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Abstract. The MixColumns operation is an important component pro-
viding diffusion for the AES. The branch number of it ensures that any
continuous four rounds of the AES have at least 25 active S-Boxes, which
makes the AES secure against the differential and linear cryptanalysis.
However, the choices of the coefficients of the MixColumns matrix may
undermine the AES security against some novel-type attacks. A particu-
lar property of the AES MixColumns matrix coefficient has been noticed
in recent papers that each row or column of the matrix has elements that
sum to zero. Several attacks have been developed taking advantage of
the coefficient property.

In this paper we investigate further the influence of the specific coef-
ficient property on the AES security. Our target, which is also one of
the targets of the previous works, is a 5-round AES variant with a secret
S-Box. We will show how we take advantage of the coefficient property to
extract the secret key directly without any assistance of the S-Box infor-
mation. Compared with the previous similar attacks, the present attacks
here are the best in terms of the complexity under the chosen-plaintext
scenario.

Keywords: AES · MixColumns · Exchange attack · Key recovery
attack · Secret S-Box

1 Introduction

The Advanced Encryption Standard (AES) [7] is designed to achieve good resis-
tance against the differential [3] and linear cryptanalysis [13]. This includes the
selection of the S-Box and linear components such as the MixColumns matrix.
For the AES, the branch number of its MixColumns matrix is chosen as five
then it ensures that any four continuous rounds of differential (linear) charac-
teristics have at least 25 active S-Boxes [7,8]. Considering that the maximum
correlation and the maximum difference propagation probability over the AES
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S-Box are 2−3 and 2−6, respectively, there are no effective differential or linear
characteristics for four or more rounds of the AES.

For the performance reasons, the coefficients of the AES MixColumns are
chosen from a group of low-weight numbers. Therefore it is not surprising that
there are elements in each row or column that will add up to zero. For example,
its first row is

[
02, 03, 01, 01

]
thus 01 ⊕ 01 = 0 and 01 ⊕ 02 ⊕ 03 = 0.

Several attacks have been developed facilitated by this property and show that
the property can be a potential weakness [2,9,10,12,15]. For convenience, we
conclude it into two types concretely as follows as did in [12],

Property 1. Each row or column of the MixColumns matrix has two elements
that sum to zero.

Property 2. Each row or column of the MixColumns matrix has three ele-
ments that sum to zero.

At Crypto 2016, Sun et al. noticed Property 1 for the first time and established
the first zero-correlation linear hull and the first integral distinguisher for the
5-round AES [15]. The two attacks exploited the existing 4-round corresponding
properties and extended them one more round based on the MixColumns coef-
ficient property. We take the 5-round zero-correlation linear hull as an example.
As is well-known, the previous zero-correlation linear hull can cover at most 3.5
rounds of the AES (without last MixColumns) [4] which is illustrated in Fig. 11.

correlation = 0

3.5-round existing zero-correlation

MC 5-th R

extension based on Property 1

Fig. 1. Extending 3.5-round zero-correlation linear hull for AES to 5 rounds exploiting
Property 1

Let the first column of the input mask and the output mask of the Mix-
Columns after the 3.5-round zero-correlation linear hull be Γin and Γout, respec-
tively. According to the propagation of the mask over a linear map [4], we have
Γin = MT

AESΓout, where MT
AES is the transpose of the matrix used by the AES

MixColumns. Then if we can ensure that the two active masks of Γout are equal,
we can make certain that Γin has only three active bytes like Fig. 1. Finally, the
zero-correlation linear can be extended to 5 rounds.

Although the two distinguishers in [15] cost the whole codebook, they
spawned a sequence of new fundamental results that are based on Property 1 or 2.
1 In [4], the output mask of the 3.5-round zero-correlation linear hull has only one

active byte, but it is easy to check that with 3 active byte in the output mask it is
still a zero-correlation linear hull.
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Soon after, two following improvements were proposed which aimed to reduce
the complexities [6,12]. At FSE 2017, Grassi et al. took Property 1 proposing
the first impossible differential distinguisher for the 5-round AES [10]. Later at
CT-RSA 2018, the impossible differential distinguisher was further improved by
Grassi exploiting Property 2 [9]. In the same paper, he also discussed the attacks
on an AES variant with a secret S-Box. By combining the MixColumns coeffi-
cient property and the multiple-of-n attack [11], Grassi managed to extract the
secret key from the 5-round AES without knowing any information of the S-Box
or recovering it in advance as it was done in [16].

The security of the AES variant with a secret S-Box was firstly studied by
Tiessen et al. at FSE 2015 [16]. Assuming that the choice of the S-Box is made
uniformly at random from all 8-bit S-Boxes and keeping all other components
unchanged, the size of the secret information increases from 128 bits to 1812 bits2

(we focus on the AES-128). Generally speaking, a key-recovery attack requires
the details of the S-Box since we have to peel off some key-involved components.
Consequently, the authors of [16] needed to recover an equivalent S-Box by the
square attack [16] and then found the equivalent secret key. However, the works
in [9] showed that it is possible to recover the key information directly without
recovering the S-Box in advance if we take advantage of Property 1 or 2 appro-
priately. At Africacrypt 2019, Bardeh and Rønjom further studied the influence
of Property 1 under the adaptive-chosen-ciphertext scenario, which is the newest
result in this direction. The AES variant with a secret S-Box has been a pop-
ular target for studying the MixColumns coefficient property. In this paper, we
also study how to take the MixColumns coefficient property to extract the key
information without any knowledge of the S-Box.

