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Abstract. The original idea of profiling implies attacking one device with
a leakage model generated from an “identical copy”, but this concept can-
not be always enforced. The leakage model is commonly generated with
traces from an “open device”, assuming that a model which works for one
device should work for another copy as well. In practice, applying a leakage
model to a different copy of the same device (commonly called portabil-
ity) is a hard problem to deal with, as intrinsic differences in the devices or
the experimental setups used to obtain the traces cause behavioural varia-
tions which lead to an unsuccessful attack. In this paper we propose a novel
similarity assessment technique that allows evaluators to quantify the dif-
ferences among various copies of the same device. Moreover, we support
this technique with actual experiments to show that this metric is directly
related to the portability issue. Finally, we derive a method that improves
the performance of template attacks.

Keywords: SCA · Profiling attacks · Template attacks · Portability ·
SCA evaluation · DTW

1 Introduction

Nowadays profiling attacks are considered the most powerful kind of Side-
Channel Attacks (SCAs). The idea behind profiling is different from the tra-
ditional concept of Differential Power Analysis (DPA) [3,4,10,19], for which the
attack is separated from the device (e.g., every device that implements AES
encryption is susceptible to the attacks using these techniques). In profiling
attacks, the goal of the attacker is to build a leakage model of a particular device
and to recover sensitive information comparing that model with the actual power
consumption of the device. The first requirement to carry out this kind of SCA
is to have, at least, two devices: the attacked device or the device under test
(DUT), and another identical hardware device over which we have full control.
The reason behind is that the attack requires two different stages: a profiling
stage (with a “copy” of the device), in which we model the power consumption
(side-channel), and an attack phase (with the “real” device), in which we use the
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generated model to obtain the secret parameter with only one or a few traces.
Conversely, even though the original idea of a profiling attack is to generate the
power consumption model for an “identical” copy of the attacked device, this is
not always guaranteed in practice. This portability issue is often underestimated
in practice, although some previous works suggest that in real-world setups small
differences in the production of different devices, aging or even environmental
changes during the measurements cause different behaviours of those devices,
even leading to an unsuccessful attack [1,3,6,10,11,14,20,29].

In this work, our goal is to show how these dissimilarities can be addressed
from the evaluation point of view, measuring how similar two different devices
are and giving insights on how successful a portable profiling attack could be.
Moreover, although performing this kind of attack is challenging, in this work
we show the feasibility of a portable template attack in a realistic setup. We also
provide some suggestions to improve the success rate of these attacks with our
new point of interest (POI) selection technique.

Our main contribution is a novel similarity assessment technique with which,
from an evaluation point of view, general similarities/dissimilarities between
“identical” copies of the same device can be quantified. In addition, our work
has revealed some other contributions that are all detailed as follows:

– This paper proposes the usage of the well-known Dynamic Time Warping
(DTW from now on) statistical tool as a similarity assessment tool. Our
approach shows that the warped distance between two specific graphics can
quantify the similarities/dissimilarities between different devices or tracesets.

– We showcase the proposed technique with several experiments (portable tem-
plate attacks with four different copies of the same device), demonstrating
that the performance of the attack is directly related to this metric and hence
the more similar two copies of the same device are (or two different sets of
traces from the same device) the better results will be obtained.

– Finally, we propose an alternative POI selection technique which helps
improving the performance of portable template attacks. This technique is
also supported by the aforementioned experiments, showing how an unsuc-
cessful portable attack can be turned into a successful attack by choosing the
“best” points of interest while building the templates.

The paper is organized as follows, Sect. 2 summarizes the state of the art and
the related work on this topic. Section 3 highlights the common issues with porta-
bility as a starting point for our work. Section 4 explains the details of DTW and
our similarity assessment technique. Section 5 contains the experimental results
supporting our similarity assessment technique and our new POI selection tech-
nique (which is also explained in a practical manner in this section). Finally,
Sect. 6 draws the conclusions.

2 State of the Art

As mentioned above, profiling attacks are dominant in side-channel analysis
nowadays. In the profiling phase, the model of the device can be generated by
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using standard classification techniques like in Template attacks [7,28], Sup-
port Vector Machine (SVM) [15,16,21], Random Forest (RF) [22], regression or
the Stochastic models approach [32] or recently introduced Deep learning tech-
niques [5,24,27]. In the attacking phase, the model is applied and the secret key
is guessed. Template attacks and machine learning are the two most popular
approaches [23].

In this work, we focus on classical Template attacks because it is a well-
known and understood technique in the field of SCA. Moreover, it should be
noticed that although template attacks usually require more effort of an expert
with signal processing capabilities, they allow the attacker/evaluator to focus on
specific parts of the leakage keeping more control in the process (which is not
always possible with deep learning techniques).

