which the two tools did not agree: For these formulae MCC
states that they are true in the initial marking, RGMEDD* returns sat-sets
that include the initial marking, while LTSmin returns empty sat-sets, which
seems a wrong answer.

2. Relative performances of the two tools. We checked the time performance of
the two tools on the same instances as above, excluding the time for RS
computation. Figure 3 (B) shows the comparison. RGMEDD* performs better
in average and a closer look at LTSmin times reveals that a significant amount
of time is spent converting CTL* formulae to μ-calculus.

3. Correctness and performance on CTL* formulae. Since there is no available
set of CTL* formulae for the MCC models (and for any other models we could
find) we have generated formulae algorithmically by parsing CTLCardinality
queries from MCC2018 and deleting each path quantifiers with a probability
of 70%. The first quantifier is always kept, in order to preserve consistency
with the CTL* grammar. For these tests, which are mainly aimed at check-
ing correctness, we considered only 39 models whose RS are rather quick
to generate. This gives a total of 624 queries, and on 218 both tools com-
plete with the given resources. RGMEDD* timed out in 5.44% of the queries
while LTSmin timed out in 65.06% of the queries. RGMEDD* was faster than
LTSmin in 85.78% of all queries completed by both tools. More importantly
the cardinality of the sat-sets coincides for both tools.

5 Conclusion

RGMEDD* is the new CTL* model checker of GreatSPN. It leverages two
libraries: Spot for the translation from CTL* to Büchi automata and Meddly for

A CTL* Model Checker for Petri Nets 411

decision diagram manipulation. RGMEDD* allows GreatSPN users to compute
the set of reachable states that satify CTL* and LTL properties. The approach
is fully integrated into the GreatSPN GUI, that already included the possibility
of computing the sat-set of CTL formulae. RGMEDD* itself can be used to check
also CTL properties, although our testing has confirmed that, as expected, the
standard CTL model checking algorithm has superior performances.

Testing of RGMEDD* had to face a number of difficulties, due to the availabil-
ity of a single CTL* tool, LTSmin. To be able to use LTSmin for our benchmark
it was first necessary to fix a few syntactic problems in the LTSmin parsing of
CTL* formulae: nevertheless it was an easy to use tool and we observed very
limited discrepancies in the results. Although both tools are based on decision
diagrams, RGMEDD* seems to perform significantly better than LTSmin, that
suffers for the expensive translation from CTL* into μ-calculus.

Based on the experience gained in building RGMEDD* we plan to develop
a model checker for the fair variant of CTL (reusing the available implementa-
tion of the Emerson-Lei algorithm for EfairGφ). We also plan to work on the
generation of counterexamples and witnesses: these two topics are of paramount
importance for the verification of distributed algorithms.

Finally, we shall work on improving memory and time performance by avoid-
ing, as much as possible, the construction of a single monolithic decision diagram
for the next state function of the Petri Net and of the RS ⊗A transition system.

Availability. A virtual machine with the tool pre-installed can be downloaded
from http://www.di.unito.it/∼greatspn/VBox/RGMEDDstar-vm.ova. The source
code of GreatSPN is available from https://github.com/greatspn/SOURCES.

Acknowledgements. We would like to thank Jaco van de Pol for the various insights
given on LTSmin, and Yann Thierry Mieg for the discussion on finite paths and model
checking.

References

1. Amparore, E.G.: A new GreatSPN GUI for GSPN editing and CSLTA model check-
ing. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 170–173.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0 13

2. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years
of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and
Reliability Modeling and Evaluation. SSRE, pp. 227–254. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30599-8 9

3. Amparore, E.G., Ciardo, G., Donatelli, S., Miner, A.: iRank: a variable order metric
for DEDS subject to linear invariants. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11428, pp. 285–302. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17465-1 16

4. Amparore, E.G., Donatelli, S.: GreatTeach: a tool for teaching (stochastic) petri
nets. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877,
pp. 416–425. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-
4 24

http://www.di.unito.it/~greatspn/VBox/RGMEDDstar-vm.ova
https://github.com/greatspn/SOURCES
https://doi.org/10.1007/978-3-319-10696-0_13
https://doi.org/10.1007/978-3-319-30599-8_9
https://doi.org/10.1007/978-3-030-17465-1_16
https://doi.org/10.1007/978-3-030-17465-1_16
https://doi.org/10.1007/978-3-319-91268-4_24
https://doi.org/10.1007/978-3-319-91268-4_24

412 E. G. Amparore et al.

5. Babar, J., Miner, A.: Meddly: multi-terminal and edge-valued decision diagram
library. In: Proceedings of QEST Conf, pp. 195–196. IEEE (2010)

6. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
7. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINA - construction of

abstract state spaces for Petri nets and time Petri nets. Int. J. Prod. Res. 42,
2741–2756 (2004)

8. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

9. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy
for symbolic state—space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001.
LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45319-9 23

10. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

11. Dam, M.: Translating CTL* into the modal μ-calculus. Technical report ECS-
LFCS-90-123, University of Edinburgh (1990)

12. Dam, M.: CTL* and ECTL* as fragments of the modal μ-calculus. Theoret. Com-
put. Sci. 126(1), 77–96 (1994)

13. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision diagrams.
STTT 19(6), 675–696 (2017)

14. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.:
Spot 2.0—a framework for LTL and ω-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 8

15. Emerson, E.A., Halpern, J.: “Sometimes” and “not never” revisited: on branching
versus linear time temporal logic. JACM 33(1), 151–178 (1986)

16. Emerson, E.A., Lei, C.: Efficient model checking in fragments of the propositional
mu-calculus. In: Logic in Computer Science (LICS 1986), pp. 267–278. IEEE (1986)

17. Holzmann, G.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Boston (2004)

18. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

19. Amparore, E., et al.: Presentation of the 9th edition of the model checking contest.
In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS,
vol. 11429, pp. 50–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17502-3 4

20. Kozen, D.: Results on the propositional μ-calculus. Theoret. Comput. Sci. 27(3),
333–354 (1983)

21. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

22. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer
Society (1977)

23. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6 6

https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/3-540-45319-9_23
https://doi.org/10.1007/3-540-45319-9_23
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1007/3-540-60915-6_6

A CTL* Model Checker for Petri Nets 413

24. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

25. Visser, W., Barringer, H.: CTL* model checking for spin. In: The 4th International
Spin Workshop. ENST, France, November 1998

26. Wang, C., Hachtel, G.D., Somenzi, F.: Abstraction Refinement for Large Scale
Model Checking. Springer, Heidelberg (2006). https://doi.org/10.1007/0-387-
34600-7

https://doi.org/10.1007/0-387-34600-7
https://doi.org/10.1007/0-387-34600-7

	A CTL* Model Checker for Petri Nets
	1 Introduction
	2 Background
	3 The RGMEDD* Architecture
	4 Testing
	4.1 Testing of Truth Values for CTL and LTL Formulae
	4.2 Testing of Sat-Sets Computation of CTL Formulae
	4.3 Assessment on CTL* Formulae

	5 Conclusion
	References

