
What Kind of Programming Language Best Suits
Integrative AGI?

Ben Goertzel

SingularityNET Foundation and OpenCog Foundation

Abstract. What kind of programming language would be most appropriate to
serve the needs of integrative, multi-paradigm, multi-software-system approaches
to AGI? This question is broached via exploring the more particular question of
how to create a more scalable and usable version of the ”Atomese” programming
language that forms a key component of the OpenCog AGI design (an ”Atomese
2.0”) . It is tentatively proposed that

– The core of Atomese 2.0 should be a very flexible framework of rewriting
rules for rewriting a metagraph (where the rules themselves are represented
within the same metagraph, and some of the intermediate data created and
used during the rule-interpretation process may be represented in the same
metagraph).

– This framework should (among other requirements)
• support concurrent rewriting of the metagraph according to rules that

are labeled with various sorts of uncertainty-quantifications, and that are
labeled with various sorts of types associated with various type systems.
A gradual typing approach should be used to enable mixture of rules and
other metagraph nodes/links associated with various type systems, and
untyped metagraph nodes/links not associated with any type system.

• allow reasonable efficiency and scalability, including in concurrent and
distributed processing contexts, in the case where a large percentage of
of processing time is occupied with evaluating static pattern-matching
queries on specific subgraphs of a large metagraph (including a rich
variety of queries such as matches against nodes representing variables,
and matches against whole subgraphs, etc.)

• allow efficient and convenient invocation and manipulation of external
libraries for carrying out processing that is not efficiently done in Atom-
ese directly

– Among the formalisms we will very likely want to implement within this
framework is probabilistic dependent-linear-typed lambda calculus or some-
thing similar, perhaps with a Pure IsoType approach to dependent type in-
heritance. Thus we want the general framework to support reasonably effi-
cient/convenient operations within this particular formalism, as an example.

1 Context and Motivations

The history of AI has persistently featured fascinating feedback, synergy and tension
between AI system design and programming language design. Numerous researchers
have come to the conclusion that, to make the radical AI advances they sought, they

ar
X

iv
:2

00
4.

05
26

7v
1

 [
cs

.A
I]

 1
1

A
pr

 2
02

0

would require a better and more AI-friendly programming language environment. Thus
we got languages like LISP and Prolog and their derivates. Which have taught us a
lot about AI and programming, yet without leading so far to the hoped-for AI break-
throughs.

Contemporary neural net based AI hasn’t focused on introduction of new program-
ming languages, but rather on new libraries such as Tensorflow, Torch, Theano and
so forth. On the other hand, the probabilistic programming paradigm has led to a re-
markable profusion of new languages, most of which have arguably been unnecessary
and distracted focus from the problem of efficiently executing probabilistic programs
applied to real-world situations.

If one wants to pursue an integrative, multi-paradigm approach to AGI, then the
situation as regards programming languages remains very far from optimal. If one want
to integrate, say, a logic programming system with a deep neural net perception system
and a program learning system based on higher order functional types – one is quite
likely to want to implement the three components in different languages, and glue them
together with scripts written in a simple language such as python. Either that or one
decides to value consistency and unity over elegance and efficiency, and shoehorns
all three into a single language, reconciling oneself to either dramatic inefficiency or
unwieldy, awkward code.

We have faced these issues recently in thinking through an envisioned redesign
and reimplementation of the OpenCog AGI platform. The current version of OpenCog
relies heavily on a tool called the OpenCog Pattern Matcher, which is implemented in
Scheme and is able to carry out highly complex procedure execution and predicate eval-
uation in the course of matching patterns against OpenCog’s ”Atomspace” weighted,
labeled hypergraph knowledge store. This Pattern Matcher is powerful but has become
problematic for various reasons, including the lack of any built-in type system with
an efficient type checker associated to it, and the complexity of interlacing the pattern
matching process with calls to external processing tools such as deep neural net toolkits.
So we have begun designing a replacement we call ”Atomese 2” – Atomese being the
informal name given to Scheme scripts that invoke Atomspace API calls and OpenCog
Pattern Matcher queries.

