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Abstract. When a Petri net system of some class is synthesised from
a labelled transition system, it may be interesting to derive structural
properties of the corresponding reachability graphs and to use them in a
pre-synthesis phase in order to quickly reject inadequate transition sys-
tems, and provide fruitful error messages. The same is true for simulta-
neous syntheses problems. This was exploited for the synthesis of choice-
free nets for instance, for which several interesting properties have been
derived. We exhibit here a new property for this class, and analyse if
this gets us closer to a full characterisation of choice-free synthesizable
transition systems.
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1 Introduction: Implementation Issue

Those last years, several works have been dedicated to the (simultaneous) synthe-
sis of choice-free Petri nets1, among others [1,3,8,9]. Since this means a loss in the
expressive power, we may thus wonder why this class of systems could be espe-
cially interesting, besides the known structural properties of their behaviours.

The rather general class of weighted place-transition nets and systems is
composed of places and transitions, as indicated by its name, together with
weighted arcs between them. A place represents a type of resource; it may contain
tokens representing the number of resources of that kind presently available;
these (consumable) resources are considered interchangeable, at least as far as the
control flow is concerned (“black” tokens), but they may carry some information
that will be used (in a way not specified) by the transition that will absorb them.
1 Those that would not be familiar with the domain are referred to the Appendix and

the Introduction sections.

E. Erofeev—Supported by DFG through grant Be 1267/16-1 ASYST.

c© Springer Nature Switzerland AG 2020
R. Janicki et al. (Eds.): PETRI NETS 2020, LNCS 12152, pp. 89–108, 2020.
https://doi.org/10.1007/978-3-030-51831-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51831-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-51831-8_5


90 E. Best et al.

A transition needs some number (possibly zero) of tokens of each kind in order
to be able to function, and then produces some (other) tokens. As such, those
nets allow to model complex intertwined mixtures of sequences, exclusive choices
and concurrency, hence exhibit an interesting expressive power.

But they may also serve as static specifications of systems to build. And
a (finite) labelled transition system may serve as a behavioural specification,
from which a (bounded) synthesised net system of some class may be built and
then serves itself as a structural specification. However, here we may encounter
some problems. Since those models allow to represent a concurrency feature
between transition firings, a natural implementation strategy would be to build
a system composed of data structures to model places and tokens, and parallel
agents, one for each transition, interacting only through their competition to
access their needed resources, one place at a time to obtain a fully distributed
realisation. Note that, since memory resources are finite, we need to restrict our
attention to bounded net systems and finite transition systems.

The structure of each implemented transition could then be sketched as fol-
lows:

repeat
check availability of needed resources
if some are missing, retry after some time
otherwise, collect the needed tokens
process the action of the transition

(possibly using the hidden information of the black tokens)
produce the output tokens

(possibly with adequate hidden information,
depending on the one of the used tokens.)

There are variants of this schema however; for instance, the production of the
output tokens may be performed one by one during the action process, and not
all together at the end of the processing.

However there is potentially a big problem with this procedure: between the
checking phase and the collection phase, the situation may have changed, due
to the parallel action of other transitions, and it may happen that the tokens
which were available during the checking phase are no longer there! It may even
be possible that this is only discovered in the middle of the collection phase, and
that we need to “give back” the tokens that were absorbed during the beginning
of the phase. This is illustrated by the system in Fig. 1.

We may partly avoid this problem by absorbing the remainder of the needed
tokens whenever the transition discovers they have been produced, but it may
still be necessary to give back the absorbed tokens if we observe that it takes too
long to get the remaining ones, possibly meaning that we reached a deadlock.

It is possible to avoid this kind of problem by blocking in a critical section
all the data structures implementing the places and tokens, in order to check
and absorb the needed tokens without being bothered by the other transitions,
relaxing the critical section to wait a bit if not all the needed tokens were present,
or to start the process and produce phase. However, this seriously reduces the
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parallelism of the implementation, may lead to starvation problems, and is cer-
tainly not distributed in the way we searched for.

We may also slightly alleviate this technique by only blocking together the
input places of the transition, by protecting each place separately by a critical
section and nesting them while following a predefined ordering in order to avoid
deadlocks. However, this still reduces the parallelism of the implementation,
may still lead to starvation problems, needs that the transitions first agree on a
common ordering of the places, and is again not distributed as expected.

PNS :

p1

p2

t1

u

t2 . . .. . .

. . .. . .

. . .. . .

. . .

. . .

. . .

. . .

Fig. 1. A Petri net system, where transition u may see that all its needed tokens are
present, but when it decides to take them, conflicting transitions t1 and/or t2 may have
taken them before. If u takes a token from p1 and then sees that the token in p2 has
disappeared, u must give back the token to p1.

These problems underpin the difficulties encountered when one tries to realise
a distributed hardware implementation of Petri nets, as in [13,18].

The problem we described disappears, whatever the marking, if the places
are not shared, that is if each place has (at most) a single output transition
(for instance, in Fig. 1, if transition u is dropped, or t1 and t2), which is the
definition of choice-free nets (see also Fig. 2 left, Fig. 5 right, and many others
in the following).

