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Abstract. This study aims to predict forest species cover changes in
the Sidi M’Guild Forest (Mid Atlas, Morocco). Used approach combines
remote sensing and GIS and is based on training Cellular Automata and
Random Forest (RF) regression model for predicting species cover tran-
sition. Five covariates that precludes such transition have been chosen
according to Pearson’s test. The model was trained and validated based
on the use of forest cover stratum transition probabilities between 1990
and 2004 and then validated using 2018 forest species cover map. Valida-
tion of the predicted map with that of 2018 shows an overall agreement
between the two maps (72%) for each number of RF’s trees used. The
2032 projected forest species cover map indicate a strong regression of
Cedar atlas and thuriferous juniper cover and a medium regression of
mixture holm oak and thuriferous juniper, mixture of atlas cedar and
thuriferous juniper, and sylvatic and asylvatic vacuums, a very strong
progression of holm oak, and of mixture atlas cedar, holm oak and thu-
riferous juniper and medium progression of mixture of atlas cedar and
holm oak. These findings provide important insights to planners, natu-
ral resource managers and policy-makers to reconsider their strategies to
ensure the sustainability goals.

Keywords: Forest species cover change · Random forest regression ·
Cellular automata

1 Introduction

Forests as natural capital provides ecosystem services that contributes to human
well being [1]. Sustainable management of forest resources try to maximize the
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provided services without compromising their abilities to fulfil theses services in
the future [2]. Nowadays due to social and human needs, forests resources are
under high pressures. In many regions, the pressures are far beyond forests pro-
ductive capacities. Moreover, climate change increase the fragility of the threat-
ened natural ecosystems. As consequence, a diffuse and still progressing process
of land use and forest cover changes are widely documented mainly in develop-
ing countries [4]. With the need to maintain forest contribution to global cycles
and to protect this natural capital for the next generations, there is a need to
understand their dynamic and to predict the tendencies in order to stress urgent
actions and formulate appropriates policies to improve land use planing [5]. Such
understanding relay on the Land Use Land Change Modeling LULC that try to
explain human environment dynamics producing the changes [6]. LULC needs
multi temporal land/forest cover maps as well as the driving forces conduct-
ing to that changes [7–9]. In addition, machine learning algorithms have been
used extensively to explain LULCs. Several researches had combined Cellular
automata (CA) with a plethora of modeling frameworks such as Markov chains
[10], neural networks [11] support vector machines [12] and kernel-based meth-
ods [13] among others. More recently, CA have been successfully combined with
Random Forest [14,15].

Moroccan forests hold a major part of its biological diversity. It covers 5.8
million hectares, including 132,000 ha of cedar, 1.36 million ha of holm oak,
830,000 ha of argan, 350,000 ha of cork oak, 600,000 ha of thuja and 1 million
ha of Saharan acacia (HCEFLCD, 1992). The Atlas cedar occupies a prominent
place among other species. Moroccan cedar forests, especially those in the Middle
Atlas, show regressive trends. Cedar become limited to mountain tops. Among
the factors generally blamed for the degradation: regeneration lack due to high
grazing pressure [16]; high human pressure (overgrazing, cultivation, illegal cut-
ting, fire, etc.); dieback phenomenon, which is becoming increasingly worrisome
about the future of cedar stands, and damages caused by cedar’s natural enemies
(defoliating insects, wood-boring insects, fungi and the maggot monkey), which
weakens stands stressed by climatic hazards.

Given the status of Moroccan cedar forests as threatened natural capital and
in order to understand the driving forces toward its regressive tendencies and to
predict its cover in the future, we focus within this work on cedar cover change
modeling. The work concerns Sidi M’Guild Forest which belong to Middle Atlas
National Park that holds a representative part of Cedar Ecosystem. Land Use
change has been modeled using machine learning algorithm predicting future
forest cover change as result of driving anthropic, biotic and abiotic factors.
Our paper is organized in a Methods describing the used data and algorithms
explanation and the achieved results which stress out the main results and the
discussions and conclusion.

2 Materials and Methods

The study concerned Sidi M’Guild forest which is located in the Moroccan Mid-
dle Atlas. It covers about 29,000 hectares. Cedar covers about 51%, holm oak
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34%, and Thuriferous juniper 3.6% of forest area. The overall methodology
is shown in the Fig. 1. It consists on getting covariates, then processing and
modeling.

Fig. 1. Schematic of the used approach in this work.