1.1 Our Contribution

To explore the influence of the MixColumns coefficient property on the security of
the AES, in this paper we propose two new attacks on the 5-round AES variant
with a secret S-Box based on Property 1 and 2 respectively. Our attacks are
developed upon the newest technique called the exchange attack [1], we manage
to transform the 5-round exchange attack to two key-recovery attacks. Compared
with those previous attacks based on the MixColumns coefficient property, our
5-round attacks need only 242.6 or 246 chosen plaintexts, which are new records
under the chosen-plaintext scenario. All the attacks on the 5-round AES related
to the MixColumns coefficient property are listed in Table 1 for a convenient
comparison.

Organization of This Paper

In Sect. 2, we introduce some background knowledge needed in this paper. In
Sect. 3 and 4, we present two new attacks exploiting Property 1 and Property 2,
respectively. We conclude this paper in Sect. 5.

2 The number of all the 8-bit S-Boxes is 28! which is about log
(28!)
2 ≈ 1684 bits

information. Totally, the security information is about 1684 + 128 = 1812 bits.
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Table 1. Attacks on the 5-round AES taking the mixcolumns coefficient property

Attack Round Data Computation Reference

Integral 5 2128 CC 2129.6 XOR [15]

Impossible differential 5 2102 CP 2107 M ≈ 2100.4 E� [10]

Impossible differential 5 276.4 CP 281.5 M ≈ 274.9 E [9]

Integral 5 296 CP 296 E [12]

Multiple-of-n 5 253.6 CP 255.6 M ≈ 248.86 E [9]

Zero difference 5 229.19 CP+232ACC 231 XOR [2]

Exchange 5 242.6 CP 242.6 E Sect. 3

Exchange 5 246 CP 246 E Sect. 4

CC: chosen ciphertexts, CP: chosen plaintexts, ACC: adaptive chosen ciphertexts

M: memory access, XOR: XOR operation, E: 5-round AES encryption
�: In [9,10], the authors used the scale that 100 times of memory access are approxi-

mately equivalent to 1 times of 5-round AES. In this paper, we use the same scale.

2 Preliminary

2.1 Description of the AES

The AES (Advanced Encryption Standard) [7] is an iterated block cipher with
the substitution-permutation network (SPN). It has three versions with the key
size 128, 192, 256 bits and the number of rounds is 10, 12, 14, respectively. The
length of the block cipher is 128-bit and it will be initialized as a 4×4 matrix of
bytes as values in the finite field F28 defined over the the irreducible polynomial
x8 + x4 + x3 + x + 1 (AES finite field). The round function of the AES, except
the last one, applies four operations to every state matrix:

– SubBytes (SB) - each of the 16 bytes in the state matrix is replaced by another
value getting from an 8-bit S-Box. In our attack the adversary does not know
the exact information about the S-Box.

– ShiftRows (SR) - the i-th (0 ≤ i ≤ 3) row of the state matrix is rotated to
the left by i position(s).

– MixColumns (MC) - each column of the state matrix is multiplied by an MDS
matric MAES from the left over the AES finite field. The invertible matrix
MAES is shown as follows, each byte of matrix is presented as hexadecimal.

MAES =

⎡

⎢
⎢
⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤

⎥
⎥
⎦ (1)

– AddRoundKey(AK) - the state of the AES is XORed with the 128-bit round
key.

In the first round an additional AK will be applied to the plaintext ahead
the SB operation. And in the last round the MixColumns operation is omitted
for convenient decryption. In this paper, we focus on the 5-round AES variant



118 X. An et al.

where we consider the five full rounds of the AES keeping the last MC only for
convenient description.

The AES Variant with A Secret S-Box. The target of this paper is an AES
variant with a secret S-Box, i.e., the S-Box is replaced by a secret one and other
structure and components are as the same as the original AES.

2.2 Notations

Let x denote a plaintext, a ciphertext, an intermediate state or a key. Then xi,j

with i, j ∈ {0, 1, 2, 3} denotes the byte located at the intersection of the i-th
row and the j-th column. The secret key is usually denoted by k. We denote one
round of the AES by R and denote r full rounds of the AES by Rr3. In this paper,
we will also adopt the notations of the subspaces for the AES proposed initially
in [10]. For a pair (x, x′), its dual pair (x̂, x̂′) is generated by exchanging the first
diagonal between x and x′. We call a pair and its dual pair, i.e., (x, x′, x̂, x̂′) a
pair-of-pair. For a matrix or a vector v, we denote its transpose by vT .

Subspaces of the AES. The subspace trial of the AES works with vectors and
vector spaces over F

4×4
28 . We denote the unit vectors of F4×4

28 by e0,0, e0,1, ..., e3,3

where ei,j has a single 1 in the intersection of the i-th row and the j-th column.

Definition 1 (Column Space [10]). The column space Ci are defined as Ci =
〈e0,i, e1,i, e2,i, e3,i〉.

Definition 2 (Diagonal and Inverse-Diagonal Space [10]). The diagonal
spaces Di and inverse-diagonal spaces IDi are defined as Di = SR−1(Ci) and
IDi = SR(Ci).

Definition 3 (Mixed Space [10]). The i-th mixed spaces Mi are defined as
Mi = MC(IDi).

