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Abstract. Precision agriculture faces challenges related to plant dis-
ease detection. Plant phenotyping assesses the appearance to select the
best genotypes that resist to varying environmental conditions via plant
variety testing. In this process, official plant variety tests are currently
performed in vitro by visual inspection of samples placed in a culture
media. In this communication, we demonstrate the potential of a com-
puter vision approach to perform such tests in a much faster and repro-
ducible way. We highlight the benefit of fusing contrasts coming from
front and back light. To the best of our knowledge, this is illustrated for
the first time on the classification of the severity of the presence of a
fungi, powdery mildew, on melon leaves with 95% of accuracy.
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1 Introduction

During the last decades, precision agriculture benefited from advances in robotics
[1,2], computer vision [3] and artificial intelligence [4, 5] to automate the monitor-
ing of crops [6] and harvesting [7]. However, some activities of major importance
for agriculture are still to take benefit from these advances. One such activity
is plant variety testing. To register and protect a new variety in a country, a
plant breeding company has to follow a process managed by a national exami-
nation office within an official framework. The national examination offices run
tests to register new varieties in the official catalogue, protect them with «plant
variety rights» and post control of certified seed lots. Currently, most of these
tests are based on manual measurements performed with visual inspection. This
is an issue for the sake of efficiency due to the time consuming nature of these
tests. In this context, we focus on one of these plant variety tests. We propose
an automated algorithm to detect and quantify the presence of powdery mildew
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on melon leaves via in vitro imaging to assess the resistance capability of the
tested varieties. Powdery mildew is a fungal disease infecting melon leaves and
causing a major reduction of yield. The typical symptoms of powdery mildew
are white colonies on the leaf surface consisting of mycelium and spores of the
fungal pathogen. We first describe the current manual method and then explain
the computer vision procedure that we propose, based on machine learning and
fusion of front and back light images. The performance of this automated pro-
cedure is compared with the manual method and previous automated methods
before conclusion.

2 Related Work

Plant disease detection using deep learning has attracted many attention in
the recent past [8-10] due to the large variety of conditions in which diseases
can be studied including conditions of plant-pathogen interactions (virus, bac-
teria, fungi), environmental conditions (field, controlled environment, in vitro,
...), imaging modalities (RGB, thermal, fluorescent, ...) and observation scales
(tissue, leaf, canopy, ...). As closely related work, for powdery mildew detection
observed on foliar disk in vitro, a spatio-spectral analysis based on hyperspec-
tral images of wine grapes was developed to classify powdery mildew infection
levels [11]. An accuracy of 87% was reported to classify “healthy”, “infected” and
“severely” diseased bunches. In another work, a machine vision based phenotyp-
ing system was developed to assess the severity of grapevine powdery mildew
[12]. The system is based on a high-resolution camera and a long working dis-
tance macro-focusing lens. The system acquires an image of each foliar disk inside
a Petri dish and requires an XY motorised stage to move above one foliar disk to
another. A GoogleNet neural network architecture was trained on 9920 images of
two classes “infected” and “not infected”. The training lasted 3.4 h. The resulting
CNN had a classification accuracy of 94.3%. By contrast with these methods,
our computer vision system requires only a simple RGB camera with standard
resolution and a lighting device. This simplicity and low-cost is important for
dissemination of the method as the system is dedicated to pathology tests per-
formed by biologists. Also, acquisition time is important as the global objective is
to implement a high-throughput phenotyping system. Unlike microscope-based
images of [12] that catches only a single foliar disk at a time, we acquire 9
foliar disks in the same snapshot. The previous works have improved disease
detection accuracy by investing in the imaging system (hyper-spectral camera
and microscope). On the side of optics, we propose to fuse front and back light
images to improve classification accuracy and thus implement a high-throughput
phenotyping system at a relatively low cost.

