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Abstract. FORS is the underlying hash-based few-time signing scheme
in SPHINCS™, one of the nine signature schemes which advanced to
round 2 of the NIST Post-Quantum Cryptography standardization com-
petition. In this paper, we analyze the security of FORS with respect to
adaptive chosen message attacks. We show that in such a setting, the
security of FORS decreases significantly with each signed message when
compared to its security against non-adaptive chosen message attacks.
We propose a chaining mechanism that with slightly more computa-
tion, dynamically binds the Obtain Random Subset (ORS) generation
with signing, hence, eliminating the offline advantage of adaptive cho-
sen message adversaries. We apply our chaining mechanism to FORS
and present DFORS whose security against adaptive chosen message
attacks is equal to the non-adaptive security of FORS. In a nutshell, using
SPHINCS™-128s parameters, FORS provides 75-bit security and DFORS
achieves 150-bit security with respect to adaptive chosen message attacks
after signing one message. We note that our analysis does not affect the
claimed security of SPHINCS™. Nevertheless, this work provides a bet-
ter understanding of FORS and other HORS variants, and furnishes a
solution if new adaptive cryptanalytic techniques on SPHINCS™ emerge.

Keywords: Digital signatures - Hash-based signature schemes -
Post-Quantum Cryptography - Adaptive chosen message attacks

1 Introduction

The current digital signature infrastructure adopts schemes that rely on the
hardness of factoring or finding discrete logarithms in finite groups [12,18,24].
Given recent advances in physics which point towards the eventual construction
of large scale quantum computers [1], these hard problems will be solved in poly-
nomial time using Shor’s algorithm [25]. Lattice-based, coding-based, and mul-
tivariate signatures are considered quantum resilient schemes in the Q1 model
[7]. However, either their exact security with respect to quantum attacks is still
not clear [5,11] or their communication/storage complexity is impractical to a
multitude of applications, e.g., megabyte keys for the matrices of McEliece-based
cryptosystems [27]. On the other hand, hash-based digital signatures have mod-
erately sized keys (order of kilobytes), and their quantum security relies solely
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on that of hash functions based on Grover’s algorithm. They have been proven
to offer simple quantum resilient security properties [26]. Note that the proofs
in [26] follow the Q1 model where no superposition queries to quantum oracles
are allowed [7].

Hash-based signature algorithms are comprised of two schemes, an underlying
signing scheme and an extension algorithm. The former algorithm defines the
main signing procedure where a key pair can be used to sign one (Lamport
[19], Winternitz one time signature scheme (WOTS), WOTS++ [8,14]) or a few
messages (e.g., Biba [21], HORS [23], HORS++ [22], PORS [2], and FORS [4]),
after which a new key pair should be generated to maintain security against
forgery attacks. More precisely, the security of hash-based few time (HBFT)
signature schemes decreases after revealing each signature, and hence their bit-
security is given under the condition that re-keying is required after r signatures.
Accordingly, translating this constraint to acceptable attack models implies that
a maximum of r queries are allowed to the signing oracle.

The extension algorithm is a top level construction that employs several
instances of underlying signing schemes (OTS and HBFT) in a Merkle tree struc-
ture. Such an algorithm enables signing multiple messages where signatures are ver-
ified with one public key (Merkle root). Extension algorithms can be stateful such as
Merkle Signature Scheme MSS [20], eXtended Merkle Signature Scheme (XMSS)
[9], XMSS+ [15], Multi Tree XMSS (XMSSMT) [16], and XMSS with tightened
security (XMSS-T) [17], or stateless such as SPHINCS [5], SPHINCS™ [4,6], and
Gravity SPHINCS [3]. Stateless signature algorithms conform to the basic defini-
tion of digital signatures where no state updates are required to guarantee security,
and only keys are needed to securely generate valid signatures at any time.

The security of hash-based signature algorithms relies on the security of the
underlying basic signing schemes. SPHINCS is a hyper-tree construction that
uses WOTS and HORS trees for signing. In [2], Aumasson and Endignoux inves-
tigated the subset-resilience problem [23] and showed that HORS is vulnerable
to weak-message attacks where an adaptive adversary looks for messages that
produce smaller Obtain Random Subsets (ORSs). Consequently, they reported
a 7-bit decrease in the expected security of SPHINCS against classical attacks.
Moreover, they proposed PORS, a variant of HORS which employs a pseudo-
random bit generator (PRNG) instead of a hash function to obtain random sub-
sets with distinct elements, thus avoiding the effect of weak messages. However,
PORS is not secure against adaptive chosen message attacks where an adver-
sary is able to generate random subsets for as many messages as they want, and
select a set of r message for online queries. Finally, FORS, another HORS vari-
ant, was proposed and is currently adopted in SPHINCS™T, a round 2 candidate
in the NIST Post-Quantum Cryptography standardization competition [4,10].
Compared to PORS, FORS mitigates weak-message attacks by increasing the
size of the keys by a factor of x where k is the number of random subsets, and
the overall signature size is also increased when it is integrated in a hyper-tree
structure. On its own, the security of FORS against adaptive chosen message
attacks decreases significantly with each signed message, which currently has no
known effect on the security of SPHINCS™ because it employs a pseudorandomly
generated randomizer that is publicly sent along with the signature, and is used
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as a key for the hash function in FORS to obtain the random subsets. However,
if cryptanalytic techniques are devised which can annihilate how this public ran-
domizer is utilized or can break its generation procedure, then SPHINCS™ will
be vulnerable to adaptive chosen message attacks. Hence, given the significance
of SPHINCS' as a candidate for standardization, we believe our analysis of
its underlying signature scheme, FORS, is important, along with DFORS which
offers a drop-in strengthened candidate.