2.1 Template Attacks

Template attacks are the original form of profiling attacks as proposed for SCA
by Chari et al. [7]. These attacks are based on building a multivariate model
of the probability distribution of the leakage. The Probability Density Function
(PDF) is usually computed assuming that the leakages follow a Gaussian distri-
bution, as in the case of unprotected devices (devices without SCA countermea-
sures). This is a parametric estimation and we focus on this kind of templates
technique because of its fast convergence and the fact that it is widely used
and consolidated by many previous works. Nevertheless, it should be mentioned
that there are other non-parametric estimations that are able to capture any
distribution (which might be helpful with protected devices) like histogram and
kernel-based estimators and also some other advanced tools [33].

The main goal in a “traditional” template attack is to deduce the secret
(key) used to perform cryptographic operations. Thus, the attacker has to first
take measurements of some device’s physical property (commonly the power
consumption or the electromagnetic radiation emitted by the device) during the
manipulation of some intermediate value iv = f(p, k) related to the plaintext p
and the secret key k. In the profiling phase the attacker uses a set of np profiling
traces (Tp,k) to build a Gaussian multivariate model (pdf) for each possible iv.
In order to do that, the mean vector μp,k and the covariance matrix

∑
p,k are

estimated for each iv, creating the so-called templates. Then, in the attack phase,
from a set of na real power traces and its input data (plaintext), the attacker tries
to guess the correct iv value (or its Hamming Weight) by using the maximum
likelihood principle. Since iv = f(p, k), knowing iv and p the secret key k can
be recovered.

Template attacks are optimal from an information-theoretic point of view
but in practice, they have several limitations: preprocessing dependency (the
effort of an expert in the field is mandatory most of the times), computational
complexity problems and the need for dimensionality reduction. The latter is
usually solved by selecting only a subset of the typically huge amount of samples
in each power trace (Points of Interest [POI] selection [28]), applying another
data-dimensionality reduction method as Principal Component Analysis (PCA)
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[2,34] or Fisher’s Linear Discriminant Analysis (LDA) [12,18]. Due to the high
computational requirements of the other techniques, in this work, we reduce the
dimensionality of the problem by selecting a few samples (Points of Interest).
As we have mentioned, it also allows us to focus only on specific parts of the
leakage and improve the results of the “classical” template attack (Sect. 5).

2.2 Portability

Although having two identical devices to perform a profiling attack is mandatory,
in practice this is not always possible. The traces for the profiling phase and the
attack phase are usually captured from the same device in most of the works on
this topic [7,9,13]. Attacking a second device with a model generated with a first
device is often considered trivial, while in practice this is not the case. Even if
two devices are clones (“identical” copies of the same device) there always exist
differences in the construction of the devices that can cause different behaviours
in timing, voltage, etc. There could be different reasons for this, such as faults
in the manufacturing process, aging, slight differences in the resistance and/or
capacitance of the circuit, etc. Moreover, when two measurements are taken in
different time moments they will often cause deviations in the acquired power
traces, which could lead to an unsuccessful attack [1,11,29]. More precisely, we
are referring to various small variations in the experimental setup such as I/O
interference (serial port, USB, Radio, etc.), influence of the past state, mem-
ory management, garbage collection, differences in magnetic field penetration
(while taking electromagnetic measurements), changes in environmental param-
eters (temperature, humidity, electromagnetic noise, etc.), resonance due to LC
and RC oscillators, among other phenomenon.

To the best of our knowledge, there are not many papers discussing the
portability of profiling attacks. The work of Elaabid et al. is introducing the
portability issue and showing how waveform realignment and acquisition cam-
paigns normalization can improve the performance of portable template attacks
[11]. The work of Choudary et al. focuses on differences between devices when
performing portable template attacks while attacking four different copies of the
same device [8,10]. A more recent work successfully implements a portable tem-
plate attack over a wireless keyboard performing AES encryption [20]. In the
CHES 2018 Side Channel Contest CTF, portability was also considered, and
the winning attack was able to obtain a 100% of success in all devices [14]. In
[6], authors considered the usage of several devices during the various stages
of a profiling attack in order to attack an RSA implementation. Bhasin et al.
have recently made a comparison between different machine learning techniques
using portable profiling attacks, but they only focused on machine learning tech-
niques [3].

Our approach is orthogonal to all those works as we show a general way to
find and quantify differences between clone devices, by obtaining a measurement
of its dissimilarity. This metric is directly linked to portability: the more similar
two devices are, the better performance the portable template attack will achieve
and vice versa. Moreover, we show how this information can be used in the POI
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selection and we propose an improved POI selection technique, which assists in
finding the optimal leakage points for different devices.