Definition 4 ([10]). For I ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3, let CI ,DI , IDI and
MI defined as

CI =
⊕

i∈I

Ci,DI =
⊕

i∈I

Di, IDI =
⊕

i∈I

IDi,MI =
⊕

i∈I

Mi.

We refer readers to [10] for more details.
Next we introduce a useful one round subspace trail.

Lemma 1 ([10]). For any coset DI ⊕ a there exists a unique b ∈ C⊥
I such that

after one round R(DI ⊕ a) belongs to a coset of column space, i.e., R(DI ⊕ a) =
CI ⊕ b. In other words, if x ⊕ x′ ∈ DI , then R(x) ⊕ R(x′) ∈ CI .

3 For the unity of description, we do not omit the last MC of Rr when we metion Rr.
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2.3 Exchange Attack

The exchange attack is a new distinguisher proposed at Asiacrypt 2019 which
can be used to attack the 5- and 6-round AES [1]. Since this paper only use the
distinguishing attack on the 5-round AES, we only introduce some basic ideas
about its application to the 5-round AES.

For a pair of states, if we exchange their first diagonals between the two
values and get its dual pair, it is equivalent to swap the corresponding column
after one round encryption. Furthermore, in some special cases, to exchange
a column is equivalent to exchange a diagnoal. For example, if the difference
of the state pair behaves like the rightmost state in Fig. 2, exchanging its first
column is equivalent to exchange its first diagonal, because only the byte at the
intersection of the first column and the first diagnoal is active.

exchange exchange exchange exchange exchangeexchange exchange exchange exchange exchange

AK SB SR MC AK

Fig. 2. Swapping the first column is equivalent to swap the first diagonal.

In [1], the authors modified a theorem from [14], which states an exchange-
difference relation over 4 rounds of the AES.

Theorem 1 (4-round Exchange-Difference Relation [14]). Let x, x′ ∈
F

4×4
28 , exchange some diagonals between x and x′ and get x̂, x̂′, then for J ⊆

{0, 1, 2, 3} and 0 < |J | ≤ 3,

Pr(R4(x̂) ⊕ R4(x̂′) ∈ MJ |R4(x) ⊕ R4(x′) ∈ MJ) = 1.

According to the exchange attack illustrated in Fig. 2 [1], we choose a pair of
plaintext x, x′ ∈ DJ ⊕ a where J = {0, 1}, and exchange the first diagonal
to get its dual pair x̂, x̂′ ∈ CI ⊕ a. With some probability x ⊕ x′ and x̂ ⊕ x̂′

may satisfy a special difference pattern making that it is equivalent to exchange
some diagonals of (R(x), R(x′)) to get (R(x̂), R(x̂′)). Then it meets the starting
condition of Theorem 1, we can get a 5-round exchange-equivalent relation for
the AES.

3 Improved Key-Recovery Attack Based on Property 1

In this section, we show how to combine Property 1 with the exchange attack
to establish an improved key-recovery attack on the 5-round AES with a secret
S-Box. The basic idea of this attack is to extend the 4-round exchange-difference
relation (Theorem 1) to 5 rounds. In the attack, we first choose two plaintexts
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p, p′ from a subspace S0 = a⊕DI where I = {0, 1}, and expect that R(p), R(p′)
will be in a specific subspace S1 = b ⊕ CI as follows,

S1 �

⎧
⎪⎪⎨

⎪⎪⎩
b ⊕

⎡

⎢
⎢
⎣

x1 x2 0 0
0 0 0 0
0 x3 0 0
0 x4 0 0

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

x1, x2, x3, x4, b ∈ F28

⎫
⎪⎪⎬

⎪⎪⎭
. (2)

For two randomly drawn plaintexts p, p′ ∈ S0, the probability that R(p)⊕R(p′) ∈
S1 is 2−32. However, taking Property 1 into consideration and choosing p, p′

carefully according to some secret key information, we can vary the probability
of R(p) ⊕ R(p′) ∈ S1 between the wrong and right key guess.

Once R(p) ⊕ R(p′) ∈ S1, we can exchange the first diagonal between p and
p′ and get its dual pair (p̂, p̂′), thus (R(p), R(p′)) and (R(p̂), R(p̂′)) are two
pairs satisfying the starting condition of Theorem 1. Hence, R5(p) ⊕ R5(p′) and
R5(p̂) ⊕ R5(p̂′) will be always in the same MJ for certain J ⊆ {0, 1, 2, 3} at
the same time. For sake of convenience, in this section we call such pair-of-pair
(p, p′, p̂, p̂′) a right pair-of-pair.

Details. Based on Property 1, if the four input bytes of MC have two zero-
difference values and the difference of the remaining two bytes are equal, the
output vector will have one zero-difference byte with probability 1. Without loss
of generality, we assume the input difference is [a, 0, 0, a]T , then

⎡

⎢
⎢
⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤

⎥
⎥
⎦ ×

⎡

⎢
⎢
⎣

a
0
0
a

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

3a
0
2a
a

⎤

⎥
⎥
⎦ . (3)

It can be seen that the second value of the output difference must be zero. Then
if the second column of the input difference of MC is really the patten such as
[a, 0, 0, a]T where a ∈ F28\{0}, the probability that R(p) ⊕ R(p′) ∈ S1 (Eq. 2)
will be 2−24 rather than 2−32. For this reason, we define the set Az,δ as follows,