3 Current Manual Procedure

The current manual procedure to assess melon leaves resistance to powdery
mildew is as follows. First, biologists extract foliar disks from melon leaves (as
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illustrated in Fig.1(a)) and position them inside a Petri dish. A control foliar
disk (very sensitive to powdery mildew), positioned at the center of the Petri
dish, serves to validate the presence of powdery mildew. In the next step, foliar
disks are inoculated with powdery mildew powder inside Petri dishes and left for
an incubation period of 10 days. After that, biologists use a binocular loop to
visualize leaves and assign an ordinal score according to powdery mildew density
on the leaf surface as shown in Fig. 1(b). The encoding of the scoring is provided
in Table 1.

Table 1. Annotation scale of powdery mildew propagation on melon leaves.

Score assigned to powdery mildew density | Observation

Resistant One spore of powdery mildew
Moderate 50% of the leaf is infected
Severe Leaf is totally infected

Resistant | Moderate | Sensitive
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Fig. 1. Schematic visualisation of the current procedure. (a): Petri dish containing
melon foliar disks inoculated with powdery mildew. (b): a biologist visualizes and
annotates powdery mildew propagation using a binocular loop. (c): data generated

after assessment following the annotation scale of Table 1. Each foliar disk is saved in
a CSV file with its corresponding class.

4 Proposed Computer Vision Procedure

To automate the manual procedure described in the previous section, we propose
to follow the pipeline given in Fig.2. 70 Petri dish images are acquired with a
digital color camera with resolution of 2448 by 2050 pixels. The size of each
foliar disk is approximately 120 000 pixels. The camera is positioned vertically
above the Petri dish as shown in Fig. 2(a). As illustrated in Fig. 2(b), Petri dish
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images are acquired under two lighting techniques, front and back light. After
RGB to HSB conversion, the brightness channel of both images (front and back
light) are fused in a linear blending to enhance the contrast between the lymb
and the fungi.
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Fig. 2. Visual scheme of the proposed computer vision procedure. (a): imaging device.
(b): fusing images following a linear blending. (c): generated fused image. (d): front,
back and fused data sets. (e): The foliar disks are segmented from Petri dishes using
the convolutional neural network architecture for semantic segmentation UNET [13]
and cropped individually. (f): foliar disks are assigned to their corresponding ground
truth, produced by an expert in the current manual procedure. (g): feeding training
images to a supervised machine learning classification algorithm.

The partition of foliar disk images per class in front, back and fused data
sets is as follows: 180 images for “Resistant” class, 62 images for “Moderate”
class and 131 images for “Sensitive” class. This data set is rather small in this
work (compared to standard large data sets in machine learning). This consti-
tutes a possible limit to the use of an end-to-end deep learning method due
to the tendency of overfitting. Instead, a shallow supervised learning scheme
based on the concatenation of a deep-feature extraction [14] stage followed by
a linear support vector machine classifier was used for the comparison of the
performance with different images (fused, front and back light). Deep features
trained on ImageNet from well-known architectures were tested in this study
including VGG16 and Resnet50. In addition, a small end-to-end CNN model
with the architecture shown in Fig. 3 was fine-tuned on a validation data set of
20% of training images. The accuracy of the classification of all tested models
was computed per class from the confusion matrix. Due to the lack of enough
data and the imbalance classes in our data set, a data augmentation was used
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to improve the classification accuracy and to be able to compare fairly with a
deep learning architecture. Data were augmented to force invariance to rotation
since the leaves are randomly positioned in the Petri dish invariance to shearing
and zoom to allow for robustness to some plasticity of the leaf tissue. The mix
parameter « in the linear blending to fuse front and back light images was chosen
to maximize the contrast between powdery mildew and healthy lymb computed
with the Fisher ratio which is defined as
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where p is the mean pixel value in the selected area and o is the standard
deviation of the pixel values in the selected area. The Fisher ratio was computed
on fused images generated by varying a from 0 to 1. The optimal value of «
for which Fisher ratio is maximum, equals to 0.1. This value was applied in the
linear blending to generate fused images for classification.
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Fig. 3. CNN architecture proposed.