3 The Issue of Portability

As mentioned in Sect. 2.2, to perform a portable profiling attack is a challenging
task, mainly because the behaviour of two theoretically identical devices could
be (slightly) different in practice. After several experiments we noticed that the
differences between two “identical” devices can be seen clearly in the graphics
used for POI selection. Those graphics (POI graphs from now on) are generated
by applying certain functions to the power traces in order to find the leaking
points and select proper POIs for Template Attacks. Below we describe some of
the most commonly used techniques:

Pearson Correlation Coefficient: This is a widely used metric in statistics,
which assesses the linear dependence between two variables x and y [17]. It takes
on a value between −1 and 1, where 0 means no (linear) correlation and 1 and −1
imply the total positive and negative linear correlation respectively. We compute
the Pearson correlation coefficient between the data manipulated by the target
device and the power consumption traces of the device while processing the data.
For a sample of the entire population, the coefficient is defined by Eq. (1):

Correlation(x, y) =
∑N

i=1((xi − x̄)(yi − ȳ))
√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
(1)

SOSD: SOSD or sum of squared differences was proposed for POIs in [13] and is
defined by Eq. (2), where x̄yi

is the mean of the power traces and the manipulated
data is equal to yi. Its value is always positive and highlights big differences in
means.

SOSD(x, y) =
∑

i,j>i

(x̄yi
− x̄yj

)2 (2)

SOST: This is the normalized version of SOSD [13], which is equivalent to the
pairwise Student’s t-test. It is defined by Eq. (3), where nyi

and nyj
are the

number of traces where y is equal to yi and yj respectively.

SOST (x, y) =
∑

i,j>i

((x̄yi
− x̄yj

)/

√
σ2
yi

nyi

+
σ2
yj

nyj

)2 (3)

SNR: Signal-to-noise ratios are commonly used in electrical engineering and
signal processing. In the context of a side-channel attack, the SNR of a point
of a power trace can be computed by Eq. (4), where Pexp is the exploitable
power consumption and Psw.noise and Pel.noise correspond to the noise compo-
nent (switching noise and electronic noise). In a nutshell, it quantifies how much
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information is leaking from a point of the power trace. For a deeper explanation
of the SNR calculation we refer to [25].

SNR =
V ar(Pexp)

V ar(Psw.noise + Pel.noise)
(4)

Ifwe compare twoPOIgraphs generatedwith traces fromtwo“identical” copies
of the same device, significant differences between them could be observed. The
spikes do not occur at the same time and with the same shape (or strength), which
can influence the portability of an attack. In Figs. 1, 2 and 3 these differences can
be noticed. Figure 1 shows the power traces of two copies of the same device dur-
ing some internal computations in which an 8-bit sensitive value is stored in mem-
ory (Voltage vs Time (samples)). In Fig. 2 the leaking part of the signal (the exact
point in which the 8-bit data is stored) is shown.Also, Fig. 3 shows the output of the
aforementionedPOI selection functions of both devices. It is important to note that
there are significant differences in the magnitude and shape of both graphs. Those
differences are very problematic when porting a template attack: the POIs selected
to generate the templates in the first devicewill notmatchwith the optimal POIs in
the second device. Thus, the portable template attack will probably fail.When per-
forming a Template attack, the highest points of the spikes that appear in the POI
selection graph are usually selected as POIs, in order to reduce the dimensionality
of the multivariate leakage model and make the attack feasible. However, as these
points are selected taking into account only the profiling device, a big spike for one
device could be a “valley” in others. Moreover, if the spikes match, the results could
still be bad if the value in the POI graph is too low. We should ideally select spikes
with a value that is high enough to represent leakage. In conclusion, two devices

Fig. 1. Differences between devices:
Power trace

Fig. 2. Differences between devices: Leak-
ing part of the power trace

Fig. 3. Differences between POI selection functions
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can be “identical” copies, but in practice there are often remarkable differences
between their leaking points. When we build templates from one device and then
try to attack another one, it is crucial that the selected POI represents a significant
leakage in both devices. Otherwise, the behaviour modeled with the Gaussian mul-
tivariate distribution will not apply to the second device and the attack will fail.

4 Similarity Assessment

In order to quantify how different two “identical” copies of a device are, a sim-
ilarity assessment technique is proposed next, which is based on the Dynamic
Time Warping (DTW) statistical tool.

4.1 Dynamic Time Warping

DTW is a well-known algorithm to measure similarity between two temporal
sequences and find the most similar points between them. In other words, this
technique is able to quantify the similarity between two signals (even if they are
not completely aligned) and obtain the optimal match (alignment). In Figs. 4 and
5 the difference between the “traditional” euclidean distance and the warped dis-
tance is demonstrated. Originally, DTW was used in speech recognition [30] but
later on, it has been proved its applicability in several fields like gesture recog-
nition, robotics, manufacturing, etc. This technique has been applied also in the
SCA field with the elastic alignment [35] as a special kind of alignment using
DTW (FastDTW [31], more precisely). This kind of alignment was proposed
in order to address cryptographic implementations with random delay coun-
termeasures. Afterwards, Muijrers et al. proposed another alignment algorithm
which can deal with this countermeasure [26]. This method can align traces with
less computational effort than elastic alignment (DTW algorithm is relatively
computationally costly, depending on the length of the path). However, we now
propose the usage of DTW algorithm for an entirely different task: assessing
differences between tracesets or devices. Our approach is to use DTW to quan-
tify how similar two devices are by measuring the similarity of two temporal
sequences representing the leakage of each device.