Az,δ �

⎧
⎪⎪⎨

⎪⎪⎩
a ⊕

⎡

⎢
⎢
⎣

y0 z 0 0
0 y1 0 0
0 0 y2 0

z ⊕ δ 0 0 y3

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

∀y0, y1, y2, y3, a ∈ F28

⎫
⎪⎪⎬

⎪⎪⎭
where z, δ ∈ F28 , (4)

and then choose two different plaintexts p ∈ Az0,δ and p′ ∈ Az1,δ where z0 	= z1.
Let the two secret key bytes which are XORed with p0,1 (Resp. p′

0,1) and p3,0

(Resp. p′
3,0) be k0,1 and k3,0, respectively. After f � SR ◦ SB ◦AK operation, the

second column of f(p) ⊕ f(p′) is

(f(p) ⊕ f(p′))C1 =

⎡

⎢
⎢
⎣

S-Box(z0 ⊕ k0,1) ⊕ S-Box(z1 ⊕ k0,1)
0
0

S-Box(z0 ⊕ δ ⊕ k3,0) ⊕ S-Box(z1 ⊕ δ ⊕ k3,0)

⎤

⎥
⎥
⎦ .
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To meet the condition shown in Eq. 3, Eq. 5 should be met,

S-Box(z0⊕k0,1)⊕S-Box(z1⊕k0,1) = S-Box(z0⊕δ⊕k3,0)⊕S-Box(z1⊕δ⊕k3,0) (5)

Since the S-Box is a secret permutation, Eq. 5 has only two solutions, i.e.,

δ = k0,1 ⊕ k3,0 or δ = z0 ⊕ z1 ⊕ k0,1 ⊕ k3,0.

If we let δ run through all values in F28 , we can guarantee that there are at least
two values of δ leading that Eq. 5 holds. For sake of simplicity, we call the two δ
right δ and other values wrong δ. For right δ, the probability that R(p)⊕R(p′) ∈
S1 will be 2−24. For wrong δ, the probability is still 2−32. Combinining with
Theorem 1, we conclude the following proposition,

Proposition 1. Let p ∈ Az0,δ and p′ ∈ Az1,δ. (p̂, p̂′) is the dual pair of (p, p′).
If δ is right, for certain MJ with |J | = 3,

Pr(R5(p) ⊕ R5(p′) ∈ MJ ∧ R5(p̂) ⊕ R5(p̂′) ∈ MJ) ≈ 2−54.

While for wrong δ,

Pr(R5(p) ⊕ R5(p′) ∈ MJ ∧ R5(p̂) ⊕ R5(p̂′) ∈ MJ) ≈ 2−62.

Proof. If two pairs satisfy the starting condition of Theorem 1, they will be in
the same MJ at the same time after 4 rounds of encryption. Let |J | = 3, the
probability for the two pairs being a right pair-of-pair is 2−30 since we have four
choices of J .

For wrong δ, the starting condition of Theorem 1 is statisfied with probability
2−32. Then, the probability for the two pairs being a right pair-of-pair is about
2−62, which is consistent with the random case. While for right δ, the starting
condition is met with probability 2−24, so the probability for the two pairs being
a right pair-of-pair is 2−54. �

Finding δ Candidates. We can take advantage of Proposition 1 to find the
right δ that implies k0,1 ⊕ k3,0. The process for finding δ is illustrated in
Algorithm 1. For each candidate δ ∈ F28 , we find collision pairs and check
whether there is at least one collision pair satisfying that its dual pair is also a
collision pair. We explain briefly some crucial lines in Algorithm 1.

Line 4. For Az0,δ and Az1,δ, we require that the i-th plaintexts in Az0,δ and
Az1,δ should have the same value in the first diagonal. In this way, (ci

z0
, cj

z1
)

must be the dual pair of (ci
z1

, cj
z0

). We can prepare a subset of D0 with size 2N

and use it to generate the two sets Az0,δ and Az1,δ where z0 	= z1.

Line 14. Since we have stored all the ciphertexts in tables, we only need to
store the indexes of ciphertexts into the two hash tables. If the i-th lines of Tz0

and Tz1 are not empty simultaneously, we find a collision pair pointed by the
corresponding indexes.
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Algorithm 1. Finding δ Candidates (Property 1)
1: procedure Core(z0, z1, r, c) � Return a set containing the possible right δ
2: for Each δ ∈ F28 do
3: Initialize 2 sequence tables Cz0 , Cz1 , 1 table Δ
4: Prepare two sets Az0,δ, Az1,δ with 229 plaintexts � Make sure

Az0,δ[i]D0 = Az1,δ[i]D0 , according to Equation 4
5: for i = 0; i < 229; i = i + 1 do
6: for j = 0; j < 2; j = j + 1 do
7: ci

zj
← R5(pi

zj
) � pi

zj
is the i-th plaintext in Azj ,δ

8: Czj [i] ← ci
zj

� Store ci
zj

9: end for
10: end for
11: for k = 0; k < 4; k = k + 1 do � For each Mk space, search for collisions
12: Initialize 2 hash tables Tz0 , Tz1

13: for i = 0; i < 229; i = i + 1 do
14: for j = 0; j < 2; j = j + 1 do
15: Tzj [MC−1(ci

zj
)IDk ] ← index(ci

zj
) � index(ci

zj
) = i

16: end for
17: end for
18: for i = 0; i < 232; i = i + 1 do � For each line of Tz0 and Tz1

