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Abstract. We investigate the synthesis problem in a quantitative game-
theoretic setting with branching-time objectives. The objectives are given
in a recursive modal logic with semantics defined over a multi-weighted
extension of a Kripke structure where each transition is annotated with
multiple nonnegative weights representing quantitative resources such
as discrete time, energy and cost. The objectives may express bounds
on the accumulation of each resource both in a global scope and in a
local scope (on subformulae) utilizing a reset operator. We show that
both the model checking problem as well as the synthesis problem are
decidable and that the model checking problem is EXPTIME-complete,
while the synthesis problem is in 2-EXPTIME and is NEXPTIME-hard.
Furthermore, we encode both problems to the calculation of maximal
fixed points on dependency graphs, thus achieving on-the-fly algorithms
with the possibility of early termination.

1 Introduction

Formal verification is used to ensure that a system model M conforms to a
given specification ϕ, denoted by M � ϕ. It relies on having/creating a model of
the system and formalising the system’s specification in some (temporal) logic.
We can distinguish the following verification problems. Satisfiability : given a
specification ϕ, does there exist a model M s.t. M � ϕ? Model checking : given
a specification ϕ and a model M , is it the case that M � ϕ? Synthesis: given a
specification ϕ and a partial design D, can we construct a controller strategy σ
s.t. for the restricted design D�σ we have D�σ � ϕ?

We consider the synthesis problem where we are given a specification and
some initial (unfinished) design [26]. The goal is then to finish the design s.t. the
resulting system satisfies the given specification. The design can model both the
behaviour we can control as well as the uncontrollable behaviour that results
from the influence of some external environment. In some sense, the synthesis
problem can be seen as a generalization of both model checking and satisfiability,
as the initial design can express a high degree of freedom for the controller
(allowing us to check for satisfiability) or none at all (model checking).

We study the synthesis problem in a multi-weighted setting with nonnegative
weights. This allows to reason about resources such as discrete time, energy and
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Fig. 1. Task scheduling in a heat sensitive environment and the result of applying a
strategy to the choices of using fast/slow processor

cost. In contrast to other works, we investigate the problem for specifications
expressed in a branching-time recursive modal logic where the accumulated cost
of an execution in the system can be bounded both globally and locally. The
branching nature of the logic allows us to express both possibility (the existential
case), certainty (the universal case) or a mixture of both.

To argue for the relevance of the problem, we present a simple motivating
example. Consider a processor working on a set of tasks. Depending on a set of
outside factors such as the state of the hardware, the duration of the sessions etc.
it will vary how long a task takes to finish and how much excess heat it produces.
We model a simple version of this scenario in a game graph illustrated in Fig. 1a.
In the initial state (i) the processor is idle and does not produce any heat nor
complete any tasks. From this state there are two possible actions modelled
as transitions annotated with nonnegative weights, representing the number of
completed tasks, the time units spent and the amount of excess heat produced.
Both of these are controllable (illustrated as solid arrows) and represent a choice
we have in either using the regular slow setting (s) or to utilize over-clocking to
get a faster result (f). From each of these states there are two arrows leading
back to the idle state. These represent the influence of the environment (and are
therefore illustrated as dashed arrows) and differ in the produced excess heat.

We see that as a side result of over-clocking, the processor produces more
heat than the regular setting (relative to the spent time units). However, we also
see that the number of tasks completed in a single time unit is doubled.

We can now use this model to consider optimistic objectives such as “can we
possibly (if the environment cooperates i.e. the arriving tasks are computation-
ally easy) complete 4 tasks within 2 time units?”. We can also ensure certain
worst case invariant properties like “can we ensure that there is never produced
more than 15 units of excess heat within 2 time units?”. This specific prop-
erty keeps us from overheating. We are able to express the conjunction of these
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properties as the branching time specification allows us to reason about both a
single branch (possibility) and all branches (certainty).

For these types of specifications, where we are concerned with the use of
resources, the correct choice for the controller in any given state of the game
will depend on the values of these resources and the possible future involvement
of the environment. In our example it is necessary to at least alternate between
over-clocking and regular settings to ensure that we never overheat. However this
in itself does not give us a productive enough schedule in the best case. To have
the possibility of completing 4 tasks within 2 time units, we must begin with
over-clocking the processor as the regular settings will use the entire time span

on 2 tasks. In the event that the environment picks the transition f
(2,1,5)−−−−→ i we

can safely pick the fast option again as our strategy. Otherwise, we must choose
the slow option not to risk overheating. If we unfold the game according to this
informally presented strategy we get a structure like the multi-weighted Kripke
structure illustrated in Fig. 1b on which we can verify our objectives.

Our Contributions. We present a recursive modal logic with semantics defined
over a nonnegative multi-weighted extension of Kripke structures. We consider
this formalism in a game theoretic setting and investigate both the model check-
ing problem (essentially a single player with no choice) and the synthesis problem
(two players representing a controller and an uncontrollable environment). For
model checking we show that the problem is EXPTIME-complete.

Synthesis in a branching-time setting is challenged by the fact that it is
not compositional in the structure of the formula. Consider the game presented
in Fig. 1a with a winning condition stating that we are able to reach s before
completing the first task (i.e. the first component is equal to 0) and at the same
time we are able to reach f before completing the first task. Separately, each
subformula has a winning strategy as we can reach either s or f before completing
the first task. However, when these two formula are considered in conjunction,
there is no winning strategy. As a result, all subformulae in a conjunction must
be kept together as we require a uniform control strategy choice for all of them.
To deal with this complication, we provide a translation to a suitable weight-
annotated normal form and show that the synthesis problem can then be solved
in 2-EXPTIME by reducing it to the calculation of the maximal fixed-point
assignment on a dependency graph [23]. Last, we provide an NEXPTIME lower-
bound for the synthesis problem.

