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Abstract. In this paper, we introduce a parameter u that is related
to N via an arbitrary relation. By knowing the parameter along with
RSA public key pairs, (N, e), we conduct two new attacks on the RSA
cryptosystem. The first attack works on the equation eX − uY = Z −
φb where φb is the best known lower bound of φ(N). It combines the
continued fraction method and Coppersmith’s method to factor N in
polynomial time. The second attack shows that given (Ni, ei) for 1 ≤
i ≤ k and a fixed X, we can simultaneously factor the k RSA moduli.
It manipulates the result from diophantine approximation to enable the
conditions of Coppersmith’s method. These attacks show that there are
more possible weak RSA key pairs.

Keywords: RSA cryptosystem · Cryptanalysis · Coppersmith’s
method · Diophantine approximation

1 Introduction

The RSA cryptosystem [16] is one of the vital components in transferring data
securely over the internet. This cryptosystem is comprised of three main algo-
rithms. Namely, key generation algorithm, encryption algorithm and decryption
algorithm. While the details of encryption and decryption algorithms can be
viewed in [16], for the key generation algorithm, one must generate two different
primes p and q where q < p < 2p. The product of the primes, N is known as
RSA modulus. Using the value of the modulus, the RSA public exponent,e is
chosen such that e < φ(N) and gcd(e, φ(N)) = 1 where φ(N) is Euler’s totient
function. Then, the corresponding RSA private exponent, d is computed via the
RSA key relation,

d ≡ e−1 (mod φ(N)). (1)

The RSA public key, (N, e) and secret parameters (p, q, φ(N), d) are said to
be the outputs of the algorithm. The security strength of RSA is embedded in
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the difficulty to factor its RSA modulus, N = pq since p and q are n–bit primes
where n is typically set to be 1024. The problem to factor N in polynomial time
is dubbed the integer factorization problem and the best algorithm to solve it
still runs in sub-exponential time [4]. However, previous attacks on RSA showed
that a small size of d can compromise the security of RSA [2,10,17]. This type of
attack is known as small private exponent attacks and it manipulates the form of
(1) by using suitable approximation of φ(N). This type of attack may generalize
by using the following equation.

ex − uy = z (2)

for suitable integers x, y, z [11–13]. These attacks usually combine the contin-
ued fraction method and Coppersmith’s method to formulate a new strategy in
factoring N .

In this paper, we present two new attacks upon RSA. These new attacks do
not depend on the RSA diophantine key equation as previous research did. To
initiate the attack, first we define a parameter u that can be computed from the
best known upper and lower bounds of φ(N). However it should be noted that
u can be an arbitrary value that is suitably larger than N . Using u, we show an
attack upon RSA that works when there exist integers X,Y and Z verifying the
equation eX − uY = Z − φb such that

1 ≤ Y < X <
u

2 (φ(N) − φb)
, φ(N) +

p − q

p + q
N1/4 < N − 2N1/2,

|Z − φ(N)| <
p − q

p + q
N1/4

where φb is the best known lower bound of φ(N). The first attack combines the
continued fraction method in [17] and Coppersmith’s method in [6] upon the
equation eX − uY = Z − φb. Note that this equation is not derived from the
RSA key equation.

The second attack generalizes the result from the first attack. We assume
that the adversary is given k instances of weak RSA moduli Ni = piqi with its
corresponding public exponent ei. We show that if there exist an integer X < N δ

and k integers Yi < N δ and |Zi − φ(Ni)| < pi−qi

pi+qi
N1/4 such that eiX − Yiui =

Zi − φb for i = 1, . . . , k, and |Zi − φbi
| < λN δ+ 1

4 where λ < 3
2

(
2

k+5
4 − 3

)
then

Ni = piqi can be factored in polynomial time.
From these two attacks, we realized there are about N

1
2−ε many pairs of

(N, e) that are probable candidates of weak keys of RSA. This may expose some
of the RSA users into using weak RSA public key pairs, (N, e).