19: if there is a collision pair with indexes (i0, i1) and i0 �= i1 then
20: ci1

z0 ← Cz0 [i1], ci0
z1 ← Cz1 [i0] � (ci0

z0 , ci1
z1) and (ci1

z0 , ci0
z1) are dual

pairs
21: if ci1

z0 ⊕ ci0
z1 ∈ Mk then � (ci1

z0 , ci0
z1) is also collided

22: Δ ← δ
23: end if
24: end if
25: end for
26: end for
27: end for
28: return Δ
29: end procedure

Algorithm 2. Remove wrong δ

1: procedure Remove( Δ, z0, z1)
2: for δ ∈ Δ do
3: if δ ⊕ z1 ⊕ z2 /∈ Δ then
4: Remove δ from Δ
5: end if
6: end for
7: return Δ
8: end procedure
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Line 20. (ci
z0

, cj
z1

) and (ci
z1

, cj
z0

) are dual pairs, then we need to check if ci
z1

⊕
cj
z0

∈ Mk.

Determine the Size of Az0,δ And Az1,δ . For Az0,δ and Az1,δ with 2N ele-
ments, we can obtain 22N pairs (p, p′) by choosing p ∈ Az0,δ and p′ ∈ Az1,δ. By
exchanging the first diagonal, we get 22N−1 pair-of-pairs such as (p, p′, p̂, p̂′).

For 5-round AES, these 22N−1 pair-of-pairs can be regarded as 22N−1

Bernoulli trials, and the number of right pair-of-pairs should obey Binomial dis-
tribution B(22N−1, 2−54) when δ is right. Otherwise, it will obey B(22N−1, 2−62).
Let Nr and Nw be the number of right pair-of-pairs for right and wrong δ,
respectively.
For right δ,

Pr(Nr ≥ 1) = 1 − Pr(Nr = 0) = 1 − (1 − 2−54)2
2N−1 ≈ 1 − exp(−22N−1−54).

For wrong δ,

Pr(Nw ≥ 1) = 1 − Pr(Nw = 0) = 1 − (1 − 2−62)2
2N−1 ≈ 1 − exp(−22N−1−62).

When we take N = 29, Pr(Nr ≥ 1) ≈ 0.9997 while Pr(Nw ≥ 1) ≈ 0.0308, which
means we can distinguish the right δ from the wrong δ.

Determining the Exact k0,1 ⊕ k3,0. Either of the right δ including δ = k0,1⊕
k3,0 and δ = k0,1 ⊕ k3,0 ⊕ z0 ⊕ z1 will bring at least one right pair-of-pair with
probability about 0.9997. Therefore, they will be both returned by Algorithm 1
with probability 0.99972 ≈ 0.9994. At the same time, the probability for a wrong
δ being recommended is 0.0308. For all the 28−2 wrong δ, on average there will be
(28 −2)×0.0308 ≈ 8 wrong δ which are also recommended. All the δ candidates
are inserted into a set Δ, which is returned by Algorithm 1 finally.

To remove the wrong δ from Δ, we XOR z0 ⊕ z1 with each value in Δ. For
right δ, δ ⊕ z0 ⊕ z1 should be also in Δ in a high probability (0.9994) while for
wrong δ, the probability is about 2−8. The method of removing wrong δ is shown
in Algorithm 2.

Now the set Δ contains only k0,1 ⊕k3,0 and k0,1 ⊕k3,0 ⊕z0 ⊕z1. To determine
the exact right key byte, we have to call Algorithm 1 and Algorithm 2 again with
(z2, z3) where z2 ⊕ z3 	= z0 ⊕ z1. With Δ′ = {k0,1 ⊕ k3,0, k0,1 ⊕ k3,0 ⊕ z2 ⊕ z3}
returned, we can easily determine the right k0,1 ⊕ k3,0 by comparing Δ and Δ′.
Therefore we recover one byte key information with 0.99942 ≈ 0.9988 success
probability. The process is illustrated in Algorithm 3.

The procedure RecoverKeyByte(r, c) (Algorithm 3) can be used to recover
kr,c ⊕kr+1,c+1

4. Since the equal bytes in MC matrix are all adjacent, for the i-th
diagonal of the key state, we can recover k0,i⊕k1,i+1, k1,i+1⊕k2,i+2, k2,i+2⊕k3,i+3

and k3,i+3⊕k0,i. However, from any three out of the four values we can derive the
remaining one, which means we can recover three bytes of useful key information
for one diagonal. For the four diagonals of key state, we can recover 12 bytes of
key information, i.e. we can get the secret key up to 232 variants.
4 In this paper, the addition of indexes are modulo 4.
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Algorithm 3. Recover the real key kr,c ⊕ kr+1,c+1 (Property 1)
1: procedure RecoverKeyByte(r, c) � Recover kr,c ⊕ kr+1,c+1 with 99.88%

probability
2: Allocate z0, z1, z2, z3 s.t. z0 ⊕ z1 �= z2 ⊕ z3
3: Δ0 ← Core(z0, z1, r, c)
4: if |Δ0| == 0 then
5: return ⊥
6: else
7: Δ0 ← Remove( Δ0, z0, z1)
8: end if
9: Δ1 ← Core(z2, z3, r, c)

10: if |Δ1| == 0 then
11: return ⊥
12: else
13: Δ1 ← Remove( Δ1, z0, z1)
14: end if
15: if Δ0, Δ1 have the same value then
16: return δ ← (Δ0, Δ1) � Right kr,c ⊕ kr+1,c+1 must lie in both set
17: else
18: return ⊥
19: end if
20: end procedure

Data Complexity. From Algorithm 1, for every δ ∈ F28 we use four sets Azi,δ

for i = 0, 1, 2, 3 each with 229 plaintexts. Therefore we need 229 × 28 × 4 = 239

chosen plaintexts to recover one byte key. In order to recover 12 key bytes, the
total data complexity is 239 × 12 ≈ 242.6 chosen plaintexts.