Warp Path and Warped Distance are the two main outcomes of the
DTW calculation. The former indicates the best alignment between two shapes
while the latter is a measure of the similarity between signals. In our case,
the DTW algorithm is applied to two discrete time signals (traces), X =
x1, x2, . . . , xi, . . . , x|X| and Y = y1, y2, . . . , yj , . . . , y|Y |. In order to compute the
warp path and warped distance, the DTW algorithm calculates a cost matrix :
an |X|-by-|Y | matrix containing the distances between all samples of X and Y .
Figure 6 shows an example of the cost matrix (and its warp path) of the two
example curves shown in Figs. 4 and 5. Each element of the matrix (i, j ) repre-
sents the distance D(i, j) between samples xi and yi (the darker the cell is, the
largest distance). The warping path (in dark blue), connects the cells with smaller



344 U. Rioja et al.

Fig. 4. Euclidian distance

Fig. 5. Warped distance

Fig. 6. Cost matrix and warp path (Color
figure online)

distance starting from (1, 1) to (|X|, |Y |), and indicates the optimal alignment
between those two curves (shown graphically in Fig. 5). The cumulative distances
of the warping path is what we call warped distance (our similarity indicator
between two time series). Formally speaking, the warping path W between two
traces X and Y can be defined as:

W (X,Y ) = (w0, w1, . . . , wK) where max(|X|, |Y |) ≤ K < |X| + |Y |

Here, K is the length of the warp path and wk = (i, j) the kth element of
the path. Also, this path has to follow several constraints. For wk = (ik, jk)
and wk−1 = (ik−1, jk−1) being two consecutive elements of the warp path, the
constraints are:

– Monotonicity: ik−1 ≤ ik and jk−1 ≤ jk
– Continuity: ik − ik−1 ≤ 1 and jk − jk−1 ≤ 1
– Bound: w1 = (1, 1) and wK = (|X|, |Y |)

The boundary condition ensures that every index of both time series is
used in the warp path computation while monotonicity and continuity con-
straints assure that we do not skip any sample and we do not go backwards
in time. Several paths could satisfy these conditions but the minimum-distance
path is considered as the optimal warp path, where the distance is:

Dist(W ) =
k=K∑

k=1

wk
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This minimum distance is what we call warped distance, a similarity measure
between two time series. To find the minimum distance warp path, the distance
D of each cell has to be computed. Dynamic programming can solve this problem
in a very effective manner, so the value of a cell in the cost matrix is:

D(i, j) = d(i, j) + min[D(i − 1, j),D(i, j − 1),D(i − 1, j − 1)]

Where d is usually computed as the typical Euclidean distance d(i, j) =
d(xi, yj) = (xi − yj)2 between samples xi and yi and D is known as the cumula-
tive distance (the euclidean distance d(i, j) plus the minimum of the cumulative
distances of the contiguous cells).

4.2 Similarity Assessment Technique

Once the basis of the DTW technique have been clarified, our similarity assess-
ment technique can be explained. In order to assess how similar two devices are,
we propose the following steps:

1. Step 1: Obtain POI graphics of both devices. A set of nPOI traces will
be captured from both devices. These traces must be taken when the device
is manipulating a certain sensitive variable, which must have a random value
each time in order to properly characterize the leakage. Once both sets of
traces are taken (nPOI(1) and nPOI(2)), two POI graphs are obtained by
applying one of the POI selection functions mentioned in Sect. 3.

Fig. 7. SOST graph of devices 1 & 2
(Without Standardization)

Fig. 8. SOST graph of devices 1 & 2
(With Standardization)

Fig. 9. Warped distance between Device 1 and Device 2 Fig. 10. Warp path
between Device 1 and 2
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2. Step 2: Standardize both graphics. Zero-mean and normalization are
standard preprocessing techniques that are mandatory to apply after almost
every SCA acquisition. Our case is not an exception: an standardization of
both graphs before applying DTW can be helpful since DTW usually inter-
prets those differences as huge dissimilarities. Figures 7 and 8 show how the
distance value changes enormously depending on whether we apply this tech-
nique or not, even though both graphs are quite similar in shape. Our exper-
imental results show how a portable template attack can be successful if the
shapes of its POI graphs are similar enough, even if there are magnitude
differences (as shown in Sect. 5). In other words, it is more important how
the device leaks its information than the quantity of the leakage (as long as
the leakage is big enough). Thus, we propose to standardize each POI graph
using Eq. (5), where z is the re-scaled sample, xi is the sample to scale and μ
and σ are the mean and the standard deviation of the trace (Fig. 8).

z =
xi − μ

σ
(5)

3. Step 3: Compute the DTW algorithm in order to obtain the mini-
mum distance path (as explained above). In other words, by computing the
cumulative of the distances of the minimum distance warping path we obtain
the distance between both graphs : a quantitative measurement of the similar-
ity/dissimilarity of both time sequences.

