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Abstract. Remote applications that deal with speech need the speech signal to
be compressed. First, speech coding transforms the continuous waveform into a
numerical form. Then, the digitized signal is compressed with or without loss of
information. This transformation affects the original waveform and degrades
performances for further recognition of the speech signal. Meanwhile, the
transmission is another source of speech degradation. To restore the original
“clean” speech, speech enhancement (SE) is widely used, and deep learning
algorithms are state-of-the-art, nowadays. In this paper, the target application is
a remote Arabic speech recognition system, and the aim of using SE is to
improve the accuracy of the speech recognizer. For that purpose, a Deep Auto
Encoder (DAE) is used. The effect of the DAE-based SE is studied through
different configurations, and the performances are evaluated through accuracy.
The results showed an improvement of about 3.17 between the accuracy prior to
the SE and that computed with the enhanced speech.
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1 Introduction

IN the last few years, there has been a large availability of communication technology,
a growing number of people are accessing the internet easily, and digital devices have
become increasingly powerful and cheaper; this sparkled the emergence of mobile
Automatic Speech Recognition (ASR) applications. Indeed, speech recognition could
be used as a core component of several applications such as healthcare [1, 2] or
language learning [3, 4]. Two approaches can be used for the deployment of mobile
ASR applications, a client-based approach or a remote server-based approach. The
remote speech recognition architectures are Network Speech Recognition (NSR) and
Distributed Speech Recognition (DSR) [5]; in both of them, the speech signal is
captured at the client-side and is transmitted to the server-side for decoding and
recognition. The feature extraction stage is located at the client-side for DSR archi-
tectures and the server-side for NSR ones.
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In remote speech recognition, the speech signal has to be transmitted, and for that
purpose, the speech signal needs to be coded. The coding process aims to minimize bits
used to represent a speech signal while preserving the quality of the transmitted speech
[6]. An ideal speech coder represents the input speech by a few bits without quality
degradation. Obviously, there is a trade-off between the codec bit rate and the quality of
the transmitted voice. The transmission process is another source of signal degradation
[6]. This paper is about a remote speech recognition system of which performances
highly depend on the quality of the coded and transmitted (transcoded) speech signal;
to restore the original signal, SE is required.

The SE technique is intended to recover the clean speech signal from its corrupted
form. For that purpose, many methods exist such as the minimum mean square error [7]
or the Wiener filtering [8], these traditional methods perform well when the speech is
corrupted by stationary noises, but are limited in the non-stationary noise environ-
ments. Recently, Deep Learning (DL) algorithms have become state-of-the-art in SE,
and they deal with stationary and non-stationary noises as well [9–20].

While a great number of researches have addressed the SE of noisy speech,
researches that deal with coded SE are rare. However, in [12], the authors have
implemented a Convolutional Neural Network (CNN) to enhance the coded speech.
The proposed CNN architecture included three kinds of layers: convolutional, max
pooling, and up-sampling layers. The authors compared their solution to the G.711
post-processing as a baseline and found that their proposition improved the speech
quality in terms of PESQ (Perceptual Evaluation of Speech Quality) for G.711, G.726,
and AMR-WB coders. On another side, works focusing on the enhancement of Arabic
speech, and based on DL models are quasi-inexistent.

The paper tackles the problem of SE of transcoded speech in a remote context,
implemented throughout a network-based ASR architecture. In this paper, we propose
the use of a DAE (Deep AutoEncoder) algorithm for SE; the effect of the DAE is
studied in different contexts of the input window. The performances of the proposed
architecture are assessed in terms of the accuracy of the speech recognizer. The speech
recognizer is considered as a black box and is based on Hidden Markov Models
(HMMs) [21, 22].

The next section outlines the DL-based SE models. Section 3 presents the target
application and the context of the study from speech coding towards SE and recog-
nition. Results and discussion are presented in Sect. 4. Finally, a conclusion is drawn.

2 Related Works

Recently, different DL models, known as data-driven models, have been explored, and
they provided good results for SE. Most of the time, the DL-based SE methods model
the non-linearity between noisy speech signals and clean speech signals, when the
clean speech is accessible, thus they can recover clean speech signals from corrupted
versions.