2.1 Used Data

Landsat satellite images covering study used were downloaded from USGS Earth
explorer platform. Landsat 4 TM (thematic Mappers) images with a 30 m spa-
tial resolution and 7 spectral bands for 1990 to 2004. Landsat 8 OLI image
(Operational Land Image) that contains 11 spectral bands at 30 m spatial res-
olution were used for 2018. Images were chosen based on the availability and
being cloud free and captured during August to reduce atmospheric disturbance
and confusion with herbaceous layers’ spectral emission. The predictive variables
used consists on bioclimatic variables, Digital elevation model (DEM) and human
characteristics. Bioclimatic data were downloaded from worldclim’s platform (see
Table 1)1. Altitude Maps was extracted from Shuttle Radar Topography Mission
(STRM) DEM2. The location of human settlement was linked to 2014 Morocco’s
‘general census’ data. Distance from human settlement maps and distance from
Forest edge map were generated using basic GIS functions.

Furthermore, a Pearson’s r correlation coefficient has been calculated in order
to identify the factors that are highly correlated.
1 https://www.worldclim.org/.
2 Data collected from http://dwtkns.com/srtm30m/.

https://www.worldclim.org/
http://dwtkns.com/srtm30m/
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Table 1. Used bioclimatic variables.

Symbology Designation

BIO1 Annual Mean Temperature

BIO2 Mean Diurnal Range (Mean of monthly (max temp−min
temp))

BIO3 Isothermality (BIO2/BIO7) (* 100)

BIO4 Temperature Seasonality (standard deviation *100)

BIO5 Max Temperature of Warmest Month

BIO6 Min Temperature of Coldest Month

BIO7 Temperature Annual Range (BIO5–BIO6)

BIO8 Mean Temperature of Wettest Quarter

BIO9 Mean Temperature of Driest Quarter

BIO10 Mean Temperature of Warmest Quarter

BIO11 Mean Temperature of Coldest Quarter

BIO12 Annual Precipitation

BIO13 Precipitation of Wettest Month

BIO14 Precipitation of Driest Month

BIO15 Precipitation Seasonality (Coefficient of Variation)

BIO16 Precipitation of Wettest Quarter

BIO17 Precipitation of Driest Quarter

BIO18 Precipitation of Warmest Quarter

BIO19 Precipitation of Coldest Quarter

2.2 Preprocessing and Image Classification

Satellite data were preprocessed QGIS and then classified using Maximum Like-
lihood algorithm. Images were standardized and accommodated to the same
extent and spatial resolution.Image classification was based on training the clas-
sifier using, as ground truth, forest stand type maps released in 1990, 2004 and
2018. Six dominant forest cover stratum/classes were chosen while respecting the
National forest inventory standards. The resulting classes are: atlas cedar (Ca),
holm oak (Qr), thuriferous juniper (Jt), atlas cedar and thuriferous juniper mix-
ture (CaJt), atlas cedar and holm oak mixture (CaQr), mixture of atlas cedar,
holm oak and thuriferous juniper (CaQrJt), holm oak and thuriferous juniper
mixture (QrJt) and sylvatic and asylvatic vacuums (V). In addition to Atlas
cedar, we classified other species closed to or mixed with Atlas cedar, since when
we talk about the cedar ecosystem, we refer to all the species that are closely
linked to it. The accuracy assessment based on cross-validation of the classified
images showed an overall accuracy of 88.86%, 90.21% and 92.33% respectively
for the years 1990, 2004 and 2018.
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2.3 Random Forest Regression and Calibration Model

Random Forest is a flexible and easy to use machine learning algorithm which
performs both regression and classification tasks [17]. It combines multiple deci-
sion trees in determining the final output. It uses different technics for training
the model. Bagging technique [18], which involves training each decision tree
on a random set of data sampled, without replacement, from the training data
set with a random split selection [19]. Random forest regression, which the per-
formance has been proved in several studies [20,21], was used to predict forest
cover class transition probabilities. Transition maps for the period 1990–2004
were established by observing the behavior of the forest species. For each tran-
sition from one class to another, two possible values 1 denotes change from class
to other class, and 0 denotes no change. Then, binary transition maps were pro-
duced 0 for stability and 1 for change occurrence and used for training 16 models.
Following the approach adopted by Gounaridis et al. [15], the transition prob-
ability surfaces were generated through training Random Forest algorithm [18]
using all variables and using the most independent covariates identified through
the Pearson’s correlation coefficient calculation (5 factors). The RF regression
models were then implemented in python using the Random Forest regression.
The model output is transition probability map. The model was run for each of
the sixteen transitions defined before (Fig. 2) and for a set on number of trees
(10, 20, 30, 40, 50, 100).