The paper is organized as follows. In Sect. 2, a brief introduction to the con-
tinued fractions expansion via Legendre’s Theorem, the lattice basis reduction
and also simultaneous Diophantine approximation. Section 3 and Sect. 4 presents
the first and second attacks, respectively. Section 5 compares our findings against
previous findings with respect to their conditions. Then, the conclusion of our
work is presented in Sect. 6.
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2 Preliminaries

We first show the theorem of continued fractions below:

Theorem 1 (Legendre’s theorem). Let R is a rational number. Let x and y
are integers where y �= 0 and gcd(x, y)= 1. Suppose

∣∣∣∣R − x

y

∣∣∣∣ <
1

2y2

Then x
y is a convergent of the continued fraction expansion of R.

Proof. See [7].

To find the private keys of RSA using the weak RSA public keys (N, e), we
use Coppersmith’s method [5] to find the integer roots of a univariate or bivariate
polynomials modulo N . Particularly, given a large integer N , let

F (x) = xn + an−1x
n−1 + . . . + a1x + a0.

If there exists x0 < N1/n such that F (x0) ≡ 0 (mod N), then [5] showed that
x0 can be found in polynomial time with the aid of the LLL algorithm. The LLL
algorithm [9] produces a different polynomial f that is related to F (x) that sat-
isfy the conditions imposed for x0 with smaller values. Due to the smaller values,
this method runs in polynomial time. Coppersmith also applied the method in
[6] to factor N , given certain approximation of p as shown in the next theorem.

Theorem 2 (Coppersmith’s approximation of p). Let N = pq be the prod-
uct of two unknown integers such that p < q < 2p. Given an approximation of p
with additive error term at most N1/4, then p and q can be found in polynomial
time with respect to log(N).

Proof. See [6].

In the system of equations of k weak RSA moduli Ni = piqi, the next theorem
is required for the adversary to find pi and qi.

Theorem 3 (Simultaneous Diophantine Approximations). There is a
polynomial time algorithm with respect to log(pi) where i = 1, . . . , n, for given
rational numbers α1, ..., αn and 0 < ε < 1, to compute integers p1, · · · , pn and a
positive integer q such that

max
i

|qαi − pi| < ε and q ≤ 2n(n−3)/4 · 3n · ε−n.

Proof. See [15].
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3 The First Attack

We first define a parameter u in the following definition.

Definition 1. Let φa be the smallest integer value of known upper bound of
φ(N). Let φb be the largest integer value of known lower bound of φ(N). Then
we define u = φa + φb.

The next remark shows how we can find the best current approximation values
for φa and φb.

Remark 1. From [14] we know that 2
√

N < p + q < 3√
2

√
N . This means

N − 3√
2

√
N + 1 < φ(N) < N − 2

√
N + 1 as N − (p + q) + 1 = φ(N). Hence

the best current approximation for φa is
⌊
N − 2

√
N + 1

⌋
and the best current

approximation for φb is
⌈
N − 3√

2

√
N + 1

⌉
.

It should be noted that u can be an arbitrary value that is suitably larger than
N . However, in our case, we use u = φa + φb as in Definition 1. The following
lemmas and theorem show the conditions to be fulfilled by parameters in our
equation so that its information can be computed in order to find an approxi-
mation of p which satisfies Theorem 2.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Suppose we know
an approximation S of p + q such that S > 2N1/2,

√
S2 − 4N > p − q and

|p + q − S| <
p − q

p + q
N1/4.

Then P̃ = 1
2

(
S +

√
S2 − 4N

)
where |p − P̃ | < N1/4.

Proof. Suppose that S > 2N1/2 and let D =
√

S2 − 4N . We have

|(p − q)2 − D2| = |(p − q)2 − S2 + 4N | = |(p + q)2 − S2|.
Dividing by p − q + D, we get

|p − q − D| =
(p + q + S)|p + q − S|

p − q + D

Next, suppose |p + q − S| < p−q
p+q N1/4. Since p−q

p+q N1/4 < N1/4, then

p + q + S < 2(p + q) + N1/4

< 2(p + q) + 2N1/4

= 2(p + q) +
2N1/2

N1/4

< 2(p + q) +
p + q

N1/4

=
(

2 +
1

N1/4

)
(p + q)
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as 2N1/2 < (p + q). Let
√