In that case, it is never necessary to give back some absorbed token(s), and it
is even possible to fuse the check and collect phases, leading for each transition
to a (parallel) procedure of the kind:

repeat
for each input place do

while the needed tokens are not present do wait for some time
grab the needed tokens
process the action of the transition and produce the output tokens

Of course, it is necessary to protect the data structures representing places,
by semaphore-like devices [11] or monitor-like devices [12], in order to ensure
that if many producers or the consumer and some producer(s) access the place,
the result may be serialised (for instance, if two producers add one token in some
common place, the result will be to add two tokens, and not a single one, the
last addition wiping out the first one as it can happen in a -badly implemented-
parallel system).
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There is another class of nets, however, where a distributed implementation
may be obtained whatever the initial marking: the join-free nets, where each
transition has at most a single input place (called a simple-choice place), as
illustrated on the right of Fig. 2. This is in some sense the reverse-dual of the
choice-free case, since we have ∀t : |•t| ≤ 1 instead of ∀p : |p•| ≤ 1.

µ0

p

x

a1

a2

am

k+h

h

k1

k2

km

µ0

p

a1

a2

am

k1
k2

km

Fig. 2. On the left: a general pure (h = 0) or non-pure (h > 0) choice-free place p with
initial marking μ0 and unique output x (the inputs of ai’s and other inputs/outputs of
x are not constrained); {a1, . . . , am} = T \{x}, but some ki’s may be null. On the right,
a general simple-choice place (the outputs of ai’s and inputs of p are not constrained).

In an implementation, each transition simply has to check the number of
tokens in its unique input place and grab the needed ones in one access2 if
present (otherwise, one waits for some time before retrying). If the acquisition
succeeded, one then processes the transition action and produces the output
tokens, before retrying the whole cycle.

Let us now consider the case of free-choice nets [10], or their extended and
weighted version called equal conflict nets [17] (see Appendix A.2 and Fig. 3 left).
Here, there possibly are conflicts but they may be solved freely. We may then
define an equivalence t ∼ u ⇐⇒ •t ∩ •u �= ∅ between transitions, and consider
its equivalence classes, called clusters, i.e., the sets of transitions sharing their
input places. In a distributed implementation, for each cluster, we may introduce
a new process to check the availability of the needed resources (it behaves like in
a choice-free net since its input places are not shared); when it works, it produces
a single token in an intermediate place (with all the hidden information of the
absorbed tokens, if any) which is simply shared by the transitions in the cluster,
hence may be implemented as in a join-free net. We thus have a mixture of a
choice-free net and a join-free one. This is illustrated in Fig. 3.

2 Introduction: Persistence Issue

A well-known [16] feature of CF-systems is the persistence of their reachability
graph, meaning that a label, once firable, remains firable forever till fired (see
2 A bit like in a “test and set” instruction, which allow multiprocessors to neatly

manage their common memory resource.
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Fig. 3. On the left: a cluster in an equal conflict net, with two places and three tran-
sitions. On the right, its transformation for implementation: the cluster behaves as a
transition in a choice-free net, and the intermediate place p as a place in a join-free
net.

Appendix A.1). Indeed, suppose that in the reachability graph of a choice-free
net system there are a state s and two edge labels a �= b such that s

a→ s1

and s
b→ s2 for two states s1 and s2. By the CF property, a and b have no

common input place, so that, by the firing rule, firing a cannot disable b and
firing b cannot disable a. Hence s

a→ s1
b→ s′

1 and s
b→ s2

a→ s′
2 for states

s′
1, s

′
2. Moreover, s′

1 = s′
2 by Ψ(ab) = Ψ(ba) and the fact that the effect of a firing

sequence depends only on its Parikh vector. So, the reachability graph is indeed
persistent.

In a Petri net, a choice between a and b is indicated structurally by the
presence of a place having both a and b as output transitions. In a transition
system, on the other hand, a choice may be indicated by a branching state with
two or more successor states. These two notions do not coincide however, as
illustrated by Fig. 4.

a choice with a �= b

TS1: PNS1:
s

s1 s2

a b

×b ×a
a b

persistence

TS2: PNS2:

s

s1 s2

s′

a b

b a a b

Fig. 4. Different kinds of branchings in an lts: choice (l.h.s.) and persistence (r.h.s.).

However, we may have a Petri net system with choice-places which never-
theless yields a persistent reachability graph. This is illustrated by Fig. 5. In
the plain Petri net system PNS3, place p3 is a choice place between a and b.
However, its reachability graph is isomorphic to TS3, which is persistent (in a
trivial way: there is no choice at all). This is due to the fact that, when a is
enabled, b is not, and when b is enabled a is not. PNS3 is not the only Petri net
solving TS3: PNS′

3 is also a solution, and this one is a (non-plain) choice-free
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net system (it may happen alas, that a persistent transition system is solved
by a non-choice-free Petri net system but by no choice-free one: see for instance
Figs. 12 and 13 below). There is a difference between these two solutions as to
persistence however. If we add an initial token in p1, a and b are initially enabled,
but a disables b and b disables a, so that PNS3 loses its persistence: its per-
sistence is due to a very specific choice of the initial marking. On the contrary,
PNS′

3 remains persistent, whatever its initial marking: its persistence is due to
the underlying net, which is choice-free.

PNS3:

p1

p2

p3

p4

a c b ı

TS3:

shorthand: (acbc)ω

a

c

b

c

PNS ′
3:

a c b

2

2

2

2

Fig. 5. Two Petri net systems PNS3 and PNS ′
3, and a transition system TS3 with

initial state ı.

This remark may be related to a rather general property.

Proposition 1. If a pure Petri net presents a choice-place, then there is an
initial marking generating a non-persistent reachability graph. This is never the
case for a choice-free net.