Our Contribution. In what follows, we summarize the contributions of this paper.

— We analyze the security of FORS against adaptive chosen message adver-
saries. We show that its bit security with respect to adaptive chosen mes-
sage attacks decreases significantly when compared to its security in a non-
adaptive setting. We adopt the adaptive chosen message attack model defined
by Reyzin and Reyzin [23] and used in the analysis of HORS and PORS.

— We propose a hash chaining mechanism that binds the process of generat-
ing a message ORS with signing it, which eliminates the offline adversarial
advantage and makes ORS generation feasible only for the signing entity. We
apply the chaining scheme to FORS and present Dynamic Forest Of Random
Subsets (DFORS), a new HORS variant that resists adaptive chosen message
attacks. We show that the bit-security of DFORS with respect to adaptive
chosen message attacks is more than that of FORS by a factor of »+ 1, where
7 is the number of signed messages per key under a given security level.

— We analyze the security of DFORS with respect to adaptive chosen message
adversaries, discuss its limitations, and report its theoretical computational
and communication performance. Finally, we compare DFORS with FORS and
other HORS variants.

2 Preliminaries

In what follows, we provide the notation and definitions used throughout the
paper. FORS can be seen as a generalized instance of HORS and it inherits
most of the specifications of HORS. Accordingly, for completeness, we provide
a brief overview of the HORS signature scheme.

2.1 Notation

Let n denote our security parameter. Consider a finite key space K, message
space of arbitrary length M, the two hash families H and G where H = {H}, :
{0,1}* — {0,1}*"|k € K}, and G = {G}, : {0,1}* — {0,1}"|k € K}. Hy (resp.
Gy) is an k7-bit (resp. n-bit) keyed one-way function. Let the x7-bit message
digest of an arbitrary length message m € M be divided into x elements, each of
length 7 bits, such that the integer representation of a given element is a subset
of {0,1,...,t — 1}, where t = 27. We refer to the set {0,1,...,t — 1} by T, and
the subset of k-elements of the set T is denoted by S, (7). Let ORS,(m) denote
an Obtain Random Subset function which returns a s element subset from the
k7-bit hash value of a message m, formally defined as follows

ORS.(m) : Hp(m) — S,(T)|k e K
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The notion of ORS functions was introduced by Reyzin and Reyzin when HORS
was proposed [23]. It has been shown that the security of the scheme is reduced
to the subset resilience problem [23]. More precisely, for a given bit-security
level, at most r messages can be signed before re-keying is required, otherwise
an adversary can find a message whose ORS is covered by the union of the
ORS's of the r messages.

Definition 1. The messages (my,ma,...,m.,mr41) are in an r-subset-cover
relation, CT, if the Obtain Random Subset of message my+1 (ORS;(myr41)) is a
subset of the union of all Obtain Random Subsets of the r-messages, ORS,(mq)U
ORS(mg)U...UORS.(m,), formally

C’;(ml, mao,... ,mr+1) = ORSK(mTH) - U ORS,{(mZ)

i=1

If finding the above cover relation for a given ORS function is infeasible, then
it is said that such a function is r-subset resilient.

Definition 2. An ORS function is r-subset-resilient if for any polynomial
time adversary A" %Y | the probability of finding (m1,ma,...,my11) such that
ORS(my41) is a subset of ORS,;(m1) UORS(ma)U...UORS(m;) is negli-
gible, Formally

Pr((m1, ma,...,mpi1) — ALY CT(my, my, ..., meq1)] < negl(n,t).

Definition 3. An ORS function is r-target-subset-resilient, if for any polyno-
mial time adversary A who is given the ORSs of r messages |J;_; ORS,(m;),
it is infeasible to find a message m,41 such that its k-element ORS(my 1) is
a subset of the union of ORS's of the r messages, formally

Pri(myyq) « AQTRbmumasme) O () my  mgyg)] < negl(ng t).