S2 − 4N > p − q, then combining with p − q + D >
p − q + (p − q) = 2(p − q), we deduce

|p − q − D| <

(
2 + 1

N1/4

)
(p + q)|p + q − S|

2(p − q)

<

(
2 + 1

N1/4

)
(p + q)

2(p − q)
· (p − q)
(p + q)

N1/4

=
(

1 +
1

2N1/4

)
· N1/4

≈ N1/4

as 1
2N1/4 tends to be negligible for large N . Now, set P̃ = 1

2 (S + D). Finally we
can have

∣∣∣p − P̃
∣∣∣ =

∣∣∣∣p − 1
2
(S + D)

∣∣∣∣

=
1
2

|p + q − S + p − q − D|

≤ 1
2

· |p + q − S| +
1
2

|p − q − D|

<
1
2

· p − q

p + q
N1/4 +

1
2
N1/4

< N1/4

as (p−q)
(p+q) < 1. This terminates the proof.

Lemma 2. Let N = pq be an RSA modulus with q < p < 2q. Let e satisfy the
equation eX −uY = Z −φb where X,Y are positive integers with gcd(X,Y ) = 1.
If 1 ≤ Y < X <

∣∣∣ u
2(φ(N)−φb)

∣∣∣ and |Z −φ(N)| < p−q
p+q N1/4 then Y

X is a convergent

of e
u − N1/4

2u .

Proof. Consider the equation

eX − uY = Z − φb (3)
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Let |Z − φ(N)| < p−q
p+q N1/4. Then divide (3) by uX we get

e

u
− Y

X
=

Z − φb

uX

≤
p−q
p+q N1/4 + φ(N) − φb

uX

<
N1/2

2N1/2 N1/4 + φ(N) − φb

uX

<
XN1/4

2uX
+

φ(N) − φb

uX

≤ N1/4

2u
+

φ(N) − φb

uX
(4)

since q − p < N1/2, p + q > 2N1/2 and X > 1. If X <
∣∣∣ u
2(φ(N)−φb)

∣∣∣ then
1

2X >
∣∣∣ 2(φ(N)−φb)

u

∣∣∣. As uX will always be a positive value, rearranging (4), we
obtain ∣∣∣∣

(
e

u
− N1/4

2u

)
− Y

X

∣∣∣∣ <

∣∣∣∣
φ(N) − φb

uX

∣∣∣∣

<
1

2X2

which satisfies Theorem 1. This terminates the proof.

Theorem 4. Let N = pq be an RSA modulus with q < p < 2q. Let e satisfies the
equation eX −uY = Z −φb where X,Y are positive integers with gcd(X,Y ) = 1.
If

1 ≤ Y < X <
u

2 (φ(N) − φb)
, φ(N) +

p − q

p + q
N1/4 < N − 2N1/2,

|Z − φ(N)| <
p − q

p + q
N1/4

then N can be factored in polynomial time.

Proof. Suppose e satisfies an equation eX − uY = Z − φb. Let X,Y and Z
satisfy the conditions in Lemma 2, then we can find the values of X and Y by
computing e

u − N1/4

2u . From the values of X and Y , we define

S = N − (eX − uY + φb) = N − Z.

Since φ(N) + p−q
p+q N1/4 < N − 2N1/2 then S ≥ N −

(
φ(N) + p−q

p+q N1/4
)

>

N − (
N − 2N1/2

)
= 2N1/2. We also have

S2 − 4N = (N − Z)2 − 4N

= N2 − 2NZ + Z2 − 4N

= N(N − 2Z − 4) + Z2

> N.
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Thus
√

S2 − 4N > N1/2 > p − q. We also observe that

S = N − Z

> N −
(

p − q

p + q
N1/4 + φ(N)

)

> N − φ(N) − p − q

p + q
N1/4

= p + q − 1 − p − q

p + q
N1/4 (5)

Rearranging (5), we get

|p + q − S − 1| < |p + q − S| <
p − q

p + q
N1/4

which satisfies Lemma 1. Thus we can find P̃ = 1
2

(
S +

√
S2 − 4N

)
such that

|p − P̃ | < N1/4. Based on Theorem 2, we can factor N in polynomial time.