Related Work. One reason to use quantities is to argue about the performance
of a system [1,3,4] while another reason is to model and optimize quantitative
aspects of a system such as the use of resources. In this paper we consider the
latter approach and study a quantitative version of branching-time logic for
specifying winning conditions in a weighted game. An obvious choice for such a
logic is some variant of weighted CTL. Indeed this type of logic has previously
been considered for model checking [2,5,13,15,23] where (some subset) of CTL
is extended to express bounds on the accumulated cost of the resources. We have
taken inspiration in these logics but have chosen to look at a more general type
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of logic, namely a modal logic with recursive definitions. Our syntax is inspired
by the weighted version of the alternation-free modal μ-calculus presented in
[22] which was studied in the context of satisfiability checking.

In regards to synthesis, the problem was for expressive logics like μ−calculus
and its sub-logics such as CTL, LTL and CTL* [9,18–20,24,25,28]. However, the
synthesis problem is still open for many quantitative extensions of these logics,
and to our knowledge there is no work on quantitative branching-time logics in
this area. Synthesis has been studied in a weighted setting in the form of energy,
mean-payoff and weighted parity games [6,10,11,17,17]. Objectives that allow
one to reason (in conjunction) about several complex quantitative requirements
on a system has only recently received attention [27].

The main novelty of our work is that we consider a branching-time logic for
expressing the specifications, allowing us to capture, at the same time, the quan-
titative goals for both the optimistic and pessimistic scenarios as demonstrated
in our introductory example. Similar objectives are pursued in [8].

2 Preliminaries

An n-Weighted Kripke Structure (n-WKS) is a tuple K = (S, s0,AP, L, T )
where S is a set of states, s0 ∈ S is the initial state, AP is a set of atomic
propositions, L : S → P(AP) is a labelling function and T ⊆ S × N

n × S is a
transition relation, with a weight vector of n dimensions, where for all s ∈ S there
is some outgoing transition (s, c, s′) ∈ T . When (s, c, s′) ∈ T , where s, s′ ∈ S

and c ∈ N
n, we write s

c−→ s′. We define the set of outgoing transitions from a
state s ∈ S as out(s) = {s

c−→ s′ ∈ T}. For the remainder of the section we fix an
n-WKS K = (S, s0,AP, L, T ) where K is finite i.e. S is a finite set of states and
T is a finite transition relation and AP is a finite set of atomic propositions.

Let w ∈ N
n be a vector of dimension n. We denote the ith component of w

by w[i], where 1 ≤ i ≤ n. To set the ith component of w to a specific value k ∈ N

we write w[i → k] and to set multiple components to a specific value k ∈ N we
write w[I → k] where I ⊆ {1, . . . , n}. Given w,w′ ∈ N

n, we write w ≤ w′ iff
w[i] ≤ w′[i] for all 1 ≤ i ≤ n.

A run in K is a sequence of states and transitions ρ = s0
c0−→ s1

c1−→ s2
c2−→ . . .

where si
ci−→ si+1 ∈ T for all i ≥ 0. Given a position i ∈ N along ρ, let ρ(i) = si,

and last(ρ) be the state at the last position along ρ, if ρ is finite. We also define

the concatenation operator ◦, s.t. if (ρ = s0
c0−→ s1

c1−→ . . .
cm−1−−−→ sm) then

ρ ◦ (sm
cm−−→ sm+1) = (s0

c0−→ s1
c1−→ s2 . . . sm

cm−−→ sm+1). We denote the set of all
runs ρ in K of the form (ρ = s0

c0−→ s1
c1−→ . . . ) as ΠK . Furthermore, we denote

the set of all finite runs ρ in K of the form (ρ = s0
c0−→ . . .

cm−1−−−→ sm) as Πfin
K .

Given a run (ρ = s0
c0−→ s1

c1−→ . . . ) ∈ ΠK , the cost of ρ at position i ∈ N

is then defined as: costρ(i) = 0n if i = 0 and costρ(i) =
i−1∑

j=0

cj otherwise. If ρ

is finite, we denote cost(ρ) as the cost of the last position along ρ. Lastly, we
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define a state and cost pair (s, w) ∈ S × N
n as a configuration. The set of all

configurations in K is denoted CK .

3 RML and the Model Checking Problem

We can now define our logic.

Definition 1 (RML equation system). Let AP be a set of atomic proposi-
tions and Var = {X0, . . . , Xm} be a finite set of variables. A Recursive Modal
Logic (RML) equations system is a function E : Var → FVar, denoted by
E = [X0 = ϕ0, . . . , Xm = ϕm], where FVar is the set of all RML formulae
given by:

ϕ := ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | β

β := true | false | a | ¬a | e �� c | reset R in EX (X) | reset R in AX (X)
e := #i | c | e1 ⊕ e2

where a ∈ AP, �� ∈ {>,≥,=,≤, <}, 1 ≤ i ≤ n is the index of a vector compo-
nent, R ⊆ {1, . . . , n} is a set of indexes of vector components, c ∈ N, ⊕ ∈ {+, ·}
and X ∈ Var is a variable.

Given a formula reset R in EX (X) (or reset R in AX (X)) where R = ∅
we relieve the notation slightly and simply write EX (X) (or AX (X)) instead.
We denote the set of all subformulae in a formula ϕ as Sub(ϕ). Furthermore, we
refer to a formula given by the syntactical category β as a basic formula and a
formula given by e as an expression.

Remark 1. We limit ourselves to bounds of the form (e �� c) as more expressive
bounds of the form (e1 �� e2) allows us to simulate a two-counter Minsky machine
and thus make the model checking problem undecidable [14].