Cellular automata [22] were used to predict the future state of forest species
distribution. Probability maps obtained with different number of trees were pro-
duced and for each time, the Kappa coefficient of Cohen was calculated through
comparing predicted and observed results of the same year [23].

Fig. 2. Forest species cover change, during 1990–2000.

3 Results and Discussion

3.1 Forest Species Cover Classification

Accuracy assessment based on cross-validation showed an overall accuracy of
88.86%, 90.21% and 92.33% respectively for the years 1990, 2004 and 2018.
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Thus, indicating the suitability of the derived classified maps for effective and
reliable forest species cover change analysis and modeling. Post-classification
analysis of the spatial metrics and their variations based on Table 2 showed that
the area occupied by Ca, CaQr, CaQrJt and Jt classes had drastically decreased
between 1990 and 2018 in the studied area. On the other hand, the area occupied
by Qr, CaJt, QrJt and V had substantially increased during the same period.
Such results seems to be coherent with literature describing Cedar as vulnerable
species and holm oak as green cement with a high adaptive capacities.

Table 2. Temporal distribution of forest species cover classes (ha) and percentages of
change.

Classes Area size (ha) Change in forest species cover (Δ%)

1990 2004 2018 2004–1990 2018–2004 2018–1990

Ca 8975,88 2171,34 2007,85 −313 −8 −347

CaQr 8482,05 9141,93 7138,62 7 −28 −19

Qr 44,37 551,88 233,1 92 −137 81

CaQrJt 4034,52 3184,83 3758,58 −27 15 −7

Jt 5010,75 3491,28 4854,94 −44 28 −3

QrJt 2207,97 5986,71 4802,95 63 −25 54

CaJt 2207,97 2405,7 2282,89 8 −5 3

V 0,99 1822,86 3677,6 100 50 100

3.2 Analysis of Transition Probabilities and Model Validation

Using all factors as covariates or retaining the five factors that are not correlated
according to Pearson’s r correlation coefficient (Temperature Seasonality: Bio4,
precipitation of Driest Quarter: Bio17, Distance from human settlement, settle-
ment density and distance from Forest edge) gave the same results (Table 3).
Such fact could be explained by RF robustness toward correlated data. In gen-
eral, we notice that the higher scores were recorded for numbers of trees equal to
50 and 100 trees. In addition, we conclude that the five non correlated parame-
ters considerably affects the evolution of the forest species change between 1990
and 2004. As explained in the methods, the predictive model was used to predict
2018 forest cover state. The model returns simulated maps of forest species cover
distribution for the year 2018, relative to each of RF model number of trees. The
predicted maps were compared to existing 2018 forest cover maps and the vali-
dation was based on the use of Kappa coefficient. Validation results are given in
Table 4.

We notice that there was no evident difference between the values achieved
by Kappa Coefficient. Hence, we could conclude that the number of trees used
in the random forest model does not influence the results of the simulation.
Contrariwise, the thresholds experimented for each rule did influence the model.
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Table 3. Transition probability of forest species cover areas for each number of trees.

Transition of species
between 1990 and 2004

Area size Training score

n=10 n=20 n=30 n=40 n=50 n=100

Ca–CaJt 223,56 0,79 0,79 0,8 0,8 0,8 0,81

Ca–QrJt 121,68 0,86 0,86 0,87 0,87 0,88 0,88

Ca–CaQrJt 509,13 0,82 0,82 0,83 0,84 0,84 0,84

Ca–CaQr 5945,58 0,42 0,42 0,45 0,46 0,47 0,48

CaQr–CaJt 1658,25 0,53 0,53 0,55 0,56 0,57 0,58

CaQr–QrJt 987,21 0,76 0,76 0,77 0,78 0,78 0,79

CaQr–CaQrJt 2459,7 0,32 0,32 0,35 0,36 0,37 0,38

CaQr–Qr 167,22 0,59 0,59 0,61 0,62 0,62 0,63

Jt–V 992,25 0,45 0,45 0,48 0,48 0,49 0,5

Jt–QrJt 166,77 0,45 0,45 0,48 0,49 0,49 0,5

QrJt–V 827,01 0,38 0,38 0,41 0,42 0,43 0,45

QrJt–Jt 589,23 0,45 0,45 0,47 0,49 0,41 0,51

QrJt–Qr 162,81 0,54 0,54 0,56 0,57 0,57 0,58

CaJt–QrJt 1338,66 0,24 0,24 0,27 0,28 0,29 0,31

CaJt–CaQrJt 188,28 0,24 0,24 0,27 0,29 0,3 0,32

CaJt–Qr 191,61 0,58 0,58 0,6 0,61 0,61 0,62

Table 4. Kappa’s coefficient for each RF number of trees

Trees number n = 10 n = 20 n = 30 n = 40 n = 50 n = 100

Kappa de Cohen 0.7213 0.72126 0.72127 0.72125 0.7212 0.7211

3.3 Model Comparison and Predictions for 2034

By comparing the areas occupied by each class in both simulated and observed
maps, we observe some differences (Table 5):

