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Abstract. This paper presents a new Blind Source Separation method
for linear convolutive mixtures, which exploits the sparsity of source sig-
nals in the time-frequency domain. This method especially brings a solu-
tion to the artifacts problem that affects the quality of signals separated
by existing time-frequency methods. These artifacts are in fact intro-
duced by a time-frequency masking operation, used by all these methods.
Indeed, by focusing on the case of determined mixtures, we show that
this problem can be solved with much less restrictive sparsity assump-
tions than those of existing methods. Test results show the superiority
of our new proposed method over existing ones based on time-frequency
masking.

Keywords: Blind source separation · Linear convolutive mixtures ·
Sparsity · Time-frequency masking · Bin-wise clustering · Determined
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1 Introduction

Blind Source Separation (BSS) aims to find a set of N unknown signals, called
sources and denoted by sj(n), knowing only a set of M mixtures of these sources,
called observations and denoted by xi(n). This discipline is receiving increasing
attention thanks to the diversity of its fields of application. Among these fields,
we can cite those of audio, biomedical, seismic and telecommunications. In this
paper, we are interested in so-called linear convolutive (LC) mixtures for which
each mixture xi(n) is expressed in terms of the sources sj(n) and their delayed
versions as follows:

xi(n) =
N∑

j=1

Q∑

q=0

hij(q) · sj(n − q) =
N∑

j=1

hij(n) ∗ sj(n), i ∈ [1,M ], (1)

c© Springer Nature Switzerland AG 2020
A. El Moataz et al. (Eds.): ICISP 2020, LNCS 12119, pp. 357–366, 2020.
https://doi.org/10.1007/978-3-030-51935-3_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51935-3_38&domain=pdf
https://doi.org/10.1007/978-3-030-51935-3_38


358 M. Bella and H. Saylani

where:

– hij(q) represents the impulse response coefficients of the mixing filter linking
the source of index j to the sensor of index i,

– Q is the order of the longest filter,
– the symbol “∗” denotes the linear convolution operator.

Indeed, in the field of BSS, the case of LC mixtures is still of interest since the
performance of existing methods is still modest compared to the particular case
of linear instantaneous mixtures for which Q = 0. BSS methods for LC mixtures
can be classified into two main families. The so-called temporal methods that
deal with mixtures in the time domain and the so-called frequency methods
that deal with mixtures in the time-frequency (TF) domain. The performance
of the former is generally very modest and remains very restrictive in terms of
assumptions compared to the latter. Indeed, based mostly on the independence
of source signals, most efficient methods are compared to frequency ones only
for very short filters (i.e. Q low), and generally require over-determined mixtures
(i.e. for M > N) [12,16]. Based mostly on the sparsity of source signals in the TF
domain, the frequency methods have shown good performance in the determined
case (i.e. for M = N) or even under-determined case (i.e. for M < N), and
this despite increasing the filters length [4,8,9,13–15]. These frequency methods
start by transposing the Eq. (1) into the TF domain using the short time Fourier
transform (STFT) as follows:

Xi(m, k) =
N∑

j=1

Hij(k) · Sj(m, k), m ∈ [0, T − 1], k ∈ [0,K − 1], (2)

where:

– Xi(m, k) and Sj(m, k) are the STFT representations of xi(n) and sj(n)
respectively,

– K and T are the length of the analysis window1 and the number of time
windows used by the STFT respectively2,

– Hij(k) is the Discrete Fourier Transform of hij(n) calculated on K points.

Among most efficient and relatively more recent frequency methods, we
can mention those based on TF masking [2,4,6–9,13–15]. The sparsity is often
exploited by these methods by assuming that the source signals are W-disjoint
orthogonal, i.e. not overlapping3 in the TF domain. The principle of these meth-
ods is to estimate a separation mask, denoted by Mj(m, k) and specific to each
source Sj(m, k), which groups the TF points where only this source is present.

1 Assuming that the length K of the analysis window used is sufficiently larger than
the filters order Q (i.e. K > Q).

2 It should be noted however that the equality in Eq. (2) is only an approximation.
This equality would only be true if the discrete convolution used was circular, which
is not the case here. We also note that this STFT is generally used with an analysis
window different than the rectangular window [2,4,6–9,13–15].