2.2 Hash to Obtain Random Subset (HORS) Few-Time Digital
Signature Scheme

In HORS [23], the signer randomly generates t secret keys each of n-bit length,
(SK = skg, sk1,...,ski—1). Using a one-way function f: {0,1}"™ — {0,1}", the
signer computes the public key, PK = (pko = f(sko),pk1 = f(ski1),...,pki—1 =
f(ski—1)). For signing an arbitrary length message m € M, ORS.(m) =
{ho,h1,...,hx—1} is evaluated by dividing the k7-bit message digest value of
Hy(m) into x elements, each of length 7 bits. Each element is represented
by an integer h; where 0 < i < k —1 and h; € {0,1,...,t — 1}, t = 2".
To generate the signature, o, the signer reveals the secret keys whose indices
correspond to the integer representation of the x elements in the ORS, i.e.,
o = (skny, Skhy, - -, 8kn,_, ). For verification, the verifier computes ORS,(m) =
{ho,h1,...,hk—1}, then checks if f(skp,) = pkp,, otherwise verification fails.
The description of HORS is given in Algorithm 3 in Appendix A.
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Security. Assuming that f is a one-way function, the security of HORS is reduced
to the hardness of the (target) subset-resilience problem [23]. It has been shown
that the probability of finding a message (m,41) such that ORS,;(m,41) is cov-
ered by the obtained random subsets of the r previously signed messages is (r«/t)"
which corresponds to the probability of k randomly chosen elements being a subset
of the revealed rx secret keys. The corresponding bit-security is then

log,(t/rk)" = k(logy t — logy r — logy k).

In [2], it was proven that the security of HORS with respect to adaptive chosen
message attacks is

log, 7!
r+1’

K
r+1

(logy t — logy r — logy k) +

(see Appendix B). A practical example of a weak-message attack was also given
where an adaptive adversary finds messages that map to subsets with repeated
indices which results in smaller subsets, i.e., number of distinct elements < k.
Such subsets are easier to cover and consequently, a 7-bit decrease in the expected
security of SPHINCS against classical attacks was reported.

Variants. HORS++ [22] was introduced to provide security against adaptive
attacks. A one-to-one mapping function S(m) that belongs to a cover-free family
[13] is utilized to ensure that for any r + 1 messages S(m,+1) € U._,(S(m;).
Three constructions for S(m) based on polynomials over finite fields, error cor-
recting codes, and algebraic curves over finite fields were presented. Conse-
quently, HORS++ increases the signature size and the size of the secret keys to
achieve the same security level of HORS against non-adaptive chosen message
attacks. Moreover, the computational efficiency is decreased due to the computa-
tion of S(m). Later, PORS was suggested to replace HORS in SPHINCS where
the idea of having distinct elements in subsets of weak messages was enforced
by use of a pseudorandom bit generator to obtain the subsets [2]. However,
although PORS mitigates weak-message attacks, it is still vulnerable to adap-
tive chosen message attacks under the definition given in Appendix B. Lastly,
FORS was proposed and used in SPHINCS™ [4], where security against weak-
message attacks is achieved by increasing the key size from ¢ values to xt values
such that each index out of the k indices in the ORS reveals a secret key from a
different pool of ¢ secret keys. Accordingly, when integrated in a tree structure
the size of the signature also increases.

3 FORS Security Analysis

Unlike HORS which generates t secret keys from which the secret keys that are
indexed by ORS(m) are released, FORS generates (kt) secret keys and dedicates
t secret keys for each index out of the x indices. By doing so, FORS mitigates
weak message attacks because even if two elements in ORS(m) are equal, they
index values from different secret key pools. The n-bit public key of FORS is the
hash of the concatenation of k Merkle tree roots. Each root is associated with a
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binary hash tree whose leaves are the hashes of ¢ secret key elements in a given
pool. Accordingly, one FORS instance has x trees, each of height logt = 7.

Figure 1 depicts the signatures of message 100 011 110 using (a) HORS and
(b) FORS, where x = 3 and ¢t = 8. In FORS, the first 3 bits, i.e., 100, of the
message selects sk4, the secret key corresponding to the 4-th leaf indexed from
the left and starting from 0 in the first tree along with its authentication path to
rooty. Similarly, the second (resp. third) 3 bits of the message selects sks (resp.
skg) from the second (resp. third) tree with the authentication path to root;
(resp. roots). In HORS, the three 3-bit parts of the message index sky, sks, and
skeg from the same tree, and with each selected secret key a 3 node authentication
path is selected, hence the overlap in the node (colored in pale red and gray)
at the pre-root level. More details about hash trees and authentication path
calculations are provided in Sect. 4.

root

I . e ]

(a) HORS signature within a binary tree construction

rooty rooty roots

(b) FORS signature within x binary trees construction

Fig. 1. HORS and FORS signatures of the message 100 011 110 where x = 3 and ¢ = 8.
The 8 rectangles under each tree depict the eight secret keys whose hashes are stored
in the corresponding leaf nodes.

It can be verified from Fig. 1 that if two 3-bit parts of the message are equal,
then the same secret key value is revealed in HORS. This fact is exploited in
the weak messages attack where an adversary searches for messages that have
as many repeated indices as possible, which lead to ORSs containing fewer dis-
tinct elements, and thus can be easily covered with the ORSs of the revealed r
messages. However, this problem is mitigated in FORS because repeated indices
select secret keys from different pools. In what follows, we investigate the security
of FORS with respect to non-adaptive chosen message attacks.