Computation Complexity. Firstly, we evaluate the complexity of Algorithm 1.
For each possible δ ∈ F28 we encrypt two sets Az0,δ and Az1,δ each with 229 plain-
texts, this operation needs 229 × 2 = 230 5-round encryptions. After obtaining 230

ciphertexts, we insert them into Cz0 and Cz1 with 230 table-lookups. To insert all
the ciphertexts to Tz0 and Tz1 , we need 230 table-lookups again. Then we compare
each line ofTz0 andTz1 to find collisionpairs, it requires 2×232 = 233 table-lookups.
For the two sets Az0,δ and Az1,δ each with 229 chosen plaintexts, on average we can
obtain 229 × 229 × 2−32 = 226 collision pairs.Oncewefind a collision pair (ci

z0
, cj

z1
),

we need a time of XOR to check whether (ci
z1

, cj
z0

) is collided. These memory oper-
ations above need about 233 table-lookups. Considering we have four possible Mk,
the whole memory operations cost 235 table-lookups. We use the convention that
100 times of table look-ups are equivalent to one time 5-round encryption. Hence,
encrypting the plaintexts is dominant in the time complexity, which requires 230

5-round encryptions for each δ.
To determine the exact one byte information of key (Algorithm 3), the time

complexity is 28 × 2 × 230 = 239 5-round encryptions. Recovering 12 bytes key
requires 239 × 12 ≈ 242.6 times of 5-round encryption.
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Memory Complexity. We allocate 2 sequence tables with size 229 and 2 hash
tables with size 232. Since these tables can be reused, the total memory com-
plexity is about 232 × 2 + 229 × 2 ≈ 233 128-bit blocks.

Practical Verification. Using C/C++ implementation, we practically verified
our key-recovery attack on a small-scale variant of the AES as presented in [5].
The block size of the small-scale AES is 64 bits, and each word is a 4-bit nibble
in the state matrix. We simply recover one byte of the secret key XOR in our
experiment. The experimental result supports our theory.5

4 Improved Key-Recovery Attack Based on Property 2

Similar to the exchange attack based onProperty 1,we can also combineProperty 2
of MC matrix with exchange attack to realize the key recovery attack with a secret
S-Box. To exploit Property 2, we focus on another subspace S′

1 that two plaintexts
p, p′ ∈ DI , I = {0, 1} should fall into after the first round encryption.

S′
1 �

⎧
⎪⎪⎨

⎪⎪⎩
b ⊕

⎡

⎢
⎢
⎣

a1 0 0 0
0 0 0 0
0 a3 0 0
a2 a4 0 0

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

a1, a2, a3, a4, b ∈ F28

⎫
⎪⎪⎬

⎪⎪⎭
. (6)

If we exchange the first diagonal between p and p′, it is equivalent to exchange the
first column between R(p) and R(p′). Since R(p), R(p′) ∈ S′

1, it is also equivalent
to exchange the first and the fourth diagonals between R(p) and R(p′).

Details. Property 2 of MC says that three elements in each row can be XORed
to zero. If the input difference of the four bytes of MC has three equal values
and the remaining one value is zero, the output difference will have two zero-
difference byte with probability 1. Without loss of generality, we assume the
input difference is [a, a, a, 0]T , then

⎡

⎢
⎢
⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤

⎥
⎥
⎦ ×

⎡

⎢
⎢
⎣

a
a
a
0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
0
2a
3a

⎤

⎥
⎥
⎦ (7)

It can be seen that there are two zero-difference values in the output difference
with probability 1. Then if the input difference of MC is really the pattern such
as [a, a, a, 0]T for any a ∈ F28\{0}. To achieve it, we define the set Aw,δ1,δ2 as
follows,

Aw,δ1,δ2 �

⎧
⎪⎪⎨

⎪⎪⎩
a ⊕

⎡

⎢
⎢
⎣

y1 w 0 0
0 y2 w ⊕ δ1 0
0 0 y3 w ⊕ δ2

0 0 0 y4

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

∀y0, y1, y2, y3 ∈ F28

⎫
⎪⎪⎬

⎪⎪⎭

where w, δ1, δ2 ∈ F28 .

(8)

5 https://github.com/anxin19/5-round-AES-keyrecoveryattack.git.

https://github.com/anxin19/5-round-AES-keyrecoveryattack.git
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We choose two different plaintexts p ∈ Aw0,δ1,δ2 , p
′ ∈ Aw1,δ1,δ2 . Let the key bytes

XORed with p0,1, p1,2, p2,3 (Resp. p′
0,1, p

′
1,2, p

′
2,3) are k0,1, k1,2, k2,3, respectively.