Remark 2. Observe that Y
X is a convergent of the terms e

u − N
1
4

2u . Since u ≈ N ,

the condition Y < X will always hold. The convergents of e
u − N

1
4

2u will produce
a sequence, where candidates of X begins from the smallest possible integer
till 2u2. Since 1 < u

2(φ(N)−φb)
< 2u2, there will exist candidates of X where

1 < X < u
2(φ(N)−φb)

. Moreover, since the continued fractions process ends in
polynomial time, candidates for X can be tested in polynomial time. Thus,
we can guarantee the existence of the pair (X,Y ) satisfying the conditions of
Theorem 4.

Given (N, e) the following is an algorithm to initiate factoring N = pq by
using the continued fraction and Coppersmith’s method via the LLL algorithm.
The algorithm is as follows:

Algorithm 1. Factoring RSA moduli satisfying Theorem 4.
Input: The RSA public key pair (N, e) and u.
Output: The prime factors p, q or ⊥.

1: Compute A to be the continued fraction of
(

e
u

− N1/4

2u

)

2: Set Y = numerator of A and X = denominator of A such that gcd(X, Y ) = 1.

3: For each convergent Y
X

of
(

e
u

− N1/4

2u

)
, compute Z = eX − uY + φb

4: Compute S = N − Z and P̃ = 1
2

(
S +

√
S2 − 4N

)
5: Consider the polynomials F (v) = (v + P̃ )
6: Construct a matrix M of coefficient vectors of elements of 〈F (v), N〉.
7: Run LLL algorithm onto M .
8: Construct the polynomials M ′(v) from the first row of output of Step 7.
9: Factor M ′(v) to obtain small root v0.

10: Compute p = v0 + P̃ and q = N
p

.
11: if q ∈ Z, then output p, q.
12: else Algorithm fails or ⊥.
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Remark 3. Due to the fact that the equation being manipulated given by eX −
uY = Z −φb does not represent the RSA key equation, we do not need an upper
bound of the decryption exponent d for the attack to work properly. Indeed,
there is no need to discuss the bound for d, since neither d nor its generalized
parameter is in our equation. Upon factoring N = pq, one is able to retrieve
d ≈ N . This is a major finding. All previous results related to studying the RSA
key equation has the condition the maximum bound of d is given by d < N1/2.

The following is an example to illustrate Algorithm 1.

Example 1. We use RSA-129 modulus in this example. Specifically, we are given

N = 351105307763848424671594790271619146599

and

e = 943837024474969735510396386229690517

Then we compute

φa =
⌊
N − 2

√
N + 1

⌋

= 351105307763848424634119181790162922235

and

φb =
⌈
N − 3√

2

√
N + 1

⌉

= 351105307763848424631845904942124460115

which values are used to compute

u = φa + φb

= 702210615527696849265965086732287382350.

Then we obtain the continued fraction expansion of e
u − N1/4

2u which is
[
0,

1
743

,
1

744
,

228
169631

, · · · ,
19879

14789889
,

1040411704253353285
774061754625882738716

, . . .

]

Taking Y
X = 19879

14789889 , then we compute

Z = eX − uY + φb

= 351105307763848424632785092052501507078.

Then we compute

S = N − Z

= 38809698219117639522
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and

P̃ =
1
2

(
S +

√
S2 − 4N

)

= 24448940821740240387

Let F (v) = (v + P̃ ) and V = 8000000, be the upper bound of the unknown
|p − P̃ |. We consider the polynomials, N2, NF (v), F (v)2, vF (v)2 and v2F (v)2

and build a matrix, M corresponding to these polynomials. Particularly,

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N2 0 0 0 0

NP̃ N · V 0 0 0

P̃ 2 2P̃ V V 2 0 0

0 P̃ 2V 2P̃ V 2 V 3 0

0 0 P̃ 2V 2 2P̃ V 3 V 4.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let MLLL as the LLL-reduced matrix, we use the coefficients of the first row of
MLLL to construct the polynomial M ′(v) where

M ′(v) = −80322272v4 + 4316657527524354v3 − 17123235643412959749419v2

−25819107876857731036710641043v + 16394904467315025730472619833372752.

By finding the integer roots of M ′(v), we obtain

v = 493424.