Given n-WKS K, a variable X ∈ Var is evaluated in an environment ε :
Var → 2CK assigning a set of configurations (s, w) ∈ CK to a variable X. We
denote the set of all environments as Env and assume the ordering s.t. for
ε, ε′ ∈ Env we have ε ⊆ ε′ if ε(X) ⊆ ε′(X) for all X ∈ Var. Formally the
semantics of an RML formula is a function FVar × Env → 2CK mapping a
RML formula and an environment to a set of configurations. The semantics for
a formula ϕ is thus defined based on an environment ε as follows:

�ϕ1 ∨ ϕ2�ε = �ϕ1�ε ∪ �ϕ2�ε �ϕ1 ∧ ϕ2�ε = �ϕ1�ε ∩ �ϕ2�ε
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and the semantics for a basic formula β is defined as follows:

�true�ε = CK �false�ε = ∅
�a�ε = {(s, w) ∈ CK |a ∈ L(s)} �¬a�ε = {(s, w) ∈ CK |a �∈ L(s)}

�e �� c�ε = {(s, w) ∈ CK |evalw(e) �� c}

�reset R in EX (X)�ε =
{

(s, w) ∈ CK
there is (s, c, s′) ∈ T s.t.
(s′, (w[R → 0] + c)) ∈ ε(X)

}

�reset R in AX (X)�ε =
{

(s, w) ∈ CK
for all (s, c, s′) ∈ T we have
(s′, (w[R → 0] + c)) ∈ ε(X)

}

where evalw(c) = c, evalw(#i) = w[i] and evalw(e1⊕e2) = evalw(e1)⊕evalw(e2).
The semantics of an RML equation system is defined by the function F :

Env → Env where for all E(X) = ϕ we have F(ε)(X) = �ϕ�ε. By the semantics,
we have that F is monotonic, given the complete lattice formed by (2CK ,⊆).
Hence by Knaster-Tarski’s theorem we have that there exists a unique maximal
fixed point defined as

νE =
⋃

{ε ∈ Env|ε ⊆ F(ε)}.

Let K be an n-WKS and E be an RML equation system. If (s, w) ∈ �ϕ�νE
we write (s, w) �K ϕ. When the n-WKS K is obvious from context, we omit it
and simply write (s, w) � ϕ.

Definition 2. (Model checking problem). The model checking problem asks,
given an n-WKS K = (S, s0,AP, L, T ), a configuration (s, w) ∈ CK , an RML
equation system E and an RML formula ϕ in E as input, whether (s, w) �K ϕ.

In the remainder of the paper, we assume, unless otherwise indicated, that
the model checking problem for an n-WKS K and an RML equation system E
is the question of whether (s0, 0n) �K E(X0) where X0 is the first variable in E .

Remark 2. In our logic, we can encode some instances of reachability, specifically
cost-bounded reachability, in an n-WKS where cost in divergent i.e. there are
no infinite runs where the cost-component does not increase. Consider a formula
that specifies that we can fulfil in all paths some property ϕ before the first cost-
component reaches 10. In a weighted CTL-style syntax, this will be written as
AF#1≤10 ϕ. This is a cost-bounded reachability property and we can encode it
as the following equation system E = [X = ((AX(X) ∨ ϕ) ∧ (#1 ≤ 10))]. As the
environment νE is a maximum fixed point, the satisfaction of this formula may
be in general witnessed also by an infinite run satisfying (#1 ≤ 10) but never
satisfying ϕ. However, as all cycles are strictly increasing in the first component,
this is not possible and the only way to satisfy the specification is to eventually
reach ϕ within the bound (#1 ≤ 10).

Consider now the following properties used in our motivating example.

1. It is always the case that the produced excess heat never exceeds 15 units
within 2 time units.
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2. There is a possibility of completing 4 tasks within 2 time units.

We now formalise the conjunction of these objectives as an RML equation
system E . Recall that the first component counts the number of completed tasks
while the second component measures the time units and the third measures
the produced excess heat. First, we express the bound on the excess heat in the
formula pH = (#2 > 2 ∨ #3 ≤ 15) which states that if less than 2 units of time
have gone by then the amount of excess heat is not allowed to be larger than 15
units. The first equation enforces pH in the current state and it ensures that it
is always satisfied in the future.

E(XH) = pH ∧ AX (XH) ∧ reset {2, 3} in AX (XH)

We add the last conjunction reset {2, 3} in AX (XH) so that we do not stop
checking the property the first time component two exceeded 2 units. By reset-
ting the components every time we take a step, we ensure that this invari-
ant is checked with “fresh values” no matter the cost of any previous steps.
Next, we express the possibility of completing 4 tasks within 2 time units by
pT = (#1 ≥ 4 ∧ #2 ≤ 2). We define the second equation

E(XT ) = pT ∨ (EX (XT ) ∧ #2 ≤ 2)

where the condition #2 ≤ 2 in the second part of the equation ensures that only
finite runs which satisfy pT at some point are considered (see Remark 2). The
final property is now formulated as the conjunction of XH and XT .

3.1 Finite Representation

Given a finite n-WKS and an RML equation system over the finite set of variables
Var = {X0, . . . , Xm}, we only need to consider a finite number of configurations
when evaluating a variable X in E .

First, we fix a finite n-WKS K = (S, s0,AP, L, T ) and an RML equation
system E . We define the set of all subformulae in the equation system E as

Sub(E) =
⋃

i∈{0,...,m}
Sub(E(Xi)).

Second, let gb = max{c|(e �� c) ∈ Sub(E)} be the largest bound of E . (Note that
if there are no expressions of the type e �� c then the weights can be simply
ignored.) This gives an upper-bound to the value of the cost vectors we need
to consider. We say that the constant gb is derived from E and based on it we
define a function Cut used to limit the number of vectors we need to represent.

Definition 3 (Cut). Let gb be the constant derived from E. The function Cut :
N

n → N
n is then defined for all 1 ≤ i ≤ n:

Cut(w)[i] =

{
w[i] if w[i] ≤ gb

gb + 1 otherwise.
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Based on the finite set of configurations Ccut
K = {(s, Cut(w))|(s, w) ∈ CK}

we can define a new cut environment. The new semantics is a straightforward
extension. The main changes are made to the rules concerning the bounds and
the next operators:

�e �� c�cut
εcut

= {(s, w) ∈ Ccut
K |evalCut(w)(e) �� c}

�reset R in EX (X)�cut
εcut

=
{

(s, Cut(w))
there is some (s, c, s′) ∈ T s.t.

(s′, Cut(w[R → 0] + c)) ∈ εcut(X)

}

�reset R in AX (X)�cut
εcut

=
{

(s, Cut(w))
for all (s, c, s′) ∈ T we have

(s′, Cut(w[R → 0] + c)) ∈ εcut(X)

}

.

The semantics for an RML equation system is then defined as the regular
semantics but with cut environments:

νEcut =
⋃

{εcut ∈ Envcut|εcut ⊆ F(εcut)}.