Proof. Let p be a choice-place in the considered Petri net and let w =
maxt∈p•{F (p, t)}. Assume we put initially w tokens in p. Initially, all the out-
put transitions of p are enabled, but if F (p, t) = w, t is no longer enabled after
another output transition of p is fired since the net is assumed to be pure. Hence
the claim.
If there is no choice-place, the argument given above is valid and all the reach-
able markings yield diamonds if they enable more than one transition.

If a choice-place presents side-conditions, the previous proposition may be
wrong, as shown in Fig. 6: PN 4 is plain but has a choice place p1 and side
conditions between the latter and a, b. If p1 gets a token, a and b will permanently
be enabled, forming (a degenerate kind of) diamonds. However, this does not
resist to a splitting of the conflicting transitions into a “check and gather” phase
and a “process and produce” phase, as detailed in the previous section and
illustrated by the pure Petri net PN ′

4 in the same figure. This does not happen
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with choice-free nets, where the split transforms the net into a pure one, still
choice-free (or does not modify the net if we only apply the splitting to conflicting
transitions).

PN 4:
p1

p0

a

b

c

PN ′
4:

p1

p0

a1 a2
pa

b1 b2
pb

c

Fig. 6. A choice-place with side-conditions.

3 Simultaneous Choice-Free Synthesis: Preliminary
Phase

A generalisation of the synthesis problem, called the simultaneous synthesis prob-
lem, has been introduced in [9]. It consists in considering several transition sys-
tems {TS 1, . . . ,TSm} simultaneously, and in search for a single Petri net N
(of some class) together with m initial markings {M0,1, . . . ,M0,m} such that the
reachability graph of (N,M0,i) is isomorphic to TS i for each i ∈ {1, . . . , m}. The
classic synthesis corresponds to the case m = 1, and an example with m = 2 is
shown in Fig. 7. With a single token on p, PN 5 solves TS 5,1. Without tokens on
p, PN 5 solves TS 5,2. By contrast, TS 5,1 and TS′

5,2 can be CF-solved individually,
but not simultaneously.

The simultaneous solvability of m transition systems can be reduced to the
solvability of a single one by adding a single artificial initial state with m arcs
with fresh labels to the m given initial states ı1, . . . , ım. Solving the augmented
transition system and dropping the added auxiliary transitions yields a simul-
taneous solution, with the various initial markings provided by the markings
corresponding to the ıi’s; and conversely, if there is a simultaneous solution, it
may be obtained that way.

Such a straightforward approach amounts, however, to consider a large input
lts, and we already mentioned that the performance of synthesis procedures is
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TS5,1:

ı1

a
a

b

TS5,2: ı2 a a

TS ′
5,2:

ı′2 a b a

PN 5: a

b

p

32

Fig. 7. TS5,1 and TS5,2 are simultaneously CF-solvable while TS5,1 and TS′
5,2 are not

(see below).

very sensitive to the size of the state space, hence this is not very effective. Also,
it fails to preserve the choice-freeness of the underlying unmarked Petri net if
m ≥ 2, and cannot, therefore, be applied to CF-solvability.

Fortunately, the simultaneous choice-free synthesis may be related to m sep-
arate standard but slightly augmented choice-free syntheses.

Let T be the set of all the labels occurring in the various TS i’s; this will
be the set of transitions in any solution to the simultaneous synthesis. Let also
Gi be the set of (T -)Parikh vectors of all the small cycles occurring in TS i,
and G = ∪iGi. An augmented synthesis is a synthesis of some TS i which is
compatible with all the members of G, i.e., which reproduces the markings of all
places along all the (small) cycles (not only the ones present in TS i; this only
depends on G). We then have:

Theorem 1. [9] A simultaneous choice-free synthesis problem is solvable if
each of its augmented individual synthesis problems is, and the solution may
be obtained easily by aggregating all those individual solutions.

Like for the classic choice-free synthesis problem (as well as many other tar-
geted synthesis problems [6]), the synthesis procedure may be separated into a
pre-synthesis and a proper synthesis. The pre-synthesis allows to quickly check
properties of the structure of the reachability graph(s), from the structure of the
class of nets aimed for. If this fails, we avoid a lengthy computation of the places
of a tentative solution, get a better intuition about the true causes of the failure,
hence are able to produce better error messages.

For this first phase, a series of checks arising from the analysis of choice-free
systems, has been elaborated in [9], mainly based on the following observa-
tion [16]:

Theorem 2. In the reachability graph of a choice-free system, the Parikh vector
of any small cycle (if any) is a minimal semiflow of the underlying net.

This links a behavioural property (on small cycles, from some initial marking)
and a structural one (on semiflows of the unmarked net). It also explains why,
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in a simultaneous synthesis problem, we have to consider the small cycles in all
the given transition systems together.

These checks may be summarised as follows:

1. General: Each (finite) TSi must be deterministic, totally reachable and per-
sistent.

2. The small cycles property: All the members of G must be prime (no common
nontrivial divisor) and two different members must be disjoint.

3. The short distance property: For each state si of each TS i, all the shortest
paths from ıi to si have the same Parikh vector, called the distance Δsi

to
si, and none of those distances may dominate a member of G.