3 Which means, in each TF point at most one source is present.
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The application of the estimated mask Mj(m, k) to one of the frequency observa-
tions Xi(m, k) allows us to keep from the latter only the TF points belonging to
the source Sj(m, k), and then separate it from the rest of the mixture. Depending
on the procedure used to estimate the masks, we distinguish between two types
of BSS methods based on TF masking. The so-called full-band methods [2,4,6,9]
for which the masks are estimated integrally using a clustering algorithm that
processes all frequency bins simultaneously, and the so-called bin-wise methods
[7,8,13–15] for which the masks are estimated using a clustering algorithm that
processes only one frequency bin at a time.

Among the most popular full-band methods we can cite those proposed in
[4,9] which are based on the clustering of the level ratios and phase differences
between the frequency observations Xi(m, k) to estimate the separation masks.
However, this clustering is not always reliable, especially when the order Q of the
mixing filters increases [4]. Moreover, when the maximum distance between the
sensors is greater than half the wavelength of the maximum frequency of source
signals involved, a problem called spatial aliasing is inevitable [4]. The bin-wise
methods [7,8,13–15] are robust to these two problems. However, these methods
require the introduction of an additional step to solve a permutation problem in
the estimated masks, when we pass from one frequency bin to another, which is
a classical problem that is common to all bin-wise BSS methods.

However, all of these BSS methods based on TF masking (full-band and bin-
wise) suffers from artifacts problem which affect the quality of the separated
signals and due to the fact that the W-disjoint orthogonality assumption is not
perfectly verified in practice. Indeed, being introduced by the TF masking oper-
ation, these artifacts are more and more troublesome when the spectral overlap
of source signals in the TF domain becomes important. In [11] the authors pro-
posed a first solution to this problem which consists of a cepstral smoothing
of spectral masks before applying them to the frequency observations Xi(m, k).
An interesting extension of this technique, which was proposed in [3], consists
in applying cepstral smoothing not to spectral masks but rather to the sepa-
rated signals, i.e. after applying the separation masks. Knowing that these two
techniques [3,11] were have only been validated on a few full-band methods, in
[5] we have recently proposed to evaluate their effectiveness using a few popular
bin-wise methods. However, these two solutions could only improve one partic-
ular type of artifact called musical noise [3,5,11]. In the same sense, in order
to avoid the artifacts caused by the TF masking operation, we propose in this
paper a new BSS method which also exploits the sparsity of source signals in
the TF domain for determined LC mixtures. Indeed, by focusing on the case of
determined mixtures, we show that we can avoid TF masking and also relax the
W-disjoint orthogonality assumption. Note that the case of determined mixtures
was also addressed in [1], but with an assumption which is again very restrictive
and which consists in having at least a whole time frame of silence4 for each of
the source signals. Thus, our new method makes it possible to carry out the sep-

4 Of length greater or equal to the length K of the analysis window used in the
calculation of the STFT.
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aration while avoiding the artifacts introduced by the operation of TF masking,
with sparsity assumptions much less restrictive than those of existing methods.

We begin in Sect. 2 by describing our method. Then we present in Sect. 3
various experimental results that measure the performance of our method com-
pared to existing methods, then we conclude with a conclusion and perspectives
of our work in Sect. 4.

2 Proposed Method

The sole sparsity assumption of our method is the following.

Assumption: For each source sj(n) and for each frequency bin k, there is at
least one TF point (m, k) where it is present alone, i.e:

∀ j, ∀ k, ∃ m / Sj(m, k) �= 0 & Si(m, k) = 0, ∀ i �= j (3)

Thus, if we denote by Ej the set of TF points (m, k) that verify the assumption
(3), called single-source points, then the relation (2) gives us:

Xi(m, k) = Hij(k) · Sj(m, k), ∀(m, k) ∈ Ej . (4)

Our method proceeds in two steps. The first step, which exploits the prob-
abilistic masks used by Sawada et al. in [14,15], consists in identifying for each
source of index “j” and each frequency bin “k” the index “mjk” such that the
TF point (mjk, k) best verifies the Eq. (4), then in estimating the separating
filters, denoted Fij(k) and defined by:

Fij(k) =
Xi(mjk, k)
X1(mjk, k)

=
Hij(k) · Sj(mjk, k)
H1j(k) · Sj(mjk, k)

=
Hij(k)
H1j(k)

, i ∈ [2,M ] (5)

The second step consists in recombining the mixtures Xi(m, k) using the
separating filters Fij(k) in order to finally obtain an estimate of the separated
sources. The two steps of our method are the subject of Sects. 2.1 and 2.2 respec-
tively.