If (s, w) ∈ �ϕ�cut
νEcut

then we write (s, w) �cut
K ϕ.

Lemma 1 (Equivalence of the cut semantics). Let K be an n-WKS and E
be an RML equation system. Given a configuration (s, w) ∈ CK we have (s, w) �K

ϕ iff (s, Cut(w)) �cut
K ϕ.

Proof (Sketch). We show by structural induction on the formula ϕ that (s, w) ∈
�ϕ�ε iff (s, w) ∈ �ϕ�cut

εcut
whenever we cut with a constant gb derived from E . This

means that in any environment ε we have ε ⊆ F(ε) iff εcut ⊆ F(εcut). ��
Lemma 2 (Hardness of Model Checking). The model checking problem is
EXPTIME-hard, already for an n-WKS K with a single weight.

Proof. We show that the problem is EXPTIME-hard by reduction from count-
down games that are EXPTIME-complete [16]. A countdown game (Q,R) con-
sists of a finite set of states Q and a finite transition relation R ⊆ Q × N × Q.
We write transitions as (q, k, q′) ∈ R and say that the duration of the transition
is k. A configuration in the game is a pair (q, c) where q ∈ Q and c ∈ N. Given
the configuration (q, c) the rules of the game are defined as follows:

◦ if c = 0 then player 1 wins, else
◦ if for all transitions (q, k, q′) ∈ R we have k > c and c > 0 player 2 wins,
◦ otherwise there exists some transition (q, k, q′) ∈ R s.t. k ≤ c. Player 1 must
choose such a duration k while player 2 chooses a target state q′ s.t. (q, k, q′) ∈ R.
The new configuration is (q′, c − k). We repeat this until a winner is found.

We now reduce the problem of deciding which player is the winner of the
countdown game (Q,R) given the configuration (q, c) to deciding the model
checking problem for an n-WKS and an RML equation system. We create the
1-WKS K = (S, s0,AP, L, T ) from the countdown game (Q,R) as follows:
S = Q ∪ {sk

q |∃(q, k, q′) ∈ R} with the initial state s0 = q0, AP = ∅ and
the set of transitions are defined as T = {(q, k, sk

q )|∃(q, k, q′) ∈ R and ∃sk
q ∈
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S} ∪ {(sk
q , 0, q′)|∃sk

q ∈ S and ∃(q, k, q′) ∈ R}. To enforce the rules, we create the
following RML equation system:

E =
[
X0 =

(
(#1 = c) ∨ (EX (X1) ∧ #1 < c)

)

X1 = AX(X0)

]

.

Now we can observe that (s0, 0) �K E(X0) iff player 1 has a winning strategy in
the corresponding countdown game given the initial configuration (q0, c). ��
Theorem 1 (Model Checking Complexity). Given an n-WKS and an RML
equation system, the model checking problem is EXPTIME-complete.

Proof. The upper-bound follows from Lemma 1 and noticing that the fixed-point
computation (based on the cut semantics) runs in exponential time; there are at
most exponentially many cut configurations and it takes at most an exponential
number of rounds to reach the fixed point. The lower-bound is by Lemma 2. ��

4 Game Theoretic Framework

In this section we introduce multi-weighted two-player games, where one player
acts as the controller and one player act as the uncontrollable environment. We
end the section by expressing the synthesis problem as the problem of finding a
winning strategy for the controller in such a game.

Definition 4 (n-Weighted Game Graph). An n-Weighted Game Graph (n-
WGG) is a tuple G = (S, s0,AP, L, Tc, Tu) where Tc and Tu are disjoint sets and
KG = (S, s0,AP, L, Tc ∪ Tu) is the underlying n-WKS.

We fix an n-WGG G = (S, s0,AP, L, Tc, Tu) for the remainder of the section.
The set of transitions Tc are owned by the controller while the set Tu is owned
by the uncontrollable environment. When (s, c, s′) ∈ Tc, we write s

c−→ s′ and

when (s, c, s′) ∈ Tu we write s
c��� s′. When s has some outgoing controllable

transition we write s −→ (or s ��� for uncontrollable transitions). Similarly, if
there are no outgoing transitions we write s �−→ (or s ���� for uncontrollable
transitions).

Definition 5 (Game). An n-Weighted Game (n-WG) is a tuple (G, E) where
G is an n-WGG and the winning condition is an RML equation system E.

In an n-WG the controller’s actions are based on a strategy that specifies
which transition to take at a given position. Formally a strategy σ is a function
that, given the history of the game (the current branch), outputs the controller’s
next move. Recall that KG is the underlying n-WKS of an n-WGG G and Πfin

KG
is the set of all finite runs in KG .
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Definition 6 (Strategy). A strategy for the controller is a function σ : Πfin
KG →

Tc ∪ {nil} mapping a finite run ρ to a transition s.t.

σ(ρ) =

{
last(ρ) c−→ s′ if last(ρ) →
nil otherwise

where nil is the choice to do nothing which is only allowed if there is no con-
trollable transition to choose.

For the uncontrollable actions, we are forced to consider all possible options
as the winning condition allows us to reason about branching properties. Based
on the strategy’s choices and all choices available to the environment, we unfold
the game into an n-WKS on which we can verify the objective.

Definition 7 (Strategy restricted n-WKS). Given a game graph G and a
strategy σ, we define G�σ = (S′, s0,AP, L′, Tc�σ ∪ T ′

u) as the n-WKS resulting
from restricting the game graph under the strategy σ s.t:

◦ S′ = Πfin
KG◦ L′(ρ) = L(last(ρ))

◦ T ′
c�σ =

{
(ρ, c, (ρ ◦ σ(ρ)) σ(ρ) = (last(ρ) c−→ s′)

}

◦ T ′
u = {(ρ, c, ρ ◦ (last(ρ)

c��� s′)) (last(ρ)
c��� s′)}

A strategy σ is winning for the game (G, E) iff (s0, 0n) �G�σ E(X0).

Definition 8 (Synthesis Problem). Given the n-WG (G, E), the synthesis
problem is to decide if there is a strategy σ s.t. (s0, 0n) �G�σ E(X0).