4. The reduced distance property: For the next checks we need the notion of
residue of a T -vector μ by another one ν which builds the T -vector μ −• ν
in such a way that ∀t ∈ T : μ −• ν(t) = max(μ(t) − ν(t), 0); then, for each
i ∈ {1, . . . , m}, state si in TS i and member Φ ∈ G, there must be a state ri

in TS i such that Δri
= Δsi

−• Φ.
5. The earliest Parikh cycles property: For any member Υ ∈ G and state s in

some TS i with a (small) cycle around s with Parikh vector Υ and member Φ ∈
G disjoint from Υ , there is a cycle with Parikh vector Υ around the (unique)
state in TS i at distance Δs −• Φ (which exists by the previous property).3

For instance, Condition 2 is not valid in TS 6 (Fig. 8) since the (small) cycle
ı[aabbcc〉ı has Parikh vector (2, 2, 2), which is not prime.

Condition 3 is not valid in TS7 since there are two short paths ı
bac→ s and

ı
dae→ s whose Parikh vectors differ, so that the distance from ı to s is not defined

here (also, they dominate Ψ(bc) and Ψ(de), respectively, which are small cycles
in TS 7); it is not valid either for the pair TS 5,1–TS′

5,2 in Fig. 7, since there is a

short path ı′2
aba→ whose Parikh vector is equal to (hence dominates) the Parikh

vector of the small cycle ı1
aab→ ı1 in TS 5,1.

Condition 4 is not valid in TS 8 since there is a path ı[abb〉s and a small cycle
s[abc〉s: if we reduce abb by abc, we get b but the latter is not enabled at ı.
The importance of Condition 5 is illustrated by the system TS9 in Fig. 8: it
satisfies conditions 1 to 4, but not the earliest cycles property since there is a
cycle ba at s3, a cycle d at s2 and Δs2 = (1, 0, 1, 0), so that there should be a
cycle d at distance Δs2 −• Ψ(ba) = (0, 0, 1, 0), i.e. at s1; hence TS 9 (or {TS 9})
has no choice-free solution; this is corrected in TS ′

9, which has the choice-free
solution PN ′

9.

3 It is known [1] that in a finite deterministic and persistent transition system, loops
are forward Parikh-equivalently transported (in the sense that, if there is a loop
s[τ〉s and a directed path s[σ〉s′, then there is a loop s′[φ〉s′ with Ψ(φ) = Ψ(τ)). The
earliest Parikh cycles property means they may also be backward transported, up to
some extent.
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d dd
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d b

2

2
PN ′
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Fig. 8. Illustration of Conditions 2 to 5 for a choice-free pre-synthesis.

4 A New Criterion for the Choice-Free Simultaneous
(and Individual) Synthesis

We shall now consider general paths in a transition system (see Appendix A.1)
in addition to the usual directed ones. Referring to the general form of a place
p ∈ •x in a choice-free net as illustrated in the left of Fig. 2, we shall denote
••x \ {x} by A(x).

Lemma 1. Co-enabling along a general path: In a choice-free net N , if
M1[x〉, x belongs to the support of some (minimal) semiflow Υ , M1[σ〉M2 with
σ ∈ (±T )∗ and ∀a ∈ A(x) : Ψ(σ)(a) ≥ Ψ(σ)(x) · Υ (a)/Υ (x), then M2[x〉.
Proof. We only need to show that ∀p ∈ •x : M2(p) ≥ M1(p).
In the general form of a place p ∈ •x (left of Fig. 2), ki = 0 if ai �∈ A(x).
We know that M2(p) = M1(p) +

∑
ai∈A(x) ki · Ψ(σ)(ai) − k · Ψ(σ)(x), and that

k · Υ (x) =
∑

ai∈A(x) ki · Υ (ai).
Hence, M2(p) = M1(p) +

∑
ai∈A(x) ki · [Ψ(σ)(ai) − Ψ(σ)(x) · Υ (ai)/Υ (x)]. The

claimed property arises, since no ki is negative.

This may be interpreted as follows: if there is a general path σ from some marking
M1 to some marking M2, and some (possibly fractional, possibly negative) factor
f ∈ Q such that Ψ(σ) ≥ f · Υ on A(x), with f = Ψ(σ)(x)/Υ (x) (or Ψ(σ)(x) =
f · Υ (x)), then M1[x〉 ⇒ M2[x〉, i.e., we have a kind of co-enabling of x.

If we do not know exactly A(x), we may use any over-approximation:
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Corollary 1. In a choice-free net N , if M1[x〉, x belongs to the support of some
(minimal) semiflow Υ , A(x) ⊆ Ax for some set Ax ⊆ T , M1[σ〉M2 with σ ∈
(±T )∗ and ∀a ∈ Ax : Ψ(σ)(a) ≥ Ψ(σ)(x) · Υ (a)/Υ (x), then M2[x〉.
Note that the satisfaction of the constraint on a in this property relies on the
sign of Ψ(σ)(x), i.e. of f , and of the membership of a to the support of Υ :

– if Υ (a) = 0, we need Ψ(σ)(a) ≥ 0, otherwise
– if Ψ(σ)(x) > 0 (or f > 0) and Ψ(σ)(a) ≤ 0, the constraint is not satisfied; if

Ψ(σ)(a) > 0, one needs Ψ(σ)(a) ≥ f · Υ (a);
– if Ψ(σ)(x) < 0 (or f < 0) and Ψ(σ)(a) ≥ 0, the constraint is satisfied; if

Ψ(σ)(a) < 0, one needs |Ψ(σ)(a)| ≤ |f | · Υ (a);
– if Ψ(σ)(x) = 0 = f and Ψ(σ)(a) ≥ 0, the constraint is satisfied; if Ψ(σ)(a) < 0,

the constraint is not satisfied.