Observe

p = v + P̃

= 24448940821740733811

Now we can solve the factorization of N by finding

q =
N

p
= 14360757397377109309.

Remark 4. The RSA private exponent, d corresponding with (N, e) as given in
Example 1 such that ed ≡ 1 (mod φ(N)) is

d = 44601440284214524132897789887339371933 ≈ N0.97675 ≈ N.

Remark 5. Observe that values of X and Y in Example 1 satisfy conditions
posed in Theorem 4.
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Remark 6. Observe that since 1 ≤ Y < X < u
2(φ(N)−φb)

,

e =
Z − φb + uY

X
≥ Z − φb + u

X

>
Z − φb + u

u
· 2(φ(N) − φb)

= 2(φ(N) − φb)
(

1 +
Z − φb

u

)

> 2(φ(N) − φb) ≈ N1/2.

This means our attack only works if e > N1/2.

3.1 Estimating Numbers of (N, e)’s Satisfying eX − uY = Z − φb

In this section, we give an estimation of the numbers of e satisfying eX − uY =
Z − φb. The following lemma states that the public parameter e < N satisfies
at most one equation eX − uY = Z − φb where the unknown parameters X,Y
and Z satisfy the conditions of Theorem 4.

Lemma 3. Let N = pq be an RSA modulus with q < p < 2q. For i = 1, 2, let e
satisfies the equation eXi − uYi = Zi − φb with gcd(X,Y ) = 1,

1 ≤ Yi < Xi <
u

2 (φ(N) − φb)
, φ(N) +

p − q

p + q
N1/4 < N − 2N1/2,

and |Zi − φ(N)| <
p − q

p + q
N1/4.

Then X1 = X2, Y1 = Y2 and Z1 = Z2.

Proof. Suppose that e satisfying two equations

eX1 − uY1 = Z1 − φb and eX2 − uY2 = Z2 − φb

with

X1,X2 <
u

2 (φ(N) − φb)
and |Z1 − φ(N)|, |Z2 − φ(N)| <

p − q

p + q
N1/4.

Then, equating the term e, we have

Z1 − φb + uY1

X1
=

Z2 − φb + uY2

X2
(6)

Rearranged (6) to

X2(Z1 − φb) + X1(φb − Z2) = u(X1Y2 − X2Y1). (7)

Suppose X1,X2 < u
2(φ(N)−φb)

. Observe that

|Z1 − Z2| <
2(p − q)
p + q

N1/4 and φ(N) − φb > N1/4
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which implies Z1−Z2
(φ(N)−φb)

< 1. Consider the left hand side of (7),

X2(Z1 − φb) + X1(φb − Z2) <
u

2 (φ(N) − φb)
(Z1 − φb) +

u

2 (φ(N) − φb)
(φb − Z2)

=
u

2

(
Z1 − φb

(φ(N) − φb)
+

φb − Z2

(φ(N) − φb)

)

=
u

2

(
Z1 − Z2

(φ(N) − φb)

)

< u (8)

Hence from the right hand side of (7), we deduce that X1Y2 − X2Y1 = 0. Since
gcd(X1, Y1) = gcd(X2, Y2) = 1, it shows that X1 = X2 and Y1 = Y2. Thus, from
(6), this leads to Z1 = Z2.

The following result give the estimation of the number of e’s for which the
Theorem 4 applies.

Lemma 4. Let X and Y be two integers satisfying 1 ≤ Y < X < p−q
p+q N

1
4 and

gcd(X,Y ) = 1. Then there exists an integer Z such that Z ≡ φb − uY (mod X)
and |Z − φ(N)| < p−q

p+q N
1
4 .

Proof. Assume that X and Y are fixed with gcd(X,Y ) = 1. Let Z0 = φb − uY .
Let β ≡ φ(N) − Z0 (mod X) with 0 ≤ β < X and set Z = φ(N) − β. Then

Z = φ(N) − β ≡ Z0 ≡ φb − uY (mod X).

Define e = Z−Z0
X . Then eX = Z −Z0 = Z −φb +uY , that is eX −uY = Z −φb.

Moreover, we have

|Z − φ(N)| = β < X <
p − q

p + q
N

1
4 .