We return to the motivating example of a processor completing a set of tasks
introduced earlier. Let G be the n-WGG presented in Fig. 1a and E be the
formalised winning condition presented in Sect. 3. As stated in the introduction,

one winning strategy is to initially choose the fastest option i
(0,0,0)−−−−→ f and

repeat this choice whenever the preceding uncontrollable move did not generate
more than 5 units of excess heat. In all other situations we choose the safe slow
option. However, we notice that there is a simpler alternative which still satisfies
the winning condition.

After the first two turns, we no longer need to consider the optimistic objec-
tive which aims to finish 4 units of work in 2 time units, as 2 time units have
already passed. We can therefore focus solely on keeping the excess heat down
and can simply always choose the slow option after that. We formally define this
simpler strategy σ below:

σ(ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

i
(0,0,0)−−−−→ f if last(ρ) = i and costρ[2] ≤ 5

i
(0,0,0)−−−−→ s if last(ρ) = i and costρ[2] > 5

nil otherwise.



56 I. Kaufmann et al.

The result of applying σ to the game graph G is the strategy restricted
game graph G�σ illustrated in Fig. 2. As the second property only expresses a
possibility it is enough that our first move might lead to completing the tasks and
this defined strategy is indeed winning.If we are to formally define the strategy
σalt, which is the first option discussed, we need to know some of the history of
the play in order to choose alternating transitions from the state i. In fact, we
need to look at the last four transitions to ensure a safe pick. In the remainder of
this paper, we carefully consider the memory requirements of winning strategies
for RML winning conditions (we encode the memory needed as the remainder
of the winning condition which is still to be satisfied).

(ρ0 = i)

(ρ1 = ρ0 ◦ (i
(0,0,0)−−−−→ f))

(ρ2 = ρ1 ◦ (f
(2,1,5)−−−−→ i))

(ρ4 = ρ2 ◦ (i
(0,0,0)−−−−→ f))

(ρ6 = ρ4 ◦ (f
(2,1,5)−−−−→ i))

(ρ3 = ρ1 ◦ (f
(2,1,10)−−−−−→ i))

(ρ5 = ρ3 ◦ (i
(0,0,0)−−−−→ s))

(0, 0, 0)

(2, 1, 5) (2, 1, 10)

(0, 0, 0)

(2, 1, 5)

(0, 0, 0)

Fig. 2. Strategy restricted game graph G�σ for G from Fig. 1a

5 Dependency Graphs

To solve the synthesis problem we shall propose a reduction to the problem
of calculating the maximal fixed-point assignment of a dependency graph. A
dependency graph [23] is a pair D = (V,H) where V is a finite set of nodes and
H : V × P(V ) is a finite set of hyper-edges. Given a hyper-edge h = (v, T ) ∈ H
we say that v ∈ V is the source node and T ⊆ V is the set of target nodes.

An assignment of a dependency graph D is a function A : V → {0, 1} that
assigns value 0 (false) or 1 (true) to each node in the graph. We also assume a
component-wise ordering � of assignments s.t. A1 � A2 whenever A1(v) ≤ A2(v)
for all v ∈ V . The set of all assignments is denoted by A and clearly (A,�) is
a complete lattice. A (post) fixed-point assignment of D is an assignment A s.t.
for any v ∈ V if for all (v, T ) ∈ H there exists an u ∈ T s.t. A(u) = 0 then we
have that A(v) = 0. This is formalized by the monotonic function f : A → A
defined as

f(A)(v) =
∨

(v,T )∈H

∧

(u∈T )

A(u)

where, by convention, conjunction over the empty set is true while disjunction
over the empty set is false. By Knaster-Tarski’s theorem we know that there
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v0

v1 v2

∅

v3

v4

(a) Dependency graph D = (V, H)

v0 v1 v2 v3 v4
A1 1 1 1 1 1
f(A1) 1 1 1 1 0
f(f(A1)) 1 1 1 0 0
f(f(f(A1))) 1 1 1 0 0

(b) Calculation of Amax
D

Fig. 3. Dependency graph D and the fixed point assignment Amax

exists a unique maximum fixed-point assignment of D, denoted Amax
D . When

the dependency graph D is clear from context, we simply denote the fixed-
point assignment as Amax. To compute the maximum fixed-point assignment,
we apply f repeatedly on the assignment, starting with f(A1) where A1 is the
initial assignment defined s.t. A1(v) = 1 for all v ∈ V , as shown in Fig. 3.

Theorem 2 ([23]). There is a linear time (on-the-fly) algorithm to compute
the maximal fixed point of a dependency graph.

6 On-the-Fly Synthesis Algorithm for n-WG

We shall now present our encoding of the synthesis problem to the problem
of calculating the maximal fixed-point assignment of a dependency graph. The
initial idea is that given a game (G, E), we construct a dependency graph D(G,E)
with nodes of the form 〈ϕ, (s, w)〉 such that Amax(〈ϕ, (s, w)〉) = 1 iff there exists
a strategy σ where (s, w) �G�σ ϕ. We are referring to this as an on-the-fly
algorithm as we do not necessarily need to calculate the maximal fixed-point
assignment of the entire dependency graph to terminate.

The first challenge in the encoding is to keep track of which parts of the
winning condition must be considered together (i.e. cannot be looked at com-
positionally). We can analyse disjunction compositionally by decomposing it to
the individual disjuncts. However, for conjunction, we must consider the whole
formula together as the controller’s choice must be done in agreement with all
subformulae. As a consequence of keeping all conjuncts together, the reset oper-
ator may force us to evaluate the same subformula for (possibly several) different
cost vectors at any given point.