Definition 1. In a simultaneous choice-free synthesis problem, if Υ ∈ G we
shall denote by TΥ the support of Υ , and if x belongs to the support of Υ we also
denote Tx = TΥ .
We shall also denote by T0 the set of labels in T not belonging to the support of
some member of G, i.e., T0 = T \ ∪Υ∈GTΥ .

Proposition 2. In a simultaneous choice-free synthesis problem, if x belongs
to the support of some Υ ∈ G, s[x〉 and ¬s′[x〉 in some TS �, if ∀a ∈ T0 ∪ Tx :
(Δs′ − Δs)(a) ≥ (Δs′ − Δs)(x) · Υ (a)/Υ (x), then the problem is not solvable.

Proof. If there is a solution N , from Theorem 2, Υ is a minimal semiflow of N .
For any i, if ai belongs to the support of some Υ ′ ∈ G \{Υ}, we have that x does
not belong to the support of Υ ′, from the small cycles property above.
From the definition of semiflows, we must have

∑
j Υ ′(aj) · kj = k · Υ ′(x) = 0,

hence ki = 0. As a consequence we may state that A(x) ⊆ T0 ∪ Tx (we do not
have equality since it may happen that ki = 0 while ai �∈ T0 ∪ Tx).
Let σs be a short path from ı� to s, and similarly for s′. (−σs)(σs′) is a general
path from s to s′ in TS �, and Ψ((−σs)(σs′)) = Δs′ −Δs, from the short distance
property above.
The proposition then results from Corollary 1, where we may choose Ax =
T0 ∪ Tx.

In this proposition, we used a special g-path from s to s′, and we could
wonder if choosing another one would lead to another condition. We shall now
see that this is not the case.

Lemma 2. If, in a simultaneous choice-free synthesis problem, conditions 1 to
5 are satisfied, for each g-cycle s[σ〉s in any TS � (σ ∈ (±T�)∗), we have Ψ(σ) =∑

Υ∈G�
zΥ · Υ , for some coefficients zΥ ∈ Z.

Proof. First, we may observe that each transition system TS � is weakly periodic.
Indeed, if s1

σ→ s2
σ→ s3

σ→ s4
σ→ . . ., since TS � is finite, we must have si = sj for

some i < j, hence a cycle si[σj−i〉si. In a finite, totally reachable, deterministic
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and persistent system, from Corollary 2 in [8] we have Ψ(σj−i) = (j − i) ·Ψ(σ) =∑
Υ∈G�

kΥ ·Υ for some coefficients kΥ ∈ N. Since, the Υ ’s are prime and disjoint,
(j − i) must divide the kΥ ∈ N and Ψ(σ) =

∑
Υ∈G�

k′
Υ · Υ for some coefficients

k′
Υ ∈ N. Then, from the properties of distances in [9], we know that Δs2 = Δs1

and s1 = s2.
The claimed property then results from Lemma 4 in [7], which states that

general cycles are generated by directed ones when the previous properties are
satisfied.

Corollary 2. If, in a simultaneous choice-free synthesis problem, conditions 1
to 5 are satisfied, two g-paths σ and σ′ go from s to s′ in TS �, and x belongs to the
support of some Υ ∈ G, then ∀a ∈ T0 ∪ Tx : Ψ(σ)(a) ≥ Ψ(σ)(x) · Υ (a)/Υ (x) ⇐⇒
Ψ(σ′)(a) ≥ Ψ(σ′)(x) · Υ (a)/Υ (x).

Proof. Since s′[(−σ)(σ′)〉s′ is a g-cycle around s′, from Lemma 2, we know that
Ψ(σ′) = Ψ(σ) +

∑
Υ ′∈G�

zΥ ′ · Υ ′. In particular, from condition 2, that implies
Ψ(σ′)(x) = Ψ(σ)(x) + zΥ · Υ (x).

From Proposition 2, we only have to consider a ∈ T0 ∪ Tx.
If a belongs to the support of Υ , hence to Tx, Ψ(σ′)(a) = Ψ(σ)(a)+zΥ ·Υ (a).

Since zΥ · Υ (a) = zΥ · Υ (x) · Υ (a)/Υ (x), we then have the claimed equivalence.
If a belongs to T0, Ψ(σ′)(a) = Ψ(σ)(a) and Υ (a) = 0, which again leads to

the claimed equivalence.

This corollary immediately leads to the main result of the present paper, a new
pre-synthesis condition that may be added to the five ones we already listed for
the simultaneous or individual choice-free synthesis (we shall later see that this
new condition is not implied by the other ones):

6 Co-enabling: For any Υ ∈ G and x in its support, for any TS i and s, s′ ∈
Si, if s[x〉 and ∀a ∈ T0 ∪ Tx : (Δs′ − Δs)(a) ≥ (Δs′ − Δs)(x) · Υ (a)/Υ (x),
then s′[x〉.
Two special cases may then be distinguished, corresponding to the cases

where s′ occurs before or after s, i.e., that s′[σ〉s or s[σ〉s′ for a directed path σ
(but we may have both cases simultaneously):

Corollary 3. Forward fractional reduction: In a choice-free net N , if
M [σ′t〉 with σ′ ∈ T ∗ and, for some f ∈ Q>0 and semiflow Υ , Ψ(σ′) ≤ f · Υ
and Ψ(σ′)(t) = f · Υ (t), then M [t〉.
Proof. In this case, we may apply Lemma 1 with M2 = M , σ = −σ′ and
Ψ(σ) ≤ 0, hence the claim.