Additionally, the graphical representation of the warped distance and warp-
ing path (Fig. 9) can be helpful in the POI selection since DTW highlights the
parts of the signal which are most similar between devices. To see graphically
misalignment problems and behavioural differences between devices is a good
starting point for an improved POI selection.

5 Experimental Results

In order to support our similarity assessment technique, we have performed
realistic experiments involving template attacks with four “identical” copies of
the same device (ATmega328P microcontroller) called Device 1 (D1), Device 2
(D2), Device 3 (D3) and Device 4 (D4). Additionally, we propose an improved
POI selection technique which helps to enhance the performance of the portable
template attack. We consider two main template attack use cases: using one
device in the profiling phase and using two devices in the profiling phase.

5.1 Setup

The target is a development board mounting an ATmega328P 8-bit microcon-
troller working at 16 MHz clock frequency. We are storing random data (8-bit
values) in flash memory using a memcpy() operation (in a random address each
time). During that operation, we measure the power consumption of the device
with a Tektronix CT1 current probe attached to a 20 GS/s digital oscilloscope
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Table 1. Portable template attack experiments using Device 1 (D1) for profiling.

POI Rank (D1 vs D1) Rank (D1 vs D2) Rank (D1 vs D3) Rank (D1 vs D4)

[97, 158, 220, 294] 1 46 17 18

(LeCroy Waverunner 9104) triggered by the microcontroller, which rises a GPIO
signal when the internal computation starts. Each power trace is formed by 400
samples taken at 1 GHz with 8-bit resolution. As an attacker, our goal is to
obtain the exact 8-bit value loaded in flash memory using template attacks. A
set of np profiling traces are taken from the profiling device(s) (storing random
8-bit values) and labeled with the stored value. The traces are preprocessed
by aligning them and applying the aforementioned standardization technique.
Then, a SOST function is ran in order to find possible POIs. 256 templates are
built by computing the mean and co-variance matrix for each labeled group (in
the selected POIs), using the pooled matrix optimization method. In the attack-
ing phase a set of na power traces of the attacking device storing a fixed 8-bit
value are taken. Then the multivariate model is applied and the 8-bit value is
guessed using the maximum likelihood principle. Each label will obtain a confi-
dence value and the 256 labels will be ranked. We consider the attack successful
when the correct candidate obtains a rank of 25 or less (the correct candidate is
in the top 10% of candidates). We assume that then, the correct value could be
guessed using (optimized) brute force.

5.2 Use Case 1: Template Attack Using One Device in Profiling
Phase

“Raw” Template Attack
In the profiling phase 20 000 power traces of D1 are taken and labeled with the
stored value. The traces are preprocessed and the SOST function is run in order
to find possible POI (Fig. 8, Device 1). Four significant spikes can be seen, corre-
sponding to the different moments in which the copied variable leaks (production,
travel across a bus, load into register, etc.). Thus, fourPOI are selected, one for each
significant spike [97, 158, 220, 294] and the model using 256 templates is built. In
the attacking phase 1 000 power traces of the same device (D1) storing a fixed value
are taken. Then the multivariate model is applied and the 8-bit value is guessed.
In Table 1 we can see that the rank of the correct candidate in this attack (D1 vs
D1) is 1 after 1 000 traces (successful attack). In order to perform a more realistic
template attack, 1 000 power traces from a second device (D2) storing the same
fixed 8-bit value are taken. Then the model computed before with traces from D1
is applied and the fixed value is guessed. As it can be seen in Table 1, the attack
is unsuccessful (the rank of the correct candidate in this attack (D1 vs D2) is 46)
because the multivariate model of D1 does not apply to D2. The process is repeated
with devices D3 and D4 (results appear in Table 1). In this case the attack is suc-
cessful (the rank of the correct candidate is less than 25), but the results are not
optimal. To enhance the model we apply our similarity assessment technique and
the improved POI selection technique.
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Devices Distance
D1 vs D2 1,1028
D1 vs D3 2,4159
D1 vs D4 2,7628
D2 vs D3 2,4792
D2 vs D4 2,7153
D3 vs D4 0,9128

Fig. 11. SOST graphics of each one of the four analyzed devices and distances between
them

Improving the Results
First and foremost, we apply our similarity assessment method. Thus, 20 000
power traces of the second device storing random 8-bit values are taken and
labeled with the stored value. The traces are preprocessed and the SOST function
is run (Figs. 7 and 11, Device 2). The same process is repeated with D3 and D4.
Then, once we have the four POI selection graphs (Fig. 11, one for each device),
we run the DTW algorithm to compute the warped distance between D1 and the
rest (Fig. 11, D1 vs D2, D1 vs D3, D1 vs D4). Note that we also calculate other
distances (D2 vs D3, D2 vs D4, D3 vs D4) to measure the similarities among
the four devices. These results lead to the following conclusions: Devices D3 and
D4 are the most similar ones since their distance is the smallest one. Thus, the
distances between D1 & D3 and D1 & D4 are similar, and this fact validates the
results of the attacks D1 vs D3 and D1 vs D4, which are also similar (Fig. 1).
D2 is the most similar device to D1, but the attack is not successful. The reason
is that the selected POIs are not optimal for this device, as shown below.