This technical challenge is solved by annotating the basic formulae with
weight vectors under which they must be evaluated. Then we transform the
weight annotated formulae into a disjunctive normal form such that we can sep-
arate the disjuncts (as they can be solved independently) and then for a given
disjunct select one controllable transition. To create such an annotated normal
form, we now propose a more succinct notation for evaluating a formula with
respect to multiple different cost vectors.
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Definition 9 (Weighted basic formula). We define the function ϕ[w] as the
operation of pushing the cost vector w through an RML formula ϕ s.t. each basic
formula is prefixed with the cost vector:

ϕ[w] =

⎧
⎪⎨

⎪⎩

ϕ1[w] ∧ ϕ2[w] if ϕ = ϕ1 ∧ ϕ2

ϕ1[w] ∨ ϕ2[w] if ϕ = ϕ1 ∨ ϕ2

(w : ϕ) if ϕ = β.

The result is a positive Boolean combination of weighted basic formulae for which
we write s � (w : β) whenever (s, w) � β.

Notice that for propositions of the form a, ¬a, true and false the cost vector
w does not impact the satisfiability and can be ignored such that instead of
s � (w : a) we simply consider s � a. For (e �� c) this corresponds to evalw(e) �� c
which evaluates to either true or false and can be replaced by its truth value.

We use the function dnf to transforms the conjunction
∧

m∈M ϕm[wm] into an
equivalent formula in disjunctive normal form dnf (

∧
m∈M (ϕm[wm])) =

∨
i∈I ψi

where each ψi is of the form:
∧

�∈L

p� ∧
∧

j∈J

wj : reset Rj in EX (Xj) ∧
∧

k∈K

wk : reset Rk in AX (Xk) (1)

where p := a|¬a|true|false.
For the remainder of the section, we fix a conjunction of weighted basic

formulae ψ such that L, J or K refer to the indices used in Eq. (1). Additionally,
we fix an n-WGG G = (S, s0,AP, L, Tc, Tu). Based on a strategy choice s

c−→ s′ ∈
Tc we define the set of final transitions as finalOut(s c−→ s′) = {(s cu−→ su) ∈
Tu} ∪ {(s c−→ s′)}.

6.1 Determining a Winning Move

Given a conjunction of weighted basic formulae ψ, a strategy choice s
c−→ s′

is winning if all propositions and bounds are fulfilled i.e. s �
∧

�∈L p� and (i)
every (wj : reset Rj in EX (Xj)) subformula is satisfied by some final outgoing
transition, and (ii) all (wk : reset Rk in AX (Xk)) subformulae are satisfied by
all final outgoing transitions.

The second challenge in the encoding is thus to determine how the formula
should envolve in the different branches of the resulting computation tree i.e.
which existential subformula should be satisfied by a given final transition. We
frame this choice as a mapping from existential subformulae to final transitions
α : J → finalOut(s c−→ s′). Given such a mapping we can formally define the
remaining winning condition for each final transition (s, c′, s′′) ∈ finalOut(s c−→
s′) in the move function where move(ψ, α, (s, c′, s′′)) = false if ∃
 ∈ L s.t.
s �� p� and otherwise move(ψ, α, (s, c′, s′′)) =

∧

j∈J s.t.
α(j)=(s,c′,s′′)

E(Xj)[(Cut(wj [Rj → 0] + c′)] ∧
∧

k∈K

E(Xk)[(Cut(wk[Rk → 0] + c′)] .
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∧
�∈L p� ∧ ∧

j∈J wj : reset Rj in EX(Xj) ∧ ∧
k∈K wk : reset Rk in AX(Xk)

)
, s

( ∧
k∈K E(Xk)[wk[Rk → 0] + c1]∧

j∈J
α(j)=(s,c1,s1)

E(Xj)[wj [Rj → 0] + c1]

)

, s1

( ∧
k∈K E(Xk)[wk[Rk → 0] + cn]∧

j∈J
α(j)=(s,cn,sn)

E(Xj)[wj [Rj → 0] + cn]

)

, sn(. . .), s2

. . .c1
c2

cn

Fig. 4. Successor states assigned their remaining formula

In Fig. 4 we show an illustration of the final outgoing transitions as well as
the remaining formula based on the move function.

6.2 Dependency Graph Encoding

We are now ready to present the encoding of the synthesis problem to the com-
putation of the maximal fixed-point assignment on a dependency graph. The
encoding consists of two types of nodes. Either 〈ψ, s〉 which represent the syn-
thesis problem from the state s and winning condition ψ, or intermediate nodes
with additional information used to explore possible strategies and mappings.

Given the game (G, E) and the initial state s0, we construct the dependency
graph D(G,E) with the root node 〈E(X0)[0n], s0〉. The outgoing hyper-edges are
defined in Fig. 5. Notice that the nodes representing synthesis problems are illus-
trated as square boxes, while intermediate nodes are illustrated as ellipses. Below
a brief description of the encoding is given:

1. Given a conjunction
∧

m∈M (E(Xm)[wm]), we first put it into disjunctive nor-
mal form (Fig. 5a),

2. and then the resulting formula
∨

i∈I ψi is split into conjunctions of weighted
basic formulae (Fig. 5b).

3. The propositions true (Fig. 5c) and false (Fig. 5d) are handled in the obvi-
ous way (note that false has no outgoing edges and evaluates to 0).

4. For a conjunction of weighted basic formulae ψ, we create hyper-edges to
intermediate nodes which explore each possible strategy (Fig. 5e).

5. From the intermediate node, we create a hyper-edge with a target node for
each outgoing transition. Each target node records the last state and updates
the remaining formula based on the move function (Fig. 5f). Goto step 1.

6. If there are no outgoing controllable transitions, we combine steps 4 and 5
and explore all mappings and advance the formula by one step (Fig. 5g).

Given a dependency graph D(G,E) with the maximal fixed-point assignment
Amax, we have that if Amax(〈E(X0)[0n], s0〉) = 1 we can extract a winning
strategy from the initial state s0 by evaluating how the node got that assignment.
Essentially for a node 〈s, ψ〉 we follow the assignment through either Fig. 5e and
Fig. 5f, or Fig. 5g and extract the strategy from the intermediate node (if there
is one). We generate the runs used for the next strategy choices based on the
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∧
m∈M(E(Xm)[wm])

)
, s

dnf
∧

m∈M(E(Xm)[wm])
)
, s

(a) Normalizing

∨
1≤i≤n

)
ψi, s

ψ1, s . . . ψn, s

(b) Splitting

true, s

∅

(c) True

, s

(d) False

ψ, ss
c1−→ s1, . . . , s

cn−→ sn ∈ Tc and for all i ∈ {1 . . . n} αi
1, . . . , α

i
m ∈ [J → finalOut(s ci−→ si)]

. . .