2.1 Estimation of the Separating Filters

Since the proposed treatment in this first step of our method is performed inde-
pendently of the frequency, we propose in this section to simplify the notations
by omitting the frequency bin index “k”. So using a matrix formulation, the
Eq. (2) gives us:

X(m) =
N∑

j=1

Hj · Sj(m), (6)

where X(m) = [X1(m, k), ...,XM (m, k)]T , Hj = [H1j(k), ...,HMj(k)]T and
Sj(m) = Sj(m, k). During this first step, we proceed as follows:



A New Sparse BSS Method for Determined LC Mixtures in TF Domain 361

1. Each vector X(m) is normalized and then whitened as follows:

X̃(m) =
X(m)

||X(m)|| and Z(m) =
WX̃(m)

||WX̃(m)|| , (7)

where W is given by W = D− 1
2 EH , with E{X̃(m)X̃H(m)} = EDEH .

2. Each vector Z(m) is modeled by a complex Gaussian density function of the
form [14]:

p(Z(m)|aj , σj) =
1

(πσ2
j )M

· exp

(
−||Z(m) − (aH

j Z(m)).aj ||2
σ2
j

)
(8)

where aj and σ2
j are respectively the centroid (with unit norm ||aj || = 1) and

the variance of each cluster Cj . This density function p(Z) can be described
by the following mixing model:

p(Z(m)|θ) =
N∑

j=1

αj · p(Z(m)|aj , σj), (9)

where αj are the mixture ratios and θ = {a1, σ1, α1, ...,aN , σN , αN} is the
parameter set of the mixing model.
Then, an iterative algorithm of the type expectation-maximization (EM) is
used to estimate the parameter set θ, as well as the posterior probabilities
P (Cj |Z(m), θ) at each TF point, which are none other than the probabilistic
masks used in [14].
In the expectation step, these posterior probabilities are given by:

P (Cj |Z(m), θ) =
αjp(Z(m)|aj , σj)

p(Z(m)|θ) · (10)

In the maximization step, the update of centroid aj is given by the eigenvector
associated with the largest eigenvalue of the matrix Rj defined by:

Rj =
T−1∑

m=0

P (Cj |Z(m), θ) · {
Z(m)ZH(m)

}
. (11)

The parameters σ2
j and αj are updated respectively via the following relations:

σ2
j =

∑T−1
m=0 P (Cj |Z(m), θ) · ||Z(m) − (aH

j Z(m)).aj ||2
M · ∑T−1

m=0 P (Cj |Z(m), θ)
(12)

αj =
1
T

T−1∑

m=0

P (Cj |Z(m), θ). (13)

However, since the EM algorithm used in [14,15] is sensitive to the initializa-
tion5, we propose in our method to initialize the masks with those obtained

5 Which is done randomly in [14,15] and can lead to terrible performance.
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by a modified version of the MENUET method [4]. Indeed, we replaced, in
the clustering step for the estimation of the masks, the k-means algorithm
used in [4] by the fuzzy c-means (FCM) algorithm used in [13], in order to
have probabilistic masks.

3. After the convergence of the EM algorithm, the classical permutation problem
between the different frequency bins is solved by the algorithm proposed
in [15], which is based on the inter-frequency correlation between the time
sequences of posterior probabilities P (Cj |Z(m), θ) in each frequency bin k.
In the following we denote these posterior probabilities by P (Cj |Z(m, k)).