From this result, we deduce the following criterion for non-choice-free-solvability.

Corollary 4. Forward fractional reduction in a pre-synthesis: Let TS =
(S, T,→, ı) be a deterministic and persistent labelled transition system, s ∈ [ı〉,
t ∈ T , σ ∈ T ∗, f ∈ Q>0 and Υ be any T-vector. If ¬s[t〉, s[σt〉, Ψ(σ) ≤ f ·Υ and
Ψ(σ)(t) = f · Υ (t), then there is no choice-free solution of TS with semiflow Υ .
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Applying these results, the two systems TS 10,TS 11 in Fig. 9 do not allow a
simultaneous choice-free solution. Indeed, TS11 determines a semiflow (3, 2),
hence also a fractional semiflow (3/2, 1). With s = ı1, σ = ab, t = b, Υ = (3, 2)
and f = 1/2, since we do not have ı1[b〉, we may conclude there is no simultaneous
choice-free-solution.

This is also true for the two systems TS11,TS 12: applying Corollary 3 with
ı3[a〉s′, s = s′, σ = ab, t = b, Υ = (3, 2) and f = 1/2, since we do not have s′[b〉,
we may conclude there is no simultaneous choice-free-solution.

Since these two pairs of systems satisfy conditions 1 to 5, this also shows the
independence of condition 6: this last condition is not implied by the other ones.

TS10: ı1
a b b TS11: ı2

a

a b a b

TS12: ı3
a a b b

Fig. 9. Three transition systems TS10,TS11,TS12.

There is also the symmetric version of those last two Corollaries.

Corollary 5. Backward fractional reduction: In a choice-free net N , if
M [t〉 and M [σ′〉 with σ′ ∈ T ∗ and, for some f ∈ Q>0 and semiflow Υ , Ψ(σ′) ≤
f · Υ and Ψ(σ′)(t) = f · Υ (t), then M [σ′t〉.
Proof. In this case, we may apply Lemma 1 with M1 = M , σ = σ′ and Ψ(σ) ≥ 0,
hence the claim.

Corollary 6. Backward fractional reduction in a pre-synthesis: Let
TS = (S, T,→, ı) be a deterministic and persistent labelled transition system,
s ∈ [ı〉, t ∈ T , σ ∈ T ∗, f ∈ Q>0 and Υ be any T-vector. If s[t〉, s[σ〉, Ψ(σ) ≥ f ·Υ ,
Ψ(σ)(t) = f · Υ (t) and ¬s[σt〉, then there is no choice-free-solution of TS with
semiflow Υ .

Applying these results, we get that the two systems in Fig. 10, are not simultane-
ously choice-free-solvable either. Indeed, in TS13 we have the minimal semiflow
Υ = (3, 2); in TS14, we have ı12[b〉, ı4[aab〉, Ψ(aab) = (2, 1), so that with f = 1/2
and t = b, from Corollary 6 we should have ı12[aabb〉.

TS13: ı13

a

a b a b
TS14:

ı14
a a

b b b

a a

Fig. 10. Two transition systems TS13,TS14.
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The two systems in Fig. 11, are not simultaneously choice-free-solvable either.
Indeed, in TS 16 we have the minimal semiflow Υ = (3, 2); in TS15, we have ı13[b〉,
ı13[baa〉, Ψ(baa) = (2, 1), so that with f = 1/2 and t = b, from Corollary 6 we
should have ı13[baab〉.

TS15: ı15
b a a TS16: ı16

a

a b a b

Fig. 11. Transition systems TS15,TS16.

5 But Still, Our Conditions Are Not Sufficient

Now that we accumulated several structural properties of reachability graphs of
bounded choice-free systems, and devised corresponding checks to be performed
during the (simultaneous) pre-synthesis, we may wonder if they are sufficient to
ascertain the existence of a solution, at least in some interesting subclasses of
problems.

Since most of these properties concern the small cycles, they are of no help
for acyclic transition systems. Let us then restrict our attention to a single
(m = 1) reversible system, since then there are small cycles around each state
(we mentioned before that cycles are transported Parikh-equivalently along the
flow in finite deterministic and persistent systems). We shall also assume that
all small cycles have the same Parikh vector, and that there is at least a (non-
necessarily choice-free) solution. However, even in these very specific class of
systems, there is not always a choice-free solution. We shall give two different
counter-examples.

The first one, illustrated in Fig. 12, has already been used in [3]. It has five
labels and is remarkable by its small cycles, that all have the Parikh vector
1 = (1, 1, 1, 1, 1) (so that fractional semiflows do not introduce any additional
constraint since at least one of the components must be an integer: f ·Υ (t) must
count the number of occurrences of t in some path). It has a (non-choice-free)
Petri net solution, but not a choice-free one: the numerical construction of the
proper synthesis phase (for instance with the use of the APT tool [14]) finds an
unsolvable ESSP problem.

The next transition system has four labels, and has a unique small cycle with
Parikh vector (5, 3, 1, 1), hence has the form of a simple circle. Here too it has
a non-choice-free solution, but no choice-free one (again found by APT). It is
illustrated by Fig. 13.