Improved POI Selection: To improve the effectiveness of the attack we suggest
the following steps:

1. Analyze the performance of each POI individually to find which points
correspond to good leaking points (when we port the model to another device,
or even in the same device) and which ones are perturbing the model. In order
to do that, we build templates using only one of the aforementioned POI each
time [97, 158, 220, 294]. Then, we apply the templates to each device (D1, D2,
D3 and D4). The results are presented in Table 2, where it can be seen that
the POIs with better performance for D2 (the one with the worst results) are
the second and the third POIs.

2. Try different combinations of the POI with better performance to
guess which combination has best results. Theoretically, the optimal solu-
tion would be a combination of all of them, but in practice it is not always
the case. To avoid trying all possible combinations, points with better per-
formance in all cases (identified in previous step) must be selected. Also,
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Table 2. Improved POI selection (when Device 1 (D1) is used for profiling.)

Step POI Rank (D1 vs
D1)

Rank (D1 vs
D2)

Rank (D1 vs
D3)

Rank (D1 vs
D4)

GS

1 1st POI [97] 9 121 121 121 38.32

2nd POI [158] 1 70 170 161 35.19

3rd POI [220] 3 98 53 53 24.87

4th POI [294] 50 136 121 121 41.18

2 POI 1+3+4 1 140 13 14 27.01

POI 2+3 1 45 72 65 17.44

POI 1+2+3 1 36 49 42 12.68

POI 1+2 1 56 116 110 25.50

POI 3+4 3 148 37 38 31.73

3 [92, 153, 218] 1 2 16 15 2.48

the warped distance graphic (Fig. 9) can be used to identify the most sim-
ilar parts of these signals and choose the POI combinations accordingly. In
this case, we have tried the following combinations: 1+3+4, 2+3, 1+2+3,
1+2 and 3+4. Results can be seen in Table 2 (Step 2). To help identify-
ing which combination works best in all devices we recommend to compute
what we call Goodness Score (Table 2, column GS). This metric is com-
puted by adding the ranks of each row weighted by a coefficient (GS =
RankD1 ∗ CD1 + RankD2 ∗ CD2 + RankD3 ∗ CD3 + RankD4 ∗ CD4). The value
of the coefficients is obtained dividing the rank of the first attack in the
Table 1, by the number of possible combinations (256), so we obtain coeffi-
cients from 0 to 1 with the emphasis put on the devices with worse result. The
lower GS value, the better performance (generally speaking). Note that the
combination with the best performance (in all devices) includes those three
points of interest (1+2+3).

3. Adjust the selected POI: once we have found the best combination, we
can try to tune each POI moving the selected point in a small number of
samples (and adding another one near if necessary) and check if the results
improve. Based on experience, points that are not exactly at the peak some-
times provide better results because the behaviour of the devices is more
similar in those points. Summing up, we identified the most suitable zones to
select POIs in previous step, and we are now tuning the exact value of these
POIs. In our case, after a few trials we obtained very good results with [92,
153, 218] (Table 2, Step 3).

After applying the proposed techniques, we can conclude the following:

– Not all POIs have the same performance with all devices: For
instance, in Table 2 we can see how the templates built with the 2nd POI
have better performance attacking D2 than devices D3 or D4. However, with
the 3rd and 4th POIs we obtain a better performance attacking devices D3
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Table 3. Portable template attacks experiments using Device 3 (D3) for profiling.

Step POI Rank
(D3 vs
D3)

Rank
(D3 vs
D4)

Rank (D3 vs
D1)

Rank (D3 vs
D2)

GS

0 [97, 158, 220, 294] 1 7 114 130

1 1st POI [97] 15 131 153 153 149.47

2nd POI [158] 5 30 75 75 72.32

3rd POI [220] 16 22 206 206 197.01

4th POI [294] 2 117 135 135 131.88

2 POI 1+3+4 1 43 194 191 184.56

POI 2+3 1 8 105 105 100.30

POI 1+2+3 1 9 111 117 109.09

POI 1+2 2 22 70 66 65.30

POI 3+4 3 42 196 196 187.97

3 [90, 153, 156] 8 1 16 8 11.25

and D4. The same happens with combinations of those POIs: POI 1+2 has
better performance for D2 than others, while profiling with POI 1+3+4 has
good results for devices D3 and D4 but not for D2, etc.