3.1 FORS in a Non-adaptive Setting

Reyzin and Reyzin introduced clear attack models for analyzing HBFT signature
schemes against (non) adaptive chosen message attacks [23]. Such models are
used in the analysis of all HORS-variants, i.e., PORS, and FORS. Specifically,
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in a non-adaptive setting, also referred to by r-target subset resilience prob-
lem (see Definition 3), an adversary is required to first choose r messages
mi,Mma, ..., m,, after which they are provided with key k of Hj and allowed
to select a message m,11 and evaluate Hy(m,y1). A successful non-adaptive
chosen message attack happens when the adversary is able to find C}, i.e., find
a message m,41 that is in an r-subset cover relation with my,me, ..., m,. This
scenario corresponds to an attacker who is trying to forge a signature after
observing all r allowed signatures per key, or an adversary who is allowed r
queries at a time before being supplied with & to verify any of the returned
signatures. Few-time signature schemes are expected to maintain their security
against forgery attacks even after releasing all r signatures.

Finding C}. in FORS. Given an adversary who observed the signatures of r
messages, finding a message m,.41 that is in an r—subset cover relation with the
other r messages (CTFORS(my my, ..., m,41)) has probability of success (r/t)"
[6], which is equal to the probability that each log¢-bit element out of the &
elements in ORS(m,11) is covered by an element at the same position of the
ORSs of the other r messages, i.e., hi(m,11) € U;:1 hi(m;) for 0 <i <k —1,
where h;(m;) denotes the i-th ORS element of the j-th message. Accordingly,
the corresponding bit-security against non-adaptive chosen message attacks is
given by
log, (/)" = k(logy t — log, ).

3.2 Adaptive Chosen Message Attack Against FORS

In this setting, an adversary is given the hash key k£ and allowed to evaluate Hy,
for any message of their choice before selecting r + 1 messages. This attack also
indicates the r-subset resilience of the signature algorithm (see Definition 2). The
definition of adaptive chosen message attack is given in Appendix B. Applying
the same analysis to FORS, given the key k of Hy, an adversary A generates
the ORSs of ¢ > r messages offline, where Hy(m;) = hol|h1]]...||hs—1 and
ORS(m;) = {ho,h1,...,hx—1}, for 0 < i < g — 1 A searches for all possible
combinations of (r 4+ 1) message sets from the set of ¢ messages. For any given
r+ 1 messages combination, the probability that message m,4; is covered by the
remaining r messages (i.e., CTFYORS(m my, ..., m,11)), is (r/t)". Accordingly,
A obtains (,.9,) sets of r + 1 messages and each set gives ("*') possible choices
for m, ;1. Therefore, the probability of A successfully generating C7T-FORS is
bounded from above by

suec™ ™y < (1) (T s

r

r

—1
Succr T < q(q . )(T’/t)“,

SUCCC:_FORS (A) < q-(¢ — 1) ~(g—r) (T/t)m.

r!
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which can be approximated by

CO7-FORS r+1

Succ™= (A) < 1

(r/t)".

Assuming a success probability close to 1, the above equation can be expressed as

r!

(r+1)logy ¢ — logy ! +k(logy r — logy t) = 0.

Then the bit security of FORS with respect to adaptive chosen message attacks
is given by
K log, 7!
log, t — 1 .
r+1(032 0%27')+r+1

One may conclude that due to the offline adversarial advantage given to A (i.e.,
knowledge of k implies the feasibility of evaluating ORSs for more than r mes-
sages of their choice), FORS bit security against adaptive chosen message attacks
decreases by a factor of (r 4+ 1) when compared to the non-adaptive setting. Note
that, currently there is no attack against SPHINCS™T that can utilize the offline
adversarial privileges and produce r + 1 messages in an r-subset cover relation.
This is because SPHINCS™ uses a fixed pseudorandom generation of the key k to
get the obtained random subset ORS,.(Hy(m)). We also note that k is message
dependent and is sent in the clear with each signature so verification takes place.
Accordingly, in the event of attacks on the process by which k is evaluated from
m, a dramatic decrease in the security of SPHINCS™ will follow. Consequently, in
the following section we present a technique that is robust against adaptive cho-
sen message attacks on FORS. Our mechanism annihilates the adversarial offline
advantages associated with knowing the hash key k.

4 Dynamic Forest of Random Subsets (DFORS)

In this section we present Dynamic Forest Of Random Subsets DFORS, a new
HORS-variant that mitigates the offline advantage of an adversary which leads to
the adaptive chosen message attack on FORS (discussed in Sect. 3). The main fea-
ture of DFORS is that the generation of the ORS is performed concurrently with
signing such that each signature element is utilized to generate the next element of
the ORS. In other words, signing and O RS generation are bound together using a
chaining mechanism that utilizes the revealed secret keys. This procedure ensures
that given a message, only the signer is able to efficiently generate an ORS. By
doing so, even if an adversary has knowledge of k, they are not able to compute
ORSs of a given message of their choice unless they have some secret key knowl-
edge. In what follows we give a detailed specification of DFORS.

4.1 DFORS Parameters
DFORS uses the following parameters.

n : The security parameter and the bit-length of (i) the secret seed SK.seed,
(ii) secret keys sk; ; (0<i<t—1,0<j <k —1), (iii) public key PK.root,
and (iv) the output of the used one way function F', and hash function G.
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k : The number of (i) sub-strings of the input message, (ii) secret key pools
where each contains ¢ secret keys, and (iii) hash trees.