5 Results

Classification performances of the supervised machine learning algorithm
described in Sect. 4, are given in Table2 and Table 3. Best results, highlighted
in blue were systematically obtained with the fused images for the three tested
classifiers with or without data augmentation. Highest scores are obtained with
association of deep features from Resnet50 coupled with a linear SVM with data
augmentation. Other classical classifiers such as random forest or non linear SVM
were also tested (not shown) but results were not significantly improved. The
confusion matrix for this best classifier is illustrated in Fig.4 which shows that
most errors come from the confusion between moderate and sensitive classes.
Finally, these two classes are merged by biologists when varieties are registered
officially. The classification accuracy achieved in classification of resistant and
sensitive levels are provided in Table3 with best performances culminating at
95% accuracy.
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Fig. 4. Confusion Matrix of Resnet50 algorithm to classify powdery mildew on 3 infec-
tion levels: resistant & moderate & sensitive.

Table 2. Classification accuracy for 3 infection levels: resistant & moderate & sensitive.

Architecture | Training approach Front Back Fused Train/test

VGG16 Raw Data 0.61 0.53 0.7 135/88
Data augmentation 0.69 0.49 0.75 1000,/200

Resnet50 Raw Data 0.67 0.59 0.79 135/88
Data augmentation 0.71 0.62 0.82 1000/200

Proposed CNN Raw Data 0.56 + 0.06/0.40 £+ 0.04/0.67 £ 0.04| 135/88
Data augmentation|0.64 + 0.05/0.48 + 0.07| 0.78 & 0.02 | 1000/200

Table 3. Classification accuracy for 2 infection levels: resistant & sensitive.

Architecture | Training approach Front Back Fused |Train/test
VGG16 Raw Data 0.82 0.72 0.86 280/100
Data augmentation 0.81 0.74 0.83 1000/200

Resnet50 Raw Data 0.86 0.81 0.94 280/100
Data augmentation 0.86 0.84 0.95 1000,/200

Proposed CNN Raw Data 0.71 + 0.08/0.65 £+ 0.02|0.86 £+ 0.04| 280/100
Data augmentation|0.79 £ 0.11]/0.68 £ 0.01/0.92 £ 0.01  1000/200

6 Discussion

The previous section presented successful results for the classification of the pres-
ence of powdery mildew in foliar disks containing melon leaves. The obtained
performances are similar to the recently published work on the classification of
powdery mildew in two [11] or three classes [12] as presented in the related work
section. It is to be noticed that the closest related method of [12] is applied to
another crop but in a similar in vitro imaging conditions protocol. While neural
networks are also used as the main element of the image processing pipeline, [12]
notably differs from our approach. The work of [12] focuses on a metrological
measurement of the powdery mildew performed with a high resolution imaging
system enabling to detect individual mycelium. By contrast, we propose an ordi-
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nal classification of the foliar disk corresponding to the final annotation of an
expert. We investigated the possibility of addressing this less demanding task by
considering foliar disks as a texture with a much lower spatial resolution. Working
at such degraded resolution could constitute a risk of loosing accuracy specially
at the low grade of the development of the powdery mildew. However, we demon-
strated that this was not the case when considering the final score recorded in
variety testing which only keeps two classes (resistant, sensitive). Our method
is especially suitable for high-throughput application of variety testing to avoid
an overwhelming increase of data while keeping the accuracy of the tests at the
current level. The performance of the classical CNN architecture is promising
and should exceed the 95% accuracy of Resnet50 in case more training images
were provided. A comparison on the same samples of our classification approach
with the metrological quantification of [12] would be an interesting perspective.

7 Conclusion and Future Work

In this paper, we presented a computer vision-based approach to automate a
plant variety test performed to quantify the severity of powdery mildew infection
levels on melon leaves. We demonstrated that fusing front light and back light
images improved powdery mildew contrast. This fusion resulted an improvement
of 10% accuracy with a very low-cost imaging system. Also, we highlighted the
achievement of this performance level with a standard spatial resolution, while
the state of the art on this problem reported the use of microscopic resolution
to track individual mycellium. The use of deep features Resnet50 coupled with
a standard SVM achieved an accuracy of 95%. This automated approach is
expected to improve the speed and accuracy of disease detection and could be
extended to other in vitro pathology tests. The fusion of front and back light was
limited in this communication to a simple linear blending. In the future, we plan
to explore various approaches of image fusion [15] to optimize the combination
of front and back light images.
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