. . .

. . .ψ, s, s
c1−→ s1, α

1
1 ψ, s, s

c1−→ s1, α
1
m ψ, s, s

cn−→ sn, αn
1 ψ, s, s

cn−→ sn, αn
m

(e) Choosing a controllable transition (strategy choice) and a mapping

(ψ, s, (s c−→ s′), α′)(s, c1, s1) . . . (s, ct, st) ∈ finalOut(s c−→ s′)

move(ψ, α′, (s, c1, s1)), s1 . . . move(ψ, α′, (s, ct, st)), st

(f) Advancing the formula, given a strategy choice and a mapping, when s −→

ψ, ss �→ s
c1−→ s1, . . . , s

cn−→ sn ∈ Tu and α1, . . . , αm ∈ [J → {s
c−→ s′ ∈ Tu}]

. . .

. . .

. . .
move(ψ, α1, (s, c1, s1)), s1

move(ψ, α1, (s, cn, sn)), sn

move(ψ, αm, (s, c1, s1))), s1

move(ψ, αm, (s, cn, sn)), sn

(g) Choosing a mapping and advancing the formula when s �→

Fig. 5. Encoding of the synthesis problem

final transitions. If there is no remaining winning condition to satisfy (or no way
of satisfying it in the future) we go to Fig. 5c or 5d.

Lemma 3 (Correctness of the encoding). Let (G, E) be an n-WG. There
is a strategy σ such that s0 �G�σ E(X0)[0n] iff Amax

D(G,E)
(〈E(X0)[0n], s0〉) = 1.

Theorem 3. The synthesis problem for n-WGs is in 2-EXPTIME.

Proof. To show that the problem is in 2-EXPTIME, we first notice that given
a game (G, E), the number of nodes in the dependency graph D(G,E) is doubly
exponential in the size of KG . This is because there is an exponential number
of weighted basic formulae and the nodes can contain an arbitrary conjunction
(subset of) weighted basic formulae. As finding the maximal fixed point of a
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dependency graph can be then done in linear time in the size of the dependency
graph (Theorem 2), this gives us a doubly exponential algorithm. ��

6.3 Hardness of the Synthesis Problem

We shall now argue that the synthesis problem is NEXPTIME-hard. This is
proved by a reduction from Succinct Hamiltonian path problem.

Definition 10 (Succinct Hamiltonian). Let n, r ∈ N be natural numbers and
let ϕ(x1, x2, . . . , x2n+r) be a Boolean formula over the variables x1, . . . , x2n+r.
This input defines a directed graph G = (V,E) where V = {0, 1}n and (v, v′) ∈ E
iff there exists y ∈ {0, 1}r such that ϕ(v, v′, y) = true. The Succinct Hamilto-
nian problem is to decide if there is a Hamiltonian path in G (containing each
vertex exactly once).

Lemma 4. The Succinct Hamiltonian problem is NEXPTIME-complete.

Proof. In [12] the succinct Hamiltonian path problem is proved NEXPTIME-
complete where the edge relation is defined by a Boolean circuit. The Boolean
formula representation is obtained by employing the Tseytin transformation. ��
Theorem 4. The synthesis problem for n-WGs is NEXPTIME-hard.

Proof. By polynomial time reduction from Succinct Hamiltonian problem. Let
n, r ∈ N and ϕ(x1, x2, . . . , x2n+r) be an instance of the problem. We construct an
(3n+ r +1)-WG G and a formula such that the answer to the synthesis problem
is positive iff there is a Hamiltonian path. The cost-vectors that we use are of
the form

w = [1, . . . , n
︸ ︷︷ ︸

u1

, n + 1, . . . , 2n
︸ ︷︷ ︸

u2

, 2n + 1, . . . , 3n
︸ ︷︷ ︸

u3

, 3n + 1, . . . , 3n + r
︸ ︷︷ ︸

y

, 3n + r + 1
︸ ︷︷ ︸

counter

]

where (u1, u2) or (u2, u1) represents the current edge that we are exploring (the
direction of the edge depends on the phase of the edge generation process), u3

stores the encoding of a node that must appear in the path, y represents the
internal variables for the evaluation of ϕ and the last weight coordinate is a
counter where we store the number of processed edges. Whenever we write u1

we refer to the first n components of the cost-vector, for u2 we refer to the next
n components etc. The constructed game graph G together with the winning
condition is given in Fig. 6 such that the notation #i++ represents a vector
where at position i the weight value is 1 and at all other positions the value is 0.
Notice that all transitions in the game graph are controllable. Let us now argue
about the correctness of the reduction.

First, let us assume that there is a Hamiltonian path in G, i.e. a sequence
v1, v2, . . . , v2n ∈ V where every node from V is part of the sequence and for all i,
1 ≤ i < 2n, there is y ∈ {0, 1}r such that ϕ(vi, vi+1, y) = true. We shall define
a winning strategy σ for the constructed game graph with a winning condition



62 I. Kaufmann et al.

s0

#(2n + 1)++

#(2n + 2)++

#(3n)++

su{unf}

sf sc2 {check2}sc1

{check1}

. . . . . .

. . .
. . .

#1++

#n++ #(3n + 1)++

#(3n + r)++

#(3n + r + 1)++

#(n + 1)++

#(2n)++#(3n + 1)++

#(3n + r + 1)++

#2++

#(n + 2)++#(3n + r)++

X0 = AX (X1)

X1 = AX (X2) ∧ reset{2n + 1} in AX (X2) ∧ unf

X2 = AX (X3) ∧ reset{2n + 2} in AX (X3) ∧ unf

...