– DTW’s wrapping distance can assess the similarity between
devices. After selecting proper POI, we can see how the results of the Tem-
plate attacks and the similarity assessment technique are directly linked. In
Fig. 11 we notice how devices D3 and D4 have the smallest distance between
them, which means that they are very similar (Table 2 shows how the results
of the attacks are almost the same for both). Another example is that if we
compare the distance between D1 and the rest, the device with shortest dis-
tance is D2, and the performance of the portable attack is generally better
with that device. Again, distances from devices D3 and D4 are similar, as
well as the results of the portable attacks.

Extending the Problem to Other Device
With the aim of confirming the results shown above we repeat the same process,
but using D3 for generating the templates (Results shown in Table 3). The con-
clusions obtained when profiling with D1 are now validated. Devices D3 and D4
are very similar and hence the attack using the 4 POIs located in the 4th spike
of Device 3’s SOST is effective for D4 but unsuccessful for D1 and D2. After
analysing the performance of each POI and its combinations we obtain the same
conclusion: the POIs that work for D4 (the most similar device) do not work
properly for the rest of devices (D1 and D2). Only after adjusting the POI with
the best performance in devices D1 and D2 (POI 1+2) and adding another point
near the second POI, we can obtain good results in those devices, but at the
cost of sacrificing some performance for devices D3 and D4. In conclusion, it is
important to get a balance and find POIs that represent leakage in all devices.
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In this case, we had to select POIs that are not optimal for attacking D4 but
allowed us to successfully attack devices D1 and D2. Thus, the templates gen-
erated with the improved POI selection are suitable for attacking each one of
those four devices.

Extending the Problem to Different Measurements of the Same Device
With this experiment, we want to show that measurements taken at different
times may have substantial differences caused by slight changes in the device or
its environment. With D3, the previous process is repeated two times, obtain-
ing two sets of 20 000 random traces and two sets of 1 000 fixed traces. After
comparing both SOST graphs (Fig. 12) it can be noticed that, although both
graphs are very similar there are slight differences between both traces. In order
to check whether those differences affect the performance, we carry out two dif-
ferent attacks. In the first one, we build templates and implement the attack
with traces from the first measurement set (D3) while in the second attack we
use traces from the second measurement set (D3*) with the model from the first
measurement. The attack is successful in both cases, but the correct candidate
ranks as 1 in the first attack and as 4 in the second one, showing the worse
performance in the later.

Fig. 12. SOST graph of the 1st and 2nd measurements (Device 3).

5.3 Use Case 2: Template Attack Using Two Devices in Profiling
Phase

In order to improve the performance of the portable template attack, we try
building templates with two different devices and attacking a third one. Thus,
a model is built with 20 000 profiling traces from D1 and 20 000 profiling traces
from D2. The traces are preprocessed as in previous experiments and the SOST
function is calculated (Fig. 13, Device 1+2). This figure, when compared with
the SOST of each device separately (Fig. 11), suggests that the new SOST is a
combination of the other two. We select 7 POIs in each one of the significant
spikes ([95, 142, 153, 173, 207, 218, 237]) and generate the 256 templates. In
the attacking phase 1 000 power traces of devices D1 and D2 storing a fixed
8-bit value are used (500 from each one). Then the model is applied and the
fixed value is guessed. The results of this non-portable attack using two devices
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for profiling are excellent and they can be seen in Table 4 (Step 0, [D1+D2] vs
[D1+D2]). For the portable attack, the model is applied to 1 000 power traces
from D3 storing the same fixed value. As it can be seen in Table 4 (Step 0),
the results are quite bad because the model does not suit this device. The same
happens with D4. As in the first use case, the similarity assessment method
is applied. Thus, 20 000 power traces from the third and fourth device storing
random 8-bit values are taken and labeled with the stored value. The traces
are preprocessed and the SOST function is calculated (Fig. 13, D3 and D4). We
can see that both shapes are completely different and hence the attack is not
successful because we are not selecting representative POIs for all the devices.
To improve the POI selection, we apply our technique, as shown in Sec. 5.2.
First, we analyze the performance of each POI individually (Table 4, Step 0).
Note that the results are almost the same in D3 and D4 because these devices
are very similar. Then, different combinations of the 7 POIs are tested (Table 4,
Step 2). The combination which throws best results is 2+3+6. After that, we
try to adjust the POI of interest, achieving the attack using the points [143, 157,
217] (Table 4, Step 3).