4. Unlike the approach adopted in [14,15] which consists in using all the TF
points of the estimated probabilistic masks P (Cj |Z(m, k)), we are interested
in this step only in identifying one single-source TF point for each source of
index “j” and for each frequency bin “k”, therefore a single time frame index
that we denote by “mjk”, which best verifies our working assumption (4).
We then define this index mjk as being the index “m” for which the presence
probability of the corresponding source is maximum6:

mjk = argmax
m

P (Cj |Z(m, k)), m ∈ [0, T − 1] (14)

5. After having identified these “best” single-source TF points (mjk, k), we
finish this first step of our method by estimating the separating filters Fij(k)
defined in (5) by:

Fij(k) =
Xi(mjk, k)
X1(mjk, k)

=
Hij(k)
H1j(k)

, i ∈ [2,M ] (15)

2.2 Estimation of the Separated Sources

In this section, for more clarity, we provide the mathematical bases for the second
step of our method for two LC mixtures of two sources, i.e. for M = N = 2. The
generalization to the case M = N > 2 can be derived directly from this in an
obvious way. In this case, the mixing Eq. (1) gives us:

{
x1(n) = h11(n) ∗ s1(n) + h12(n) ∗ s2(n)
x2(n) = h21(n) ∗ s1(n) + h22(n) ∗ s2(n)

(16)

As we pass to the TF domain, we get:
{

X1(m, k) = H11(k) · S1(m, k) + H12(k) · S2(m, k)
X2(m, k) = H21(k) · S1(m, k) + H22(k) · S2(m, k)

(17)

We use the separating filters Fij(k), with i = 2 and j = 1, 2, estimated in the
first step to recombine these two mixtures as follows:

{
X2(m, k) − F22(k) · X1(m, k) = S̃1(m, k)
X2(m, k) − F21(k) · X1(m, k) = S̃2(m, k)

(18)

6 Note however that in practice, only the indices “m” with an energy ||X(m)||2 which
is not negligible are concerned by the Eq. (14).
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Since we have F21(k) = H21(k)
H11(k)

and F22(k) = H22(k)
H12(k)

, based on the Eq. (15),
we get after all simplifications have been made:

{
S̃1(m, k) = H21(k).H12(k)−H22(k).H11(k)

H12(k)
· S1(m, k)

S̃2(m, k) = H22(k).H11(k)−H21(k).H12(k)
H11(k)

· S2(m, k)
(19)

In order to ultimately obtain the contributions of sources in one of the sensors,
we propose to add a post-processing step (as in [1]) which consists in multiplying
the signals S̃j(m, k) by filters, denoted by Gj(k), as follows:

Gj(k) · S̃j(m, k) = Yj(m, k), j ∈ {1, 2}, (20)

where G1(k) =
1

F21(k) − F22(k)
and G2(k) =

1
F22(k) − F21(k)

. (21)

After all the simplifications are done, we get:
{

Y1(m, k) = H11(k) · S1(m, k)
Y2(m, k) = H12(k) · S2(m, k)

(22)

By denoting yj(n) the inverse STFT of Yj(m, k) we get:
{

y1(n) = h11(n) ∗ s1(n)
y2(n) = h12(n) ∗ s2(n)

(23)

These signals are none other than the contributions of source signals s1(n)
and s2(n) on the first sensor (see the expression of the mixture x1(n) in (16)).

3 Results

In order to evaluate the performance of our method and compare it to the most
popular bin-wise methods known for their good performance, that is the method
proposed by Sawada et al. [15] and the UCBSS method [13], we performed
several tests on different sets of mixtures. Each set consists of two mixtures of
two real audio sources, which are sampled at 16 KHz and with a duration of 10 s
each, using different filter sets. Generated by the toolbox [10], which simulates
a real acoustic room characterized by a reverberation time denoted by RT 60

7,
the coefficients hij(n) of these mixing filters depend on the distance between
the two sensors (microphones), denoted as D and on the absolute value of the
difference between directions of arrival of the two source signals, denoted as δϕ.
For the calculation of the STFT, we used a 2048 sample Hanning window (as
analysis window) with a 75% overlap. To measure the performance we used two
of the most commonly used criteria by the BSS community, called Signal to
7 RT 60 represent the time required for reflections of a direct sound to decay by 60 dB

below the level of the direct sound.
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Distortion Ratio (SDR) and Signal to Artifacts Ratio (SAR) provided by the
BSSeval toolbox [17] and both expressed in decibels (dB). The SDR measures
the global performance of any BSS method, while the SAR provides us with
a specific information on its performance in terms of artifacts presented in the
separated signals.