The fully connected-based models exploit the mapping function to enhance speech.
These models include the deep denoising auto-encoders (DDAE) [9, 13], and the fully
connected deep neural network (DNN) models [14, 15]. Lu et al. [9] have applied a
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DDAE algorithm for noise reduction and SE, in the training stage, both input and
output were clean speech signals. Thus, the DDAE is expected to only encode sta-
tistical information of the clean speech. In their further experiments reported in [13],
the DDAE was trained using noisy speech as input and clean speech as output.
Therefore, the DDAE is expected to explicitly learn the difference between clean and
noisy signals. Furthermore, Xu et al. [14, 15] proposed a regression-based SE DNN
approach to estimate the mapping function between noisy and clean utterances.
The DNN model was trained on a large data of about 100 h with multiple noise
conditions. Other works focused on recurrent neural networks (RNN) using noisy/clean
speech pairs as input and output respectively during the training stage [16].

While the fully connected models use a lot of parameters, CNN-based SE archi-
tectures use a fewer number of parameters. Indeed, the CNN-based models deal with
the local temporal and spectral structure of the speech. Fu et al. [17] investigated the
CNN model to restore clean speech from a noisy version using SNR-aware algorithms.
Later, they applied a fully convolution network (FCN) to model simultaneously the
high and the low-frequency components of a raw waveform [19]. The results of the
FCN algorithm outperformed those of the CNN and the DNN when the waveforms are
used as inputs. The FCN has been applied also in an embedded system to enhance
speech for hearing aids [18]. The authors in [11] used both convolutional and recurrent
neural network architectures for SE. The proposed model improves the PESQ and the
WER (Word Error Rate) by 0.6 and 1% respectively, the model also generalizes better
on unseen noise. Other DL-based models have been tested for SE such as the gener-
ative adversarial networks [20].

3 Speech Enhancement Based on Deep AutoEncoder
for Remote Arabic Speech Recognition

Our investigation is about the impact of SE on network speech recognizer perfor-
mances. In the NSR model, the speech signal is captured at the client-side, then, it is
transmitted to the server where the recognition is performed [23, 24]. Figure 1 depicts
the block diagram of the proposed remote Arabic speech recognition system.

The received signal is coded at the client-side. For the purpose of this study, the
G.711 codec is applied. Then, the coded speech is transmitted to the server-side in real-
life conditions. At the server-side, the received signal is enhanced by DAE previously
trained. Finally, the HMM-based Arabic speech recognizer is fed with the enhanced
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Fig. 1. Block diagram for remote Arabic speech recognition
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speech signal. The computed accuracy serves to assess the performances of the DAE-
based SE system.

3.1 G.711 Codec

G.711 is a waveform, lossless compression speech codec, developed by ITU-T [25]
and released in 1972. G.711 codec is mainly used for speech transmission over the
telephony system, provides a bit rate at 64 kbps and exists in two versions: l-law and
A-law. Both versions code speech sample with 8 bits, provide a reduction of 50% of file
size and use a bandwidth compared to the original signal which uses 16 bits as a sample
size. In [24], experiments, made in the context of the Arabic language, showed that the
narrowband high bit rate codec’s G.711 provides good performances.

3.2 Deep AutoEncoder for Arabic Speech Enhancement

DAE is a feedforward neural network with many hidden layers. Given a pattern X, the
encoding layers reduce X into a smaller dimension, then, the decoder layers reconstruct
the pattern Y (a version close to X). When applied in SE, DAEs aim to recover the
clean version of the speech from its corrupted one. For that purpose, the model is
trained on noisy/clean pairs of speech. In the training stage, the DAE is fed with a
corrupted version of the speech signal; in our case with the transcoded speech, as input
and the output is the original signal. During the test stage, the DAE is fed with the
transcoded version of the speech and it is intended to provide the clean one (Fig. 2).

We endeavor to restore the original (clean) speech from transcoded speech. We
trained the DAE based on clean speech samples, using an Arabic speech corpus for
isolated words. The incoming speech is framed into windows of 512 samples. From
each frame are extracted coefficients corresponding to the spectrum power.

3.3 Speech Recognizer

For the recognition purpose, HMMs stand for the acoustic models. The training dataset
contains approximately 70% of the utterances in which the list of isolated words is
pronounced by 50 native Arabic speakers. Testing data represents 30% of the total
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Fig. 2. Spectrograms for a sample corresponding to the word “Zero”, in several locations
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number of utterances. The HMM-based speech recognizer is used as a black box
without tuning during our experiments related to SE.