Both counterexamples share the additional condition that they have a Petri
net solution. We may then wonder what happens if we still reinforce this con-
dition, in the following way. Let us assume that m > 1, that each TS i is indi-
vidually choice-free solvable (not only Petri net-solvable), and reversible, that
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TS17: s0ı17

s1

s2

s3

s4

s5s6s7

s8

s9 s10

s11

s12

s13

s14 s15

s16

s17

s18 s19

s20

s21

s22

a

c

b

c

a

c

b

a

d

a

c

d

a

da

e

a

c e

c

b

d

b

e

c

e

b

c

a

d
a

e d

e b

dd

e

b

d

e

PN 17: a b

c

d

e

3
2

2

2

2

2

3

3

3

3

Fig. 12. A reversible lts with unitary small cycles, with a possible Petri net solution. It
survives all the structural checks mentioned in this paper for the pre-synthesis phase,
but does not have a choice-free solution.
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TS18

ı

c

a
b

d

a

a

a
b

a

b

14

a

b

c

d

5

5 15

12

3

14

11

3

6

13

4
17

PN 18

Fig. 13. TS18 has the form of a circle, survives all the pre-synthesis checks we mention
above and has a Petri net solution PN 18, but not a choice-free one.

all the small cycles have the same Parikh vector and that all conditions 1 to 6
are satisfied. Is it still possible that the simultaneous choice-free synthesis fails?
Presently, we do not know and we are working on it.

6 Concluding Remarks

We added a new structural criterion to the already long list of available neces-
sary conditions for a labelled transition system to have a bounded choice-free
solution. This allows to quickly rule out more inadequate (simultaneous) syn-
thesis problems. However, we are still not in reach of a necessary and sufficient
set of criteria fully characterising the state spaces of choice-free systems, in the
style of the conditions developed for (bounded or unbounded) marked graphs
and T-systems in [2,4,5].

Acknowledgements. We are indebted to the anonymous referees for their detailed
and helpful remarks.

A Basic Definitions

A.1 Labelled Transition Systems

A labelled transition system with initial state, lts for short, is a quadruple TS =
(S, T,→, ı) where S is a set of states, T is a set of labels, → ⊆ (S × T × S) is
the set of labelled edges, and ı ∈ S is an initial state. TS is finite if S and T are
finite. Let (−T ) (called backward edges) be a disjoint copy of T :

(−T ) = {(−a) | a ∈ T}, with T ∩ (−T ) = ∅, and (−(−a)) = a for all a ∈ T.

A g-path is a sequence σ ∈ (T ∪ (−T ))∗; it is a (directed) path if σ ∈ T ∗. For
s, s′ ∈ S, a g-path σ = a1 . . . am leads from s to s′ (denoted by s

σ→ s′) if
∃r0, r1, . . . , rm ∈ S : s = r0 ∧ rm = s′
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∧ ∀j ∈ {1, . . . , m} :
{

(rj−1, aj , rj) ∈→ if aj ∈ T
(rj , aj , rj−1) ∈→ if aj ∈ (−T )

The back-arrow notation is extended to sequences in (T ∪ (−T ))∗ inductively as
follows:

(−ε) = ε, and (−(σa)) = (−a)(−σ), for a ∈ T ∪ (−T ) and σ ∈ (T ∪ (−T ))∗

A label a is enabled at s ∈ S, or s
a→ for short, if ∃s′ ∈ S : s

a→ s′. A state s′ is
reachable from state s if ∃σ ∈ T ∗ : s

σ→ s′.4 Sometimes, we shall use the notation
s[t〉 instead of s

a→, and [s〉 to denote the set of states reachable from s.
For a g-path σ ∈ (T ∪ (−T ))∗, the Parikh vector of σ is a T -vector Ψ(σ),

defined inductively as follows:

Ψ(ε) = 0 (the null vector) and (Ψ(σa))(t) =

⎧
⎨

⎩

(Ψ(σ))(t) + 1 if t = a ∈ T
(Ψ(σ))(t) − 1 if (−t) = a ∈ (−T )
(Ψ(σ))(t) if t �= a �= (−t)

For example, Ψ(ab(−a)b(−c)aa) = (2, 2,−1). Two finite sequences are Parikh-
equivalent if they have the same Parikh vector, and Parikh-disjoint if no label
occurs in both of them. The support of a T -vector, hence in particular of a
Parikh vector, is the set of indices for which the vector is non-null.

A g-path s[σ〉s′ is called a g-cycle, or more precisely a g-cycle at (or around)
state s, if s = s′.5

A finite transition system TS = (S, T,→, ı) is called

– totally reachable if ∀s ∈ S∃σ ∈ T ∗ : ı
σ→ s;

– deterministic if, for all states s, s′, s′′ ∈ S, and for any label t ∈ T , s
t→ s′

and s
t→ s′′ imply s′ = s′′;

– backward deterministic if, for all states s, s′, s′′ ∈ S, and for any label t ∈ T ,
s′ t→ s and s′′ t→ s imply s′ = s′′;

– fully forward deterministic if, for all states s, s′, s′′ ∈ S and for all sequences

α, α′ ∈ T ∗, (s α→ s′ ∧ s
α′
→ s′′ ∧ Ψ(α) = Ψ(α′)) entails s′ = s′′;

– weakly periodic if for every s1 ∈ S, label sequence σ ∈ T ∗, and infinite
sequence s1

σ→ s2
σ→ s3

σ→ s4
σ→ . . ., ∀i, j ≥ 1: si = sj ;

– persistent if for all states s, s′, s′′ ∈ S, and labels t �= u, if s
t→ s′ and s

u→ s′′,
then there is some state r ∈ S such that s′ u→ r and s′′ t→ r.