After the operation f = SR ◦ SB ◦AK, the difference between the second column
of f(p) and f(p′) is

f(p)C1 ⊕ f(p′)C1 =

⎡

⎢
⎢
⎣

S-Box(w0 ⊕ k0,1) ⊕ S-Box(w1 ⊕ k0,1)
S-Box(w0 ⊕ δ1 ⊕ k1,2) ⊕ S-Box(w1 ⊕ δ1 ⊕ k1,2)
S-Box(w0 ⊕ δ2 ⊕ k2,3) ⊕ S-Box(w1 ⊕ δ2 ⊕ k2,3)

0

⎤

⎥
⎥
⎦ (9)

To meet the condition shown in Eq. 7, the following equation should be satisfied
(denote S-Box(·) by S(·) for short),

{
S(w0 ⊕ k0,1) ⊕ S(w1 ⊕ k0,1) = S(w0 ⊕ δ1 ⊕ k1,2) ⊕ S(w1 ⊕ δ1 ⊕ k1,2)
S(w0 ⊕ k0,1) ⊕ S(w1 ⊕ k0,1) = S(w0 ⊕ δ2 ⊕ k2,3) ⊕ S(w1 ⊕ δ2 ⊕ k2,3)

(10)

Since the S-Box is a secret permutation, there can be only four kinds of solutions,

(δ1, δ2) = (k0,1 ⊕ k1,2, k0,1 ⊕ k2,3) or
(δ1, δ2) = (k0,1 ⊕ k1,2, w0 ⊕ w1 ⊕ k0,1 ⊕ k2,3) or
(δ1, δ2) = (w0 ⊕ w1 ⊕ k0,1 ⊕ k1,2, k0,1 ⊕ k2,3) or
(δ1, δ2) = (w0 ⊕ w1 ⊕ k0,1 ⊕ k1,2, w0 ⊕ w1 ⊕ k0,1 ⊕ k2,3)

(11)

Similar with the attack in Sect. 3, we let (δ1, δ2) run through all possible values
in F28 × F28 . There will be at least four values of (δ1, δ2) that make Eq. 10 hold.
We call the four (δ1, δ2) in Eq. 11 right (δ1, δ2) and the other values wrong
(δ1, δ2). For right (δ1, δ2), the probability of R(p1) ⊕ R(p2) ∈ S′

1 is 2−16 while
for wrong (δ1, δ2) the probability is still 2−32. Combining with Theorem 1, we
conclude the following proposition.

Proposition 2. Let p ∈ Aw0,δ1,δ2 and p′ ∈ Aw1,δ1,δ2 . (p̂, p̂′) is generated by
exchanging the first diagonal between p and p′. If (δ1, δ2) is right, for certain MJ

with |J | = 3,

Pr(R5(p) ⊕ R5(p′) ∈ MJ ∧ R5(p̂) ⊕ R5(p̂′) ∈ MJ) ≈ 2−46,

while for wrong (δ1, δ2),

Pr(R5(p) ⊕ R5(p′) ∈ MJ ∧ R5(p̂) ⊕ R5(p̂′) ∈ MJ) ≈ 2−62.

The proof of Proposition 2 is similar to the Proposition 1, we omit it here.

Finding (δ1, δ2) Candidates. We can also take advantage of Proposition 2
to find the right (δ1, δ2) which implies the key byte information k0,1 ⊕ k1,2 and
k0,1 ⊕ k2,3. The process for finding (δ1, δ2) candidates is similar to Algorithm 1
except we need to guess two key byte difference. The process is illustrated in
Algorithm 4.
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Determine the Size of Aw0,δ1,δ2 And Aw1,δ1,δ2 . If the size of Aw0,δ1,δ2 and
Aw1,δ1,δ2 are both 2M , we can obtain 22M pairs of (p, p′) by choosing p ∈ Aw0,δ1,δ2

and p′ ∈ Aw1,δ1,δ2 . By exchanging the first diagonal, we can get totally 22M−1

pair-of-pairs such as (p, p′, p̂, p̂′). If R5(p)⊕R5(p′) ∈ MJ and R5(p̂)⊕R5(p̂′) ∈ MJ

for |J | = 3 hold at the same time, then we call such (p, p′, p̂, p̂′) a right pair-of-
pair. Consider the number of right pair-of-pairs,
For right (δ1, δ2),

Pr(Mr ≥ 1) = 1 − Pr(Mr = 0) = 1 − (1 − 2−46)2
2M−1 ≈ 1 − exp(−22M−1−46).

For wrong (δ1, δ2),

Pr(Mw ≥ 1) = 1 − Pr(Mw = 0) = 1 − (1 − 2−62)2
2M−1 ≈ 1 − exp(−22M−1−62).

When we take M = 25, Pr(Mr ≥ 1) ≈ 0.9997 while Pr(Mw ≥ 1) ≈ 0.0001
which means we can distinguish the right (δ1, δ2) from the wrong ones.

Determining k0,1 ⊕ k1,2 and k0,1 ⊕ k2,3. In this attack, we also have a prob-
ability 1 − (1 − 0.0001)2

16−4 ≈ 0.9986 nearly close to 1 to return at least one
wrong (δ1, δ2). On average, approximately (216 − 4) × 0.0001 ≈ 7 wrong (δ1, δ2)
will be returned. To remove the wrong (δ1, δ2) from Δ, we XOR w0 ⊕ w1 with
the two components of each value in Δ and check whether the result is in Δ or
not as Algorithm 5. To determine the exact (k0,1 ⊕ k1,2, k0,1 ⊕ k2,3), we need
to use additional two sets Aw2,δ1,δ2 Aw3,δ1,δ2 where (w0, w1) 	= (w2, w3) with 225

plaintexts and do the same. Finally, the probability that we succeed to recover
the two key bytes with probability 0.99974×2 ≈ 0.9976. The process is illustrated
in Algorithm 6 .