This terminates the proof. �	
Theorem 5. Let N = pq be the product of two balanced prime integers such
that p − q > c1

√
N . The number of possible values of the parameter e < N in

Theorem 4 where

e =
Z − φb + uY

X

and gcd(X,Y ) = 1 with

1 ≤ Y < X <
p − q

p + q
N

1
4

is at least N
1
2−ε where ε > 0 is arbitrarily small for suitably large N .
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Proof. Let X and Y be two integers satisfying 1 ≤ Y < X < p−q
p+q N

1
4 and

gcd(X,Y ) = 1. Then by Lemma 4, there exists an integer Z such that e =
Z−φb+uY

X is also an integer. Let z = Z − φb. Then

e =
z + uY

X
.

The number of the parameter e’s satisfying the equation e = z+uY
X with the

conditions given in the Theorem 4 is

#(e) =
N1∑

X=1

X−1∑
Y =1

gcd (X,Y )=1

1, (9)

where

N1 =
p − q

p + q
N

1
4 ≈ c1N

1
4

when p and q are balanced with p − q > c2
√

N for some positive constants c1
and c2.

Observe that for 1 ≤ Y < X < p−q
p+q N

1
4 we have the following.

X−1∑
Y =1

gcd (X,Y )=1

1 = φ(X) >
c3X

log log X
>

c3X

log log N
, (10)

where c3 is a constant (see [7], Theorem 328). Substitute (10) in (9), we obtain

#(e) >
c3

log log N

N1∑
X=1

X (11)

Next, for
∑N1

X=1 X, we have

N1∑
X=1

X =
N1(N1 + 1)

2
>

N 2
1

2
=

(
c1N

1
4

)2

2
(12)

Substitute (12) in (11), we obtain

#(e) >
c3

log log N
×

(
c1N

1
4

)2

2

>
c21c3

2 log log N
N

1
2 (13)

= N
1
2−ε

Hence a good approximation for the number of weak keys e is at least N
1
2−ε

where ε > 0 is arbitrarily small for suitably large N where N−ε = c21c3
2 log log N . �
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4 The Second Attack

In this section, we are given k RSA moduli Ni = piqi with its corresponding
public exponent ei and ui where ui = φai

+φbi
follows Definition 1. By using the

following theorem, we can factor k RSA moduli Ni simultaneously if there exist
suitable X and Yi that satisfy conditions required in the theorem. The ability
to factor these moduli simultaneously are based on the results from Theorem 2
and Theorem 3.

Theorem 6. For k ≥ 2, let Ni = piqi, 1 ≤ i ≤ k, be k RSA moduli. Let
N = mini Ni. Let ei, i = 1, . . . , k, be k public exponents. Define δ = k

2(k+1) . If
there exist an integer X < N δ and k integers Yi < N δ with gcd(X,Yi) = 1 and
|Zi − φ(Ni)| < pi−qi

pi+qi
N1/4 such that eiX − Yiui = Zi − φbi

for i = 1, . . . , k, and

|Zi − φbi
| < λN δ+ 1

4 where λ < 3
2

(
2

k+5
4 − 3

)
then one can factor the k RSA

moduli N1, · · · Nk in polynomial time.

Proof. For k ≥ 2 and i = 1, . . . , k, the equation eiX − uiYi = Zi − φbi
can be

rewritten as

eiX −
(

Ni − 2
√

Ni + 1 + Ni − 3√
2

√
Ni + 1

)
Yi = Zi − φbi

as ui = φai
+φbi

and φai
= Ni − 2

√
Ni +1, φai

= Ni − 3√
2

√
Ni +1. This implies

eiX − (2(Ni + 1)) Yi = Zi − φbi
−

(
2
√

Ni +
3√
2

√
Ni

)
Yi.