7 : The bit length of a sub-string of the input message and the hash tree
height.

t : the number of secret keys per pool and the number of leaves in each hash
tree, t = 27.

The input message for DFORS is of length xklogt = k7 bits. To achieve n-bit
security when signing r messages, we have k7 > n (see Sect. 5.1).

4.2 Key Generation

In what follows, we give the specifications of the secret and public key generation
procedures. Moreover, DFORS is described in Algorithm 2.

Secret Key Generation. Let SK.seed denote an n-bit secret seed that is
sampled at random. Given a pseudorandom function, PRF : {0,1}" x {0,1}" —
{0,1}", the n-bit xt secret key values sk; ;, 0 < i <t—1,0<j <x—1are
generated by

sk;; = PRF(SK.seed,i+ jt),

where each set of ¢ secret keys belong to one of the x pools.

Hash Trees and Public Key Generation. Using one-way function F' :
{0,1}™ — {0,1}™ applied on the secret keys sk; ;,0 <i <t—1,0 < j < k—1, the
leaf nodes of the « hash trees are generated, L; ; = F(sk; ;). Every t leaves, L, ;,
are combined together in a Merkle tree construction to form the j-th (out of )
tree. Then, the roots of these x trees, rootq, rooty, ..., root._1, are concatenated
to form an input to the hash function to get the n-bit public key expressed as

PK.root = Gi(rootg||rooti||. . .||root,_1).

Binary Hash Tree. DFORS uses the XMSS binary Merkle tree construction [9].
The height of the binary hash tree is 7. It has 7 + 1 levels, t = 27 leaf nodes
(each of size n bits) on level 0, i.e., L;,0 <4 <t — 1, and an n-bit root node on
level 7. We denote the nodes in level j by N; ; where 0 <14 < 2777, 0 < i <T
and INV; o = L;. To construct the tree, the hash function G and a 2n-bit mask, g,
per hash evaluation are used. These bit masks are introduced to provide second-
preimage resistance. The rationale for using different bit masks for each hash
evaluation is to mitigate multi-target attacks [17]. For details on generating the
hash keys K ; and bit masks ¢; ;, the reader is referred to [4,17]. Formally, for
0 <j < 7,anode N, ; is given by

Nij = Gr, ;(Naij—1l|Nait1,j-1) © qij)-

Figure 2 shows a simplified example of one of the k trees in DFORS with ¢ = 8.
Assuming it is the j-th tree, it depicts the nodes in the authentication path
(colored in gray) associated with revealing sk ;.
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Tree Root
levels

levels

levely

levely

Lo Ly Lz L3 Ly Ls Le Lz

Fig. 2. A binary hash tree with the nodes in the authentication path (colored in gray)
for leaf node L3 (colored in black)

4.3 Signing and ORS Generation

We denote by Z(h) a function that takes as input x7 bits, h, and outputs the
j-th 7 bits of h, where j = h mod . Formally, Z : {0,1}*" — {0,1}7, and letting
h = h0||h1|| .. ||h,€,1, for 0 S] <K-— 1

Z(h) : hj — {ho”hl” ||h,§_1},j = h mod k.

The signing algorithm takes as input the message m, the secret seed SK.seed,
and the hash key k. It constructs the  trees as explained above in Sect. 4.2. To
compute the x random subset ORS,(m) = (bg, b1, ...,bx—1), the algorithm first
evaluates Hy(m) = h°, then computes Z(h®) = bg. The first element in the
signature, sigp, is comprised of i) the secret key of index by in the first pool,
oo = skp,,0, and ii) the corresponding authentication path Authg, thus sigy =
00, Authg. Next, h® and sky,,0 are used to choose the second random element,
Z(h') = by, where h' = Hgp, ,(h°||h°). The second signature element, sigy, is
the secret key of index b; in the second pool, o1 = sky, 1, and its corresponding
authentication path Auth,, sigy = o1, Authi. In general, the i-th element of
the ORS,(m) is given by Z(h') = b; where h* = Hg, ., (h°|[h*~"). The i-th
signature element, sig;, is the secret key value of index b; in the i-th pool and its
corresponding authentication path Auth,, sig; = o;, Auth;, where o; = sky, ;.
The above process is repeated until  elements are generated (bg, b1,...,bs—1).
Finally, the signature is given by

Y = (sigo, Sig1, - - ., Sigu—1) = (Skpy, Authg, sky, , Authy, ..., sky Authy_1)

K—1"?
= (0g, Authg, o1, Authy, ..., 041, Auth,_1).

The ORS generation and signing process is illustrated in Fig. 3.

The authentication path of a leaf L; contains all the sibling nodes of the nodes
in the path from the leaf L; to the tree root. It is required so that the verifier can
successfully generate the root in order to verify the signature element o; related
to the leaf node L;. Figure2 shows a simple hash tree with the authentication
path for leaf L3 colored in black and the authentication path nodes colored in
gray, Auth7 = (LQ,NOJ,NLQ).
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h® = Hy,(m) = n ] Po=w - [n]

B Ha, (0018 =[] i = [ ]
b2

h*"% = Hey,  (h° | h"7%) —»‘ hE2 ‘ hr=2 ‘ e l ‘ nE2 ‘

W= Ha, (00372 =g | | =]

ORS,(m) —[ b [ & | [ boz [ bo-t |

Fig. 3. The DFORS procedure to compute ORS,(m), where j; = h' mod &, b; = h;-,”
and sky, is the b;-th secret key in the i-th secret key pool.