4 Experimental Results and Discussion

4.1 Arabic Speech Data Set

The corpus used in experimentations is an Arabic speech corpus for isolated words
[26]. The corpus has been developed by the Department of Management Information
Systems of King Faisal University. It contains 9992 recorded utterances of 50 speakers
pronouncing 20 words. The list of the pronounced words is:

Translated as: {Zero, One, Two, Three, Four, Five, Six, Seven, Eight, Nine, Activation,
Transfer, Balance, Payment, Yes, No, Funding, Data, Account, End}.

The recordings are sampled at 44100 Hz (stereo channel) with 16 bits precision.
The corpus has been adapted by down-sampling it to 8 kHz sampling rate as if the
recordings were done through mobile devices, and a mono channel is considered.

The DAE is trained with approximately 1500 utterances from 50 speakers. The test
dataset contains 445 utterances from 15 speakers.

4.2 Effects of Coding, Transmission, and Enhancement

Prior to the coding and transmission tasks, the accuracy is computed at the client-side.
Then, to assess the effect of the transmission process, the accuracy is computed at the
server-side after the reception of the uncompressed signal. Finally, to assess coding and
transmission effects, the accuracy is computed at the server-side after the reception of
the compressed signal. The HMM-based recognition takes place without prior
enhancement of the incoming signal. Table 1 reports the accuracy of the ASR system
in the three situations considering the utterances of the test dataset.

Table 1 shows that transmission slightly decreased the accuracy while the
coding/transmission clearly did with a loss of about 1.89.

To overcome the degradation of the accuracy due to the use of coding and trans-
mission, we suggest the use of the DAE algorithm to enhance the corrupted signal.
Figure 3 shows the impact of the SE stage on the accuracy computed at the server-side.

Table 1. Accuracy Offline, Online with and without compression

Mode Offline Online Uncompressed Online G.711

Accuracy 64,44 64,33 62,55
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Figure 3 shows an improvement of the accuracy when the speech signal submitted
to the decoder was already enhanced.

4.3 Effect of the Context Length

Although the proposed DNN is only intended to enhance the speech, the first tuning
concerns the inclusion of the left/right context of the target window. As already said,
from each window of 512 samples were extracted the corresponding spectrum power
coefficients, and as the obtained vector is symmetric, only 257 coefficients are kept.
Thus, the input layer, as well as the output layer, comprises 257 neurons. Alternately,
as the context of neighbor frames is important in speech, we make experiments where
both sides of a target window are considered. Figure 4 depicts DAE architecture where
two frames from the left and two from the right of the target window are considered.

61.5 62 62.5 63 63.5 64 64.5 65

Offline

Online G.711

OnlineG.711 + SE

Fig. 3. Accuracy computed in offline mode, after transmission, and after SE

Fig. 4. DAE where the input corresponds to five consecutive frames and the output stands for
the middle one
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Table 2 reports accuracy obtained after the enhancement of the received signal
considering models of DAE trained with several context length of the target window.
Considering the DAE depicted in Fig. 4, and the utterances of the test dataset, the
results are reported in Table 2.

Table 2 shows that an increasing number of windows surrounding the target speech
frame impacts accuracy. Indeed, adding one window at each side improves the accu-
racy, and by enlarging the context to two windows at each side, the accuracy grows to
65.72%. Although, when the context becomes larger and the complexity of the DAE
increases (three windows per side or more), the accuracy decreased drastically.

In summary, the DAE-based SE process including one or two windows at each side
of the target frame (or even only the target frame) improved the accuracy of the ASR
application and provides a robust remote ASR system even when the HMMs were
trained on clean speech.

5 Conclusion

Remote speech recognition is a challenging task and is for much importance for many
applications such as security, healthcare, education, etc. The presented work aims to
improve the communication client-server on mobile networks by reducing the impact
of degraded ASR performance which is introduced by speech G.711 codec. A deep
auto-encoder algorithm is used to enhance speech degraded by the G.711 codec and the
transmission. Results showed that the accuracy of speech recognizer has been increased
when enhancement of the speech is performed. Future works will address several
configurations of the DAE architecture depth, and the number of neurons in each layer.
One of the remaining challenges is to explore other algorithms such as the CNN and to
consider larger Arabic speech corpora.
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