– live if ∀t ∈ T ∀s ∈ [s0〉 ∃s′ ∈ [s〉 such that s′[t〉;
– reversible if ∀s ∈ [s0〉, s0 ∈ [s〉.
Two lts with the same label set TS = (S, T,→, ı) and TS ′ = (S′, T,→′, ı′) are
isomorphic if there is a bijection ζ : S → S′ with ζ(ı) = ı′ and (r, t, s) ∈ → ⇔
(ζ(r), t, ζ(s)) ∈ →′, for all r, s ∈ S and t ∈ T .
4 Note that enabledness refers only to outgoing edges and reachability refers only to

directed paths, rather than to g-paths.
5 In this paper, whenever we speak of a path or a cycle, a directed path or cycle is

meant.
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A cycle s
σ→ s with σ ∈ T ∗ is small if σ �= ε and there is no cycle s′ σ′

→ s′

with σ′ �= ε and Ψ(σ′) � Ψ(σ) (this should not be confused with a simple cycle,
not visiting twice any state). A cycle s[σ〉s is prime if the greatest common
divisor of the entries in its Parikh vector is 1. A (directed) path s[σ〉s′ is short
if there is no other path between the same states with a smaller Parikh vector:
s[σ′〉s′ ⇒ ¬(Ψ(σ′) � Ψ(σ)).

A.2 Petri Nets

A (finite, place-transition, arc-weighted) Petri net is a triple PN =(P, T, F ) such
that P is a finite set of places, T is a finite set of transitions, with P ∩ T = ∅, F
is a flow function F : ((P × T ) ∪ (T × P )) → N.

The predecessors of a node x is the set •x = {y|F (y, x) > 0}. Symmetrically
its successor set is x• = {y|F (x, y) > 0}. The incidence matrix C of a Petri net is
the integer place-transition matrix with components C(p, t) = F (t, p) − F (p, t),
where p is a place and t is a transition. An elementary property of Petri nets is
the state equation which expresses that, if M [σ〉M ′, then M ′ = M +C ·Ψ(σ). A
semiflow of a net N is a T -vector Φ such that Φ � 0 and C · Φ = 0. A semiflow
is minimal if there is no smaller one.

PN is plain if no arc weight exceeds 1; pure if ∀p ∈ P : (p• ∩ •p) = ∅; choice-
free if ∀p ∈ P : |p•| ≤ 1; join-free if ∀t ∈ T : |•t| ≤ 1; fork-attribution if choice-free
and, in addition, ∀t ∈ T : |•t| ≤ 1; a marked graph if PN is plain and |p•| = 1
and |•p| = 1 for all places p ∈ P ; and a T-system if PN is plain and |p•| ≤ 1 and
|•p| ≤ 1 for all places p ∈ P ; free-choice if it is plain and ∀t, t′ ∈ T : •t ∩ •t′ �= ∅ ⇒
•t = •t′; equal conflict if ∀t, t′ ∈ T : •t ∩ •t′ �= ∅ ⇒ ∀p ∈ P : F (p, t) = F (p, t′).

A marking is a mapping M : P → N, indicating the number of (black) tokens
in each place. A Petri net system is a net provided with an initial marking
(P, T, F,M0); the subclasses defined above for Petri nets extend immediately
for Petri net systems. A transition t ∈ T is enabled by a marking M , denoted
by M

t→, if for all places p ∈ P , M(p) ≥ F (p, t). If t is enabled at M , then
t can occur (or fire) in M , leading to the marking M ′ defined by M ′(p) =
M(p) − F (p, t) + F (t, p) and denoted by M

t→ M ′. The reachability graph of
PN is the labelled transition system whose initial state is M0, whose vertices
are the reachable markings, and whose edges are {(M, t,M ′) | M

t→ M ′}. A
Petri net system (P, T, F,M0) is k-bounded for some fixed k ∈ N, if ∀M ∈
[M0〉∀p ∈ P : M(p) ≤ k; bounded if ∃k ∈ N : N is k-bounded; and safe if it
is 1-bounded. Properties of transition systems extend immediately to Petri net
systems through their reachability graphs.

A labelled transition system is PN-solvable if it is isomorphic to the reacha-
bility graph of a Petri net system (called the solution); it is CF-solvable if there
is a choice-free solution.

A.3 Regions

When linking transition systems and Petri nets, it is useful to introduce regions.
A region (ρ, B, F) is a triple of functions ρ (from states to N), and B, F (both
from labels to N), satisfying the property that for any states s, s′ and label a:
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(s, a, s′) is an edge of TS ⇒ ρ(s′) − ρ(s) = F(a) − B(a)

since this is the typical behaviour of a place p with token count ρ during the
firing of a with backward and forward connections B, F to p (anywhere in TS ).
To solve an SSP(s1, s2) (for State Separation Problem, where s1 �= s2), we need
to find an appropriate region (ρ, B, F) satisfying ρ(s1) �= ρ(s2), i.e., separating
states s1 and s2. For an ESSP(s, a) (for Event-State Separation Problem, where e
is not enabled at s), we need to find a region (ρ, B, F) with ρ(s) < B(a). This can
be done by solving suitable systems of linear inequalities which arise from these
two requirements, and from the requirement that regions not be too restrictive.
If such a system can be solved, an appropriate place has been found, otherwise
there does not exist any and TS is unsolvable.
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