Hence ∣∣∣∣
eiX

2(Ni + 1)
− Yi

∣∣∣∣ =

∣∣∣Zi − φbi
−

(
2
√

Ni + 3√
2

√
Ni

)
Yi

∣∣∣
2(Ni + 1)

. (14)

Let N = mini Ni and suppose that Yi < N δ and |Zi − φbi
| < λN δ+ 1

4 . Then
|Zi − φbi

| < λpi−qi

pi+qi
N1/4 < λN δ+ 1

4 . Since 2
√

Ni + 3√
2

√
Ni < 9

2

√
Ni, we will get

∣∣∣Zi − φbi
−

(
2
√

Ni + 3√
2

√
Ni

)
Yi

∣∣∣
2Ni

≤
|Zi − φbi

| +
(
2
√

N + 3√
2

√
N

)
Yi

2N

<
λN δ+ 1

4 +
(

9
2

√
N

)
Yi

2N

<
λN δ+ 1

4 + 9
2N δ+ 1

2

2N

<

(
9
2 + λ

)
N δ+ 1

2

2N

=
( 9

2 + λ

2

)
N δ− 1

2
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Plugging in (14), we get
∣∣∣∣

eiX

2(Ni + 1)
− Yi

∣∣∣∣ <

( 9
2 + λ

2

)
N δ− 1

2

We now proceed to prove the existence of the integer X. Let ε =
( 9

2+λ

2

)
N δ− 1

2 ,

δ = k
2(k+1) . We have

N δ · εk = N δ · Nkδ− k
2

( 9
2 + λ

2

)k

= N δ(k+1)− k
2 ·

( 9
2 + λ

2

)k

. (15)

Since δ = k
2(k+1) , (15) becomes

N0 ·
( 9

2 + λ

2

)k

=
( 9

2 + λ

2

)k

. (16)

Suppose λ < 3
2

(
2

k+5
4 − 3

)
then (16) becomes

( 9
2 + λ

2

)k

<

⎛
⎝

9
2 + 3

2

(
2

k+5
4 − 3

)

2

⎞
⎠

k

=
(

9
4

+
3
4

(
2

k+5
4 − 3

))k

=
(
2

k+5
4 · 3 · 2−2

)k

= 2
k(k−3)

4 · 3k. (17)

Combining (15) and (17), we obtain

N δ < 2
k(k−3)

4 · 3k · ε−k

It follows that if X < N δ, then X < 2
k(k−3)

4 · 3k · ε−k. Summarizing, for i =
1, . . . , k, we have ∣∣∣∣

eiX

2(Ni + 1)
− Yi

∣∣∣∣ < ε, X < 2
k(k−3)

4 · 3k · ε−k

which satisfies the conditions in Theorem 3 which will find X and Yi for i =
1, . . . , k. Next, using the equation eiX − uiYi + φbi

= Zi, we get the value of Zi.
We also observe that

Si = Ni − Zi

≥ Ni −
(

pi − qi

pi + qi
N

1/4
i + φ(Ni)

)

= Ni − φ(Ni) − pi − qi

pi + qi
N

1/4
i

= pi + qi − 1 − pi − qi

pi + qi
N

1/4
i (18)



396 M. R. K. Ariffin et al.

Rearranging (18), we get

|pi + qi − Si − 1| < |pi + qi − Si| <
pi − qi

pi + qi
N

1/4
i

which satisfies Lemma 1. Thus we can find p̃i = 1
2

(
Si +

√
S2

i − 4Ni

)
such that

|pi − p̃i| < N
1/4
i . Based on Theorem 2, we can factor Ni in polynomial time.

We can build an algorithm to factor k RSA moduli Ni simultaneously. The
algorithm is shown in Algorithm 1:

Algorithm 2. Factoring k RSA moduli simultaneously satisfying Theorem 6
Input: The public RSA key pairs (Ni, ei) and ui for i = 2, 3, . . . , k.
Output: The prime factors pi, qi.
1: for i = 2, 3, . . . , k do
2: Compute φai =

⌊
Ni − 2

√
Ni + 1

⌋
.

3: Compute φbi =
⌈
Ni − 3√

2

√
Ni + 1

⌉
.

4: Compute ui = φai + φbi .
5: end for
6: Set N = min(N1, N2, N3).
7: Compute δ = k

2(k+1)
.

8: Compute λ =
⌊

3
2

(
2

k+5
4 − 3

)⌋
.

9: Compute ε =
( 9

2+λ

2

)
Nδ− 1

2 .