Table 5. Comparison of the actual and simulated forest cover species in 2018

Classes Observed 2018 (ha) Simulated 2018 (ha) Difference
simulated observed
(ha)

Simulated observed
in 2018 (Δ%)

Ca 2007.85 1703.07 −304.78 −17,90

CaQr 7138.62 6513.03 −625.59 −9,61

Qr 233.1 1473.03 +1239.93 84,18

CaQrJt 3758.58 3707.1 −51.48 −1,39

Jt 4854.94 5069.34 +214.4 4,23

QrJt 4802.95 4768.92 −34.03 −0,71

CaJt 2282.89 2305.71 +22.82 0,99

V 3677.6 3200.67 −476.93 −14,90

The model did closely estimate the area of CaQr, CaQrJt, Jt, QrJt and CaJt.
On the other hand, it did largely overestimated the area of Qr about −18%
and miss estimated the area occupied by Ca, CaQr and V. In addition, the
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Fig. 3. Forest species cover predicted for 2032.

Table 6. Comparison of forest cover species change between 2018 and 2032

Class Observed 2018 (ha) Simulated 2032 Rate change (%)

Ca 2007.85 170.82 −91.49

CaQr 7138.62 9144.99 +28.11

Qr 233.1 3249.45 +1294.02

CaQrJt 3758.58 8444.61 +124.68

Jt 4854.94 1243.62 −74.39

QrJt 4802.95 2405.52 −49.92

CaJt 2282.89 1254.51 −45.05

V 3677.6 2881.44 −21.65

model has predicted a regression of Ca, CaQr, CaQrJt, QrJt and V and then
the area affected by the change were localized. It predicted Qr, Jt and CaJt
progression. The model overestimated some species classes and underestimated
others because we did not take into account the interventions carried out by
the administration in terms of silvicultural interventions on holm oak and cedar
stands, the reforestation actions undertaken including silvicultural vacuums, the
awareness campaigns conducted for the benefit of the populations bordering the
forest and finally the forest police actions to preserve and conserve the forest
heritage. Theses interventions must be deeply analyzed in order to assess their
impacts on explaining the occurred forest cover changes.

With regard to the predictions, the model returned the forest species cover
state for 2032 (Fig. 3 and Table 6).

The model predicted a strong regression for Ca and Jt cover and a medium
regression for QrJt, CaJt, and V. It did also predicate a very strong progression
for Qr and CaQrJt and medium progression for CaQr. The majority of forest



A Random Forest-Cellular Automata Modeling Approach 99

species cover change are depending on their positioning to settlements and to
forest’s boundaries. Stratum that will show regression trends are located near
human settlements and not far from forest edge. On the other hand, stratum
with progressive trends are located far from human settlements and to forest’s
boundaries. Such finding seems to be coherent with literature and forest mangers
declarations.

4 Conclusion

The current study was based on an integrated approach that combines remote
sensing and GIS to simulate and predict plausible forest species cover changes for
Sidi M’Guild Forest for the years 2032 using Cellular Automata (CA)-Random
Forest regression (RF) model. The initial forest species cover map (1990), the
transition potential maps (1990–2004) and the 1990–2004 transition probabilities
were used to train RF model. Model was validated using actual and predicted
2018 forest species cover. The overall agreement between the two maps was
72% for each number of RF’s trees used. The future 2032 projections indicate
a strong regression of Cedar atlas with −91.49% and thuriferous juniper cover
with −74.39% and a medium regression of holm oak and thuriferous juniper mix-
ture with −49.92%, atlas cedar and thuriferous juniper mixture with −45.05%,
and sylvatic and asylvatic vacuums with 21.65%, a very strong progression of
holm oak with +1294.02%, and of atlas cedar, holm oak and thuriferous juniper
mixture with +124.68% and medium progression of atlas cedar and holm oak
mixture with +28.11% by 2032. The majority of forest species cover changes
depends on their location to settlements and to forest’s boundaries. Regression
are located near human settlement and forest boundaries. As cedar is considered
as national heritage, these findings could be useful for decision makers and for
managers to review their strategies in order to ensure the sustainability of cedar
as natural capital.
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