Fig. 13. SOST graph of devices 1+2, 3 and 4

Extending the Problem to Other Devices
In order to consolidate the results shown above we repeat the same process,
using devices D1 and D3 for templates generation. First of all, the SOST graph
of the profiling traceset (20 000 random traces form D1 and 20 000 random traces
from D3) is computed (Fig. 14). In this case, the model is built with traces
from two devices which have significant differences, as we have seen in previous
experiments. Then, a multivariate model is built using 10 POI located in each
one of the significant spikes of the SOST ([90, 104, 115, 155, 166, 178, 216, 234,
267, 296]). The results appear in Table 5 (Step 0). Note that the results are quite
good without applying our improved POI selection because we have constructed
a model with devices which are similar to the attacked devices (Devices D1 &
D2 and D3 & D4 are very similar). Nevertheless, the results with D2 are not as
good as expected, so we perform our improved POI selection. After analyzing
the performance of each POI individually, we can notice that, in general, all
points work better for one device than for the other. Thus, we try different
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Table 4. Portable template attacks experiments using Device 1 (D1) and Device 2
(D2) for profiling.

Step POI Rank
([D1+D2] vs
[D1+D2])

Rank
([D1+D2]
vs D3)

Rank
([D1+D2]
vs D4)

GS

0 [95, 142, 153, 173, 207, 218, 23] 1 42 41

1 1◦ POI 1 114 114 36.96

2◦ POI 4 61 61 19.79

3◦ POI 6 56 43 16.10

4◦ POI 8 74 74 24.02

5◦ POI 92 201 201 65.53

6◦ POI 2 58 58 18.81

7◦ POI 9 56 56 18.19

2 POI36 2 16 18 5.52

POI23467 1 20 19 6.33

POI3467 1 26 24 8.11

POI367 1 22 21 6.98

POI67 2 54 55 17.68

POI236 1 15 14 4.71

POI346 1 24 24 7.79

3 [143, 157, 217] 1 4 5 1.46

POI combinations to find the optimal one. In this case, we try to select points
that provide good results in both devices, avoiding points that work especially
bad in a certain device. The combination which provides the best results is POI
1+3+4+5+6+7+9. Finally, after adjusting the selected POI, we obtain excellent
results with [91, 115, 153, 168, 181, 216, 266] (Table 5, Step 3).

Fig. 14. SOST graph of devices 1+3, 2 and 4
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Table 5. Portable template attacks experiments using Device 1 (D1) and Device 3
(D3) for profiling.

Step POI Rank

([D1+D3] vs

[D1+D3])

Rank

([D1+D3] vs

D2)

Rank

([D1+D3] vs

D4)

GS

0 [90, 104, 115, 155,

166, 178, 216, 234,

267, 296]

1 25 1

1 1◦ POI [90] 34 18 97 2.27

2◦ POI [104] 15 119 61 11.92

3◦ POI [115] 16 122 27 12.08

4◦ POI [155] 13 49 5 4.86

5◦ POI [166] 6 72 52 7.26

6◦ POI [178] 3 88 37 8.75

7◦ POI [216] 11 51 41 5.18

8◦ POI [234] 1 199 22 19.52

9◦ POI [267] 24 86 44 8.66

10◦ POI [296] 4 126 77 12.62

2 POI 5+7+9 2 34 12 3.38

POI 1+5+7+9 1 29 12 2.88

POI 1+4+5+6+9 1 34 20 3.40

POI 1+3+4+5+6+7 1 25 1 2.45

POI 1+3+4+5+6+9 2 35 4 3.44

POI

1+3+4+5+6+7+9

1 19 1 1.86

POI 3+4+5+6+7+9 1 21 1 2.06

POI 3+5+6+7+9 1 30 9 2.97

3 [91, 115, 153, 168,

181, 216, 266]

1 2 1 0.20

6 Conclusions

As mentioned above, the portability issue is usually underrated. Lots of related
works obtain the profiling and attacking data sets from the same device instead
of performing a profiling attack in the way it was conceived: generating a power
model on an “identical” copy of the device to attack. In this work we have
shown how performing this kind of attacks in a realistic setup is a complex task,
since slight differences in the construction of the devices or in the acquisition of
the traces cause different behaviours that usually ruin the attack. While some
devices maximize leakage in a particular point of the power traces, the leakage
of another “identical” copy of the device can be (slightly) shifted. Therefore,
it is crucial to take into account these variations and to generate the models
using the points where the leakage exist in all devices. In this paper we present a
way to understand better how variations between devices occur, and we describe
how to build models that allows finding and exploiting the common leakage. The
experimental results show how our similarity assessment measurement (warped
distance) is directly related to portability, since the portable template attacks
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have better performance in the most similar devices (devices with a smaller
distance between them). The experimental results also confirm that our improved
POI selection technique helps in finding the POIs which represent leakage in
several devices and in avoiding the ones that perturb the model, making it
not applicable to a particular device. Moreover, we have shown how building
multivariate leakage models with several devices also enhances the performance
of the attack, even more if the model is generated with devices with behavioural
differences.

In conclusion, the proposed similarity assessment technique allows evaluation
laboratories to identify behavioural differences between devices and quantify
them, and improves the POI selection in template attacks, as shown in the
different use cases presented.
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