After we recover two key bytes information, we can take the same strategy
to recover another different key byte information in the same diagonal. At last
we can recover 12 key byte difference, i.e., we can get the entire secret key up to
232 variants.

Data Complexity. According to Algorithm 4, for each (δ1, δ2) we use two sets
Aw0,δ1,δ2 and Aw1,δ1,δ2 each with 225 plaintexts. Additional two sets Aw2,δ1,δ2 and
Aw3,δ1,δ2 are also required to find the exact two key byte information. Therefore,
totally we need 225 × 216 × 2 × 2 = 243 chosen plaintexts to recover two key
bytes. To find the 12 bytes key information, the total data complexity is about
243 × 8 = 246.

Computation Complexity. Encrypting two sets with 225 plaintexts we need
225 × 2 = 226 5-round encryption which is the donimant in the complexity of
Algorithm 4. The total time complexity is about 226 × 216 × 2× 8 = 246 5-round
encryption.

Memory Complexity. We allocate two sequence tables with size 225 to store
the two ciphertext sets and additionally 2 hash tables with size 232. The memory
complexity is finally 233 128-bit blocks.
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Algorithm 4. Finding (δ1, δ2) Candidates (Property 2)
1: procedure Core′(w0, w1, r, c) � Return a set containing possible (δ1, δ2)
2: for Each (δ1, δ2) ∈ F28 × F28 do
3: Initialize 2 sequence tables Cw0 and Cw1 , 1 table Δ
4: Prepare two sets Aw0,δ1,δ2 , Aw1,δ1,δ2 with 225 plaintexts each as Eq. 8
5: for i = 0; i < 225; i = i + 1 do
6: for j = 0; j < 2; j = j + 1 do
7: ci

wj
← R5(pi

wj
)

8: Cwj [i] ← ci
wj

� Push back ci
wj

into sequence table
9: end for

10: end for
11: for k = 0; k < 4; k = k + 1 do
12: Initialize 2 hash tables Tw0 , Tw1

13: for i = 0; i < 225; i = i + 1 do
14: for j = 0; j < 2; j = j + 1 do
15: Twj [MC−1(ci

wj
)IDk ] ← index(ci

wj
) � Insert the index of ci

wj
into

hash table
16: end for
17: end for
18: for i = 0; i < 232; i = i + 1 do
19: if there is a collision pair with indexes (i0, i1) and i0 �= i1 then
20: ci1

w0 ← Cw0 [i1], ci0
w1 ← Cw1 [i0] � (ci0

w0 , ci1
w1) and (ci1

w0 , ci0
w1) are

dual pairs
21: if ci1

w0 ⊕ ci0
w1 ∈ Mk then � (ci1

w0 , ci0
w1) is also collided

22: Δ ← δ
23: end if
24: end if
25: end for
26: end for
27: end for
28: return Δ
29: end procedure

Algorithm 5. Remove wrong (δ1, δ2)
1: procedure Remove′( Δ, w0, w1)
2: for each (δ1, δ2) ∈ Δ do
3: if (δ1 ⊕ w0 ⊕ w1, δ2 ⊕ w0 ⊕ w1) /∈ Δ then
4: Remove′ (δ1, δ2) from Δ
5: end if
6: end for
7: return Δ
8: end procedure
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Algorithm 6. Recover kr,c ⊕ kr+1,c+1 and kr,c ⊕ kr+2,c+2 (Property 2)
1: procedure RecoverKeyByte′(r, c, t) � Recover kr,c ⊕ kr+1,c+1 and

kr,c ⊕ kr+2,c+2 with 99.76% success probability
2: Allocate w0, w1, w2, w3 s.t. w0 ⊕ w1 �= w2 ⊕ w3

3: Δ0 ← Core′(w0, w1, r, c)
4: if |Δ0| == 0 then
5: return ⊥ � Fail
6: else
7: Δ′

0 ← Remove′(Δ0, w0 ⊕ w1)
8: end if
9: Δ1 ← Core′(w2, w3, r, c)

10: if |Δ1| == 0 then
11: return ⊥
12: else
13: Δ′

1 ← Remove′(Δ1, w2 ⊕ w3)
14: end if
15: if Δ′

0, Δ
′
1 have the same value then

16: return (δ1, δ2) ← (Δ′
0, Δ

′
1) � Right kr,c ⊕ kr+1,c+1 and kr,c ⊕ kr+2,c+2

must lie in both sets
17: else
18: return ⊥
19: end if
20: end procedure

5 Conclusion

In this paper, we explore the impact of the MC coefficient property on the
security of the AES variant with a secret S-Box. We provide two attacks based
on Property 1 and Property 2 respectively and achieve the best record in terms
of the complexity under chosen-plaintext scenario. Such attacks remind us to
notice the choice of MC matrix for AES-like ciphers.

To our best knowledge, no previous attacks on the AES have taken advantage
of other properties except the branch number of the MC matrix. It means that
we may substitute any other MDS matrix free of Property 1 or 26 for the AES
MC matrix without hazarding its security against other attacks. In [9], Grassi
showed that about only 6.87% among all the MDS matrices have the two kinds
of properties. Nevertheless, the choice of MC is still a difficult work since we
should consider the performance of the cipher. The MC matrix of AES is already
qualified for its pretty low weight, thus it is an interesting open question how
to choose a proper MDS matrix without the particular coefficient property and
achieve the same or even higher efficiency simultaneously.
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