4.4 Signature Verification

The verification algorithm takes as input the message m, the public
key PK.root, the hash key K, and the signature ¥ = (og, Authy,oq,
Authy, ... 00 1, Auth,_1). It computes Hy(m) = h°, then Z(h°) = by to get
the leaf index of the first hash tree. Then, it applies the one-way function F
to the signature element o( of the signature X to get the leaf node L;, in the
first tree. The authentication path Authy and the leaf L;, are used to compute
the root of the first tree. The leaf index by is required so that the verifier knows
which node is concatenated on the right and on the left. The tree root calcula-
tion procedure is described in Algorithm 1. Generally, the verification algorithm
computes the i-th tree root by applying Algorithm 1 on o;, Auth;, and the leaf
index b; where b; = Z(h'), and h' = H,, ,(h°||h*~1). This process is repeated
until k tree roots are computed which are then concatenated to form an input
to the hash function G. If the output of G is equal to PK.root, the signature is
valid, otherwise verification fails.

Algorithm 1. Tree Root Computation
Input: Leaf node L;, Leaf index ¢, Auth. Path = (Ao, A1,...,Ar_1).
Output: The Tree Root N;.

SCt N() — Ll
for 1 <j<7do
if |i/27'| = 0 mod 2 then
Nj = G, ;(Nj-1l|Aj-1 @ i)
else
Nj = G, ;(Aj-1l|Nj-1 © ai5)
end if
end for
Return (N;)
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Algorithm 2. DFORS Algorithm
procedure KEY GENERATION(t, k)
SK.seed <& {0,1}"
for0<j<k-—1do
for 0<i<t—1do
skij «— PRF(SK.seed, i+ jt)
Lij « F(ski;)

end for
end for
Compute the roots of the x tree as described in section 4.2
PK.root — G(rooto||root1]|...||root.—1)

Output (SK.seed, PK.root)
end procedure

procedure SIGNING(m, SK.seed,k, k, t)
Generate the x binary hash trees as in key generation procedure
h? « Hi(m), h" = hg||R3|l... ||h%—
bo «— Z(ho) = h?(,, jo = h° mod k
sigo — (o0, Autho), Where a¢ = skp,,0
for1 <i<kx-—1do
W Hoy, (BN, B = Byl I
b — Z(h') = k%, ji = h' mod k
sig; < (04, Auth;), where o; = sky, ;
end for
¥~ (O’(),A’lﬂih(],()j7 Authl, ey Or—1, Authnfl)
Output (X,m)
end procedure

procedure VERIFICATION(m, PK.root, k, ¥ = (oo, Autho, o1, Authi,...,0x—1, Auth._1))
RO — Hi(m), h® = h||AS)]. .. |[hS_
bo — Z(h%) = hY,, jo = h® mod Kk
Lbo — F(O'o)
rooty < Algorithm 1 (Ly,,0, bo, Autho)
for1 <i<kx-—1do
h' — Hszl(hOHhiil)v h' = h(lJthlH - Hhi—l
b; — Z(hi) = h;-i, ji = h' mod K
Lbi — F(O’,,)
root; < Algorithm 1 (Ls, s, bi, Auth;)
end for
if G(rooto||rooti]|...||roots—1) = PK.root then
out =1
else
out =0
end if
Output (out)
end procedure

5 Security and Efficiency

In what follows, we analyze the security of DFORS and demonstrate the effect of
the dynamic chaining on the security of FORS. Afterwards, the computational cost
of the DFORS key generation, signing, and verification algorithms are presented.
The bit size of the signature and keys are also given.
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5.1 DFORS Security Analysis

In this section, we present a detailed analysis of DFORS with respect to weak-
message attacks and r-target subset resilience adversaries. More precisely, since
the proposed chaining technique does not allow an adaptive adversary who has
knowledge of k to compute the ORSs of any message of their choice before asking
the signing oracle for its signature, DFORS is essentially r-subset resilient. Hence,
our analysis focuses on its security when an adversary is given the signatures of
7 messages.