Xn−1 = AX (Xn) ∧ reset{3n − 1} in AX (Xn) ∧ unf

Xn = AX (XPath) ∧ reset{3n} in AX (XPath) ∧ unf

XPath = E(XFind) ∧ E(XEdge) ∧ ¬unf

XFind = (#(3n + r + 1) < 2n) ∧ AX (XFind)
) ∨ (#(3n + r + 1) ≥ 2) ∧ ϕeq

)

XEdge =

⎛
⎜⎜⎝

#(3n + r + 1) ≤ 1
) ∨

check1 ∧ ϕ1 ∧ reset {u1, y} in AX (XEdge)
) ∨

check2 ∧ ϕ2 ∧ reset {u2, y} in AX (XEdge)
) ∨

¬check1 ∧ ¬check2 ∧ AX (EEdge)
)

⎞
⎟⎟⎠

ϕeq =

⎛
⎝

∧
i∈{1,...,n} #i +#(2n + i) = 0 ∨ #i +#(2n + i) = 2

)
∨∧

i∈{1,...,n} #(n + i) + #(2n + i) = 0 ∨ #(n + i) + #(2n + i) = 2
)

⎞
⎠

ϕ1 =

⎡
⎣

x1/(#1 = 1), x2/(#2 = 1), . . . , xn/(#n = 1),
xn+1/(#(n + 1) = 1), xn+2/(#(n + 2) = 1), . . . , x2n/(#(2n) = 1),
x2n+1/(#(3n + 1) = 1), x2n+2/(#(3n + 2) = 1), . . . , x2n+r/(#(3n + r) = 1)

⎤
⎦

ϕ2 =

⎡
⎣

x1/(#(n + 1) = 1), x2/(#(n + 2) = 1), . . . , xn/(#(2n) = 1),
xn+1/(#1 = 1), xn+2/(#2 = 1), . . . , x2n/(#n = 1),
x2n+1/(#(3n + 1) = 1), x2n+2/(#(3n + 2) = 1) . . . , x2n+r/(#(3n + r) = 1)

⎤
⎦

Fig. 6. Game graph and winning condition

defined by the variable X0. The strategy σ moves from the initial state to su that
satisfies the proposition unf and then loops n times in su. Afterwards, it proceeds
to sc1 as this is the only way to satisfy the equations for variables X0 to Xn. From
this point, we define a strategy based on the Hamiltonian path v1, v2, . . . , v2n .
First, we move from sc1 to sc2 and bit by bit select the appropriate edges so that
the encoding of node v1 is stored in the first n bits of the weight vector. Then we
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select the encoding for the y part of the weight vector and increase the counter
value to 1. We repeat the process in the symmetric lower part of the loop and
store the encoding of the node v2 in the second part of the weight vector, making
sure that the y part is selected so that ϕ(v1, v2, y) = true. Then the control
strategy is defined so that the node v3 is stored instead of the node v1 and an
appropriate vector y is generated so that ϕ(v2, v3, y) = true. Next, the node v4
is generated instead of the node v2 with the corresponding vector y and so on
until the whole Hamiltonian path is traversed in this way, until we move to the
state sf . It remains to show that the strategy σ satisfies the variable X0.

To argue that this is a winning strategy we consider both the invariant XEdge

and XFind, activated by XPath in the state sc1 . The use of reset in the equations
from X0 to Xn created 2n active versions of the remaining winning condition
XPath by creating a new cost-prefix for every Boolean combination of the compo-
nents in u3. Hence every node in the graph has an active version of XFind trying
to satisfy the subformula ϕeq that proves that the vector in the third weight
component (u3) appears within less than 2n steps at least once in the generated
sequence of nodes. As the generated path is Hamiltonian, this is indeed the case
and XFind is hence satisfied. Next we argue for the satisfiability of the invariant
XEdge. The satisfiability of this variable is never affected by u3 and so we can
ignore the multiple active versions. In the strategy σ we are generating nodes
according to the Hamiltonian path and every time we are in sc1 that satisfies
the proposition check1 we must guarantee we have a valid edge between u1 and
u2 (required by ϕ1) and similarly we must satisfy ϕ2 whenever we are in sc2 .
Again, as the generated sequence is a path in the graph, this is the case.

Let us now assume that there is a winning strategy σ for (G, E). We shall
argue that the sequence of nodes generated in u1 and u2 defines a Hamiltonian
path. As σ is winning it must include a move to su, n loops on su and finally a
move to sc1. This is needed to satisfy the equations from X0 to Xn. Given this
sequence of moves, we have that from sc1 the strategy must enforce 2n active
versions of XEdge and XFind. To satisfy all active versions of XFind all nodes
must be represented in either u1 or u2 before the counter reaches 2n. As there
are exactly 2n nodes, this implies that there cannot be a repetition of any node
in the first 2n nodes generated by σ. To satisfy XEdge the only choices are to
either continuously satisfy the second or third clause or move to sf where the
last clause trivially holds. If the strategy choice is the move to sf before all
nodes in V have been represented in either u1 or u2, not all active versions of
XFind will be satisfied. Hence this would not be a winning strategy. The only
alternative is that σ satisfies the second or third clause 2n times before moving
to sf . By definition of XEdge this implies that σ generates 2n nodes which
form a valid sequence of edges (to satisfy the checks performed by ϕ1 and ϕ2).
Hence the existence of a winning strategy implies the existence of a Hamiltonian
path. ��
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7 Conclusion

We presented a recursive modal logic with semantics defined over a nonnega-
tive multi-weighted extension of Kripke structures. We proved that the model
checking problem is EXPTIME-complete and EXPTIME-hard even for a single
weight. We then introduced the synthesis problem given multi-weighted two-
player games (with a controller and an environment as players) with objectives
formulated in the recursive modal logic and with the game-arena given by a
multi-weighted Kripke structure. We proved that the synthesis problem is in
2-EXPTIME and is NEXPTIME-hard. The containment result is achieved by a
(doubly exponential) reduction to dependency graph that allows for on-the-fly
algorithms for finding the maximum fixed-point value of a given node. It required
a nontrivial treatment of conjunctive subformulae, as in the branching-time set-
ting we have to guarantee that uniform choices of controllable transitions are
made across all formulae in a conjunction.
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the project DiCyPS funded by the Innovation Fund Denmark, ERC Advanced Grant
LASSO and the QASNET DFF project.
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