For each test we evaluated the performance of the three methods, in terms of
SDR and SAR, over 4 different realizations of the mixtures related to the use
of different sets of source signals cited above. Thus, the values provided below
for SDR and SAR represent the average obtained over these 4 realizations8.

In the first experiment, we evaluated the performance as a function of the
parameters D and δϕ for an acoustic room characterized by RT 60 = 50 ms.
Table 1 groups the performance for D ∈ {0.3m, 1m} and δϕ ∈ {85◦, 55◦, 30◦},
where the last column for each value of the parameter D represents the average
value of SDR and SAR over the three values δϕi of δϕ.

Table 1. SDR (dB) and SAR (dB) as a function of D and δϕ for RT 60 = 50 ms.

Method Performance D=0.3m D = 1m

δϕ1 δϕ2 δϕ3 Mean δϕ1 δϕ2 δϕ3 Mean

Sawada SDR 11.75 11.76 12.25 11.92 12.46 12.20 11.88 12.18

SAR 12.16 12.17 12.72 12.35 12.74 12.59 12.34 12.56

UCBSS SDR 5.02 8.68 5.82 6.51 8.65 8.71 10.73 9.36

SAR 7.71 9.99 8.30 8.67 9.67 9.88 11.73 10.43

Proposed method SDR 16.55 17.40 17.17 17.04 16.17 15.08 16.03 15.76

SAR 17.74 18.56 18.57 18.29 17.83 16.13 17.81 17.26

According to Table 1, we can see that our method is performing better than
the other two methods, and this over the 4 realizations of mixtures tested. Indeed,
the proposed method shows superior performance over these two methods by
about 5 dB for D = 0.3 m and 3.5 dB for D =1 m in terms of SDR. This perfor-
mance difference is even more visible in terms of SAR, which confirms that the
artifacts introduced by our method are less significant than those introduced by
the other two methods.

In our second experiment we were interested in the behavior of our method
with regard to the increase of the reverberation time while fixing the parameters
D and δϕ respectively to D = 0.3 m and δϕ = 55◦. Table 2 groups the perfor-
mance of the three methods in terms of SDR, for RT 60 belonging to the interval
{50ms, 100ms, 150ms, 200ms}9.

According to Table 2, we can see again that the best performance is obtained
by using our method whichever the reverberation time. However, we note that
8 We have indeed opted for these 4 realizations instead of only one in order to approach

as close as possible to a statistical validation of our results.
9 I.e. the mixing filters length (Q + 1 = fs · RT60) varies from 800 coefficients (for

RT 60 = 50 ms) to 3200 coefficients (for RT 60 = 200 ms).



A New Sparse BSS Method for Determined LC Mixtures in TF Domain 365

Table 2. SDR (dB) as a function of RT 60 for D = 0.3 m and δϕ = 55◦.

Method RT 60

50 ms 100 ms 150 ms 200 ms

Sawada 11.76 11.42 9.26 7.65

UCBSS 8.68 5.12 3.83 3.04

Proposed method 17.40 13.60 11.02 8.12

this performance is degraded when RT 60 increases. This result, which is common
to all BSS methods, is expected and is mainly explained by the fact that the
higher the reverberation time, the less the assumption (here of sparseness in the
TF domain) assumed by these methods on source signals is verified.

4 Conclusion and Perspectives

In this paper, we have proposed a new Blind Source Separation method for linear
convolutive mixtures with a sparsity assumption in the time-frequency domain
that is much less restrictive compared to the existing methods [1,2,4,6–9,13–
15]. Indeed, by focusing on the case of determined mixtures, we have shown
that our method avoids the problem of artifacts at the separated signals from
which suffers most of these methods [2,4,6–9,13–15]. According to the results
of the several tests performed, the performance of our new method, in terms
of SDR and SAR, is better than that obtained by using the method proposed
by Sawada et al. [15] and the UCBSS method [13], which are known for their
good performance within existing methods. Nevertheless, considering that these
results were obtained over 4 different realizations of the mixtures and only for
some values of the parameters involved, a larger statistical performance study
including all these parameters is desirable to confirm this results. Furthermore,
it would be interesting to propose a solution to this problem of artifacts also in
the case of under-determined linear convolutive mixtures.
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