Weak-Message Attacks. DFORS inherits FORS mitigation to weak-message
attacks [6] because it specifies an independent key pool for each index in the ORS.
Consequently, even if an ORS element is repeated, the corresponding revealed
secret keys will be different.

r-Target Subset Resilience. According to Definition3, we assume an adver-
sary A when given the ORSs of r messages will return m,; where
Cr(my,ma,...,my11). In what follows, we show that the success probability
of A is bounded from above by (r/t)". Note that since ORS generation is secret
key dependent, the ORS function of DFORS is intrinsically r-subset resilient.
In other words, the value of any random ORS element, b;, depends on the pre-
viously revealed signature element o;,_; = skp, , and the original message m.
Accordingly, without any oracle queries, A has no feasible function to evaluate
ORSs of messages of their choice. On the other hand, if A is given the signa-
tures of r messages or they queried r messages of their choice, they need to
find a message m,41 such that each element in its obtained random subset,
ORSPFORS(m,. 1) = (bo,b1,...,be_1), is covered by the elements at the same
corresponding positions in the ORSs of the other r messages

T
Cr(my,ma,...,mpi1) < bi(mei1) U ),0<i<k—1.
j=1

Due to the chaining process in generating bg, by, . ..,b._1, A generates the ORSs
sequentially. At any position i, if b;(m,41) ¢ Uj_;b;(m;), then A fails. In addi-
tion, they cannot evaluate b;y; = Z(Hskbi(hOHhi)) when sk, is not revealed

by any of signatures of the r messages, Generally, for the i-th position in
ORSEFORS(mT+1)

T

bi(mrs1) ¢ | bi(my) = ske, ¢ | 0i(my),

j=1 j=1

where o;(m;) and b;(m;) denote the i-th signature element and i-th ORS ele-
ment of the j-th message, respectively. Thus, the probability that .4 finds
Cr(my,ma,...,my11) successfully is equal to their probability of finding a
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message m,1 such that Vi € {0,1,...,k — 1}, each of the log¢-bit b;(m,41) €
{bi(m1),b;(m2),...,b;(m,)}. Since A is given r messages, the probability of
finding a cover for one b;(m,41) is (r/t)"*1 because this implies that Vj <
i;0;(mpy1) € {bj(m1),bj(m2),...,bj(m,)}. Thus, the probability of finding a
cover for all the x elements in O RSPFORS is equal to the probability of finding a
cover for the last element, b,,_1(m,41), which is (r/t)". Therefore

Cr—DFORS

Succ™= (A) < (r/t)",

so the corresponding DFORS bit-security against adaptive chosen message
attacks is

log, (t/r)" = Kk(logy t — logy 7).

Compared to the adaptive chosen message attack security of FORS (See
Sect. 3), the bit security of DFORS is higher by a factor of (r + 1). The extra
cost is performing x—1 more calls to the hash function. Unlike FORS, the signing
procedure cannot be parallelized because of the chaining mechanism.

5.2 Theoretical Efficiency

Key Generation. This procedure requires xt PRF function computations to
generate the t secret values for xk pools, kt one-way function F' computations
to compute the leaf nodes of the hash trees, and x(¢ — 1) + 1 hash function G
evaluations to evaluate the x hash trees and get the public key PK.root.
Signing. This procedure requires kt PRF function computations, xt one-way
function F' computations, «t hash function (H and G) to compute the x hash
trees (k(t — 1) hash G calls), and k hash H calls to get ORS,;(m). Note that
the whole tree structure is computed with each signature, otherwise, the scheme
storage requirements will be huge.

Verification. This procedure requires x one-way function F' computations that
compute the trees leaves, £(741) hash function (H and G) evaluations to recon-
struct the k trees roots from the revealed secret values and the authentication
paths (k7 calls to G), and & calls H to get ORS,(m).

Signature Size. The signature contains x secret key elements and 7 tree node
for the associated authentication paths. Thus, the signature size is kn(7 + 1)
bits, where n is the bit size of each secret keys and hash tree node.

Length of Keys. The size of the secret key, SK.root, is equal to that of the public
key, PK.root, and it is n bits.

The computational complexities of the above procedures are given in Table 2.

5.3 Comparison with HORS Variants

DFORS inherits all the advantageous security properties of FORS. Addition-
ally, it is secure against adaptive chosen message attacks. In fact, for the same
parameters the bit-security of DFORS with respect to adaptive chosen message
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adversaries is equal to that of FORS under non-adaptive chosen message attacks.
Table 1 gives a comparison between the bit security level of FORS and DFORS
in an adaptive adversarial setting. We use the recommended parameters (i.e., n,
7, and k) for all six instances of SPHINCS™.

Table 1. DFORS and FORS security levels for an adaptive chosen message attack
using the SPHINCS Tparameters for different numbers of signed messages

SPHINCS? instance |7 |k | FORS DFORS
r=1r=2|r=4|r=8|r=1r=2|r=4|r=
SPHINCS*-128s 1510 | 75 |47 27 15 150 140 130 120
SPHINCS*-128f 930|135 |80 43 22 270 | 240 | 210 180
SPHINCS*-192s 16 |14 112 |70 40 22 224 | 210 196 182
SPHINCS*-192f 833|132 |77 41 20 264 | 231 198 165
SPHINCS1-256s 14122 | 154 95 54 29 308 286 264 242
SPHINCS*-256f 1030|150 |90 49 25 300 |270 [240 | 210
Table 2. Comparison between HORS, PORS, FORS, and DFORS
Algorithm | KGen (# OVVF)1L Signing Verification Signature |SK/PK sizet Adaptive
cost cost size security
HORST |t PRF t PRF k(logt— |1 NO
t OWF t OWF x OWF x4+ 1)+
t — 1 Hash t Hash k(logt — z) + |271T
2211 Hash
PORS*t |t PRF t+ x PRF k(logt— |1 NO
t OWF t OWF x OWF llog k| +1)
t — 1 Hash t Hash k(logt —x —
1) 4+ 2%t Hash
FORS rt PRF rt PRF r(logt+1)|1 NO
xt OWF kt OWF x OWF
k(t — 1)+ 1 Hash |k(t — 1)+ 1 Hash |rlogt+ 1
Hash
DFORS xt PRF kt PRF r(logt+1)|1 YES
kKt OWF rt OWF r OWF
k(t —1) + 1 Hash |kt Hash k(logt + 1)
Hash
t OWF denotes one-way function.
1 Size is given as a factor of n bits.
11 = = [log k] for optimal signature size in case of HORST and for the upper bound on the signature size

in PORS.