10: Compute C =
[
3n+1 · 2

(n+1)(n−4)
4 4 · ε−n−1

]
.

11: Compute lattice L spanned by the rows of the matrix M shown in proof of Theorem
4 in [15].

12: Compute matrix K by applying LLL algorithm onto M .
13: Compute matrix H = KM−1.
14: Assign every element in the first row of H (starting from most left) as X, Y1, . . . , Yk

respectively.
15: for i = 2, 3, . . . , k do
16: Compute Si = Ni − Zi = Ni − (eiX − uiYi) + φbi .

17: Compute Di =
[√

S2
i − 4Ni

]
.

18: Compute P̃i = 1
2

(Si + Di).
19: Applying Coppersmith’s method in Theorem 2 onto each Pi to output pi.
20: Compute qi = Ni/pi.
21: if qi ∈ Z, then output pi, qi.
22: else Algorithm fails or ⊥.
23: end for

5 Comparative Analysis

In this section, we compare our findings against previous findings with respect
to the form of the modified key equations and their conditions. The comparisons
are illustrated in Table 1.
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Table 1. Comparison of Our Methods Against Previous Findings

Findings Manipulated equation Conditions

Blömer and May [3] ex − yφ(N) = z x < 1
3 N1/4

and |z| < exN−3/4

Hinek [8] eid − kiφ(Ni) = 1 d < Nδ

with δ = k
2(k+1) − ε

where ε depending on N

Nitaj et al. (Theorem 5 in [15]) eix − yiφ(Ni) = zi N = mini Ni, x < Nδ ,

yi < Nδ ,

|zi| <
pi−qi

3(pi+qi)
yiN1/4

where δ = k
2(k+1)

Nitaj et al. (Theorem 6 in [15]) eixi − yφ(Ni) = zi N = mini Ni, mini ei = Nα,

xi < Nδ, y < Nδ ,

|zi| <
pi−qi

3(pi+qi)
yN1/4

where δ =
(2α−1)k
2(k+1)

Ariffin et al. (Theorem 13 in [1]) ed − kφ(N) = 1 |b2p − a2q| < Nγ

(a2(b4+1)p−b2(a4+1)q)(b2p−a2q) > 0

d <
√

3√
2

N
3
4 γ

Our method: Theorem 4 eX − uY = Z − φb 1 ≤ Y < X < u
2(φ(N)−φb)

,

φ(N) + p−q
p+q

N1/4 < N − 2N1/2,

|Z − φ(N)| < p−q
p+q

N1/4

Our method: Theorem 6 eiX − Yiui = Zi − φbi
N = mini Ni,

X < Nδ , Yi < Nδ ,

|Zi − φ(Ni)| <
pi−qi
pi+qi

N1/4

|Zi − φbi
| < λN

δ+1
4

where λ < 3
2

(
2

k+5
4 − 3

)

and δ = k
2(k+1)

From Table 1, based on the references given, we can see that all earlier first
5 findings from Blömer and May [3] till Ariffin et al. [1] type of attacks zoomed
into the RSA diophantine equation either in its original or generalized form. The
first 5 findings had to dictate conditions upon the decryption exponent d or its
corresponding generalized parameter.

In retrospect, our equation did not utilize the RSA diophantine equation
either in its original or generalized form. As a result, our strategy enables us to
factor N = pq for a set of weak keys with d ≈ N . This is a new and important
result. The conditions upon our parameters cannot not be compared to condi-
tions upon parameters of earlier results. This is due do the fact that there is no
relation between our parameters X and Y and the parameters d and φ(N).

6 Conclusion

We have formulated two new attacks on RSA using a method derived from past
literature regarding attacks on the RSA key equation. In our method, we uti-
lized an equation that does not represent the RSA key equation, which under our
defined conditions can be utilized to factor N in polynomial time. The strategy
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uses a combination of continued fractions and Coppersmith’s methods. Implic-
itly, the insertion of u into the equation will render a particular (N, e) to be a
weak RSA public key pair. We also estimate the number of e’s that satisfying our
theorem is at least N

1
2−ε. Finally, we have presented a case where given k weak

RSA public key pairs, we can find the prime factors of each N simultaneously
in polynomial time.
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