i1 Verification cost and signature size are the upper bound values.
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Table 1 shows the significant effect of increasing the number of signed mes-
sages, r, on the bit security of FORS. On the other hand, this effect is very
reasonable with DFORS. For instance, when r» = 1, an adaptive attack on FORS
is equivalent to a collision attack on the underlying x7-bit hash function H which
has a complexity of 257/2 evaluations. However, due to the r-subset resilience
of DFORS where finding a covered ORS requires successive dependency on the
signature elements, an adversary must find a second preimage of the ORS in the
revealed secret keys, hence the complexity is 2%7 evaluations.

Table 2 presents a comparison between DFORSand other HORS variants with
respect to their computational efficiency, signature and key sizes, and security
against adaptive chosen message attacks.

6 Conclusion

We analyzed the security of FORS, the underlying hash-based few-time signing
scheme of SPHINCS™, with respect to adaptive chosen message attacks. We
showed that as the number of signed messages, r, increases, its bit-security with
respect to adaptive chosen message adversaries decreases significantly compared
to its non-adaptive counterpart. As a solution, we proposed DFORS, which builds
on FORS but utilizes a secret key dependent ORS function. Such a function binds
the process of generating the ORS with signing which makes it feasible only
for the signer. Accordingly, we showed that the bit security of DFORS against
adaptive chosen message attacks is more than that of FORS by a factor of r+ 1.
Note that our analysis does not affect the claimed security of SPHINCS™ but
rather provides a better understanding of the security of its underlying signing
scheme and offers a mechanism that can be adopted by most HORS variants to
provide security against adaptive chosen message attacks.

Acknowledgment. The authors would like to thank the reviewers for their valuable
comments that helped improve the quality of the paper.

A HORS Specification

The HORS key generation, signing, and verification procedures are given in
Algorithm 3.
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Algorithm 3. HORS Algorithm

procedure KEY GENERATION(t)
Generate the secret key SK at random, SK = (sko, ski, ..., ski—1)
Compute the public key PK = pko, pk1,...,pki—1 = f(sko), f(sk1),..., f(ski=1)
Output (SK, PK)

end procedure

procedure SIGNING(m, &, SK k)
Compute h = Hi(m), h = hol|h1]]- .. |[hr=1-
ORSH(H’L) = {ho, h1, ey h,.@_1}.
g = (0'0,01, “en ,0’,1_1) = (Skho,skhl, ceey Skhm,l)
Output (o)

end procedure

procedure VERIFICATION(m, &, o, PK k)
Compute h = Hi(m), h = hol|h1]]...||he-1
ORSN(m) = {ho, 1'1,17 ey h,ﬁfl}
for0<i<k—1do

if f(o;) = pkn, then
out =1
else
out =0
break
end if
end for
Output (out)
end procedure

B Adaptive Chosen Message Attack against HORS

In [23], the following adaptive chosen message attack against HORS was defined.
Let A be an adaptive chosen message adversary against HORS such that given
the key k, A can compute the hash of any message m and ORS,(m) offline.
Given a security parameter, n, under the birthday paradox, A can find r + 1
messages in a cover relation C}, with which to query the signing oracle, formally

Prik — K, (m1,ma,...,myq1) — A(k) : Cl.(m1,ma,...,mr41)] < negl(n).

Aumasson and Endignoux [2] subsequently presented an adaptive chosen
message attack against HORS and proved that the security level decreases by a
factor of r + 1 when compared to non adaptive chosen message attacks. Their
attack is as follows. Given an adversary A and a key k, the hash value Hy(m) for
any message of their choice can be computed, and say there are ¢ > r messages.
For all possible combinations of (r+ 1) messages from the ¢ messages, A searches
for C’Q’HORS(ml, Mg, ... My41) such that

CrHORS & ORS(m,11) € | ORS(my).
j=1
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For any given subset, the probability of being an r-subset-cover relation is
(rk/t)*. The number of (r + 1)-message combinations which A can construct
from the g messages are (r_‘f_l) and each combination can form (le) choices.
Accordingly, their probability of success in defeating the r-subset resilience (SR)

is given by

_ + 1\ rk q—1\ rk
S r—SR < q r TU\kK < 7 H.
uccops(A) < (rJrl - ( n )" <4q , ( 7 )
Assuming a success probability close to 1, the security level of HORS against an

adaptive chosen message attack is

K log, !
r+1(1og2t710g2n710g2r)+ r—il .
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