It turns out that many of the conceptual and formal issues arising in the context of
Atomese 2 design are of significantly broader importance, and are things that would
arise in any attempt to create a programming language having both realistic efficiency
and elegance in the context of integrative AGI applications. In this paper we will review
our thinking regarding Atomese 2, but keeping an eye always on the broader issues
raised. In the end what’s important for AGI is not any specific programming language,
but rather the underlying principles and structures, which may ultimately be imple-
mented in a variety of different languages.

2 Atomese 2 – Conclusions and Considerations

The OpenCog AGI framework, within which the Atomese language under discussion
here operates, is centered on a large, distributed, weighted labeled metagraph called
the ”Atomspace.” Atomese is then a custom language specialized in pattern-matching

and transforming this metagraph (”Atom” being OpenCog lingo for metagraph nodes
or links).

Just to give a flavor, a simple example of Atomese 1 usage is given in Figure 2 –
drawn from an application built by Cisco Systems 1 in collaboration with Singulari-
tyNET Foundation, applying OpenCog to fuse results from multiple vision-processing
deep neural nets to make inferential judgments about street scenes.

Fig. 1. Visual example of jaywalking that is recognized by Atomese expression in Figure 2

The OpenCog AGI design includes a carefully wrought combination of multiple
AI methods such as probabilistic logical reasoning and pattern mining; probabilistic
evolutionary program learning; neural net based attention allocation; neural-symbolic
usage of deep neural nets for language, vision and sound; algorithmic chemistry based
computational creativity ... and more. It is an open-ended framework intended to allow
experimentation with a variety of different AI algorithms and approaches. On the other
hand, the assemblage of AI tools already being explored and experimented with in
an OpenCog context is sufficiently broad as to militate strongly toward an extremely
flexible design.

Design of Atomese 2 becomes inextricably bound up with design of the overall
OpenCog framework, including the Atomspace itself and the specific AI tools and meth-
ods to be implemented in Atomese and run in the context of the Atomspace. Among the
many issues that arise in this design process are:

1. What should the core Atomese formal language be?
2. Algorithmic approach to Atomese interpretation/compilation
3. Utilization of core Atomese to support various specialized formal languages useful

for various AI algorithms
4. Surface form of Atomese language (”syntactic sugar”)

1 https://www.youtube.com/watch?v=s7EtRJatVmg

https://www.youtube.com/watch?v=s7EtRJatVmg

Fig. 2. Atomese expression that recognizes simple forms of jaywalking based on output of deep
neural visual recognizers. Application of the expression is mediated by OpenCog’s URE rule
engine, which leverages OpenCog Pattern Matcher internally.

5. RAM-based local Metagraph store – which must be optimized for heavy Atomese
usage of certain sorts

6. Distributed and persistent Metagraph store, perhaps with distributed RAM-based
middleware as well

7. Atomese libraries corresponding to particular AI algorithms and approaches (e.g.
the ones involved in OpenCog already)

8. Mode of integration of Atomese programs with external data/knowledge stores and
processing and learning frameworks (e.g. external deep neural net libraries)

In this paper we do not aim to address all these issues in depth, but rather focus on the
first three.

In the context of core Atomese and its use to implement other formal languages (1
and 2 above), we need to think about issues such as:

– simple representation of the various Atom types in play in the OpenCog design
– effective representation of external entities like knowledge-stores, specialized learn-

ing algorithms, simulations etc. as monads [or using some other powerful mode of
encapsulation]

– breaking down pattern-matching process into simple atomic operations like “match
this pattern at this location“ and “move locus of pattern-matching to?”

– compatibility of the above breakdown w/ concurrent and distributed processing
– timed pattern matching should be fairly easily efficiently implementable
– How can we make it simple for a developer to add low level optimized support for

some particular set of predicates / schema that’s of interest?

3 The Role of Static Pattern Matching in Atomese

A peculiarity of the intended AGI use-case for Atomese is that we can assume the vast
majority of processing time is spent on two key operations,

1. checking a particular (generally small) sub-metagraph to see if a certain pattern is
matched there, for a wide variety of patterns, to be dynamically generated and not
foreseeable in advance

2. applying a small set of metagraph rewrite rules to a particular (generally small)
metagraph

There can be assumed to be roughly comparable balance between these two sorts of
operations.

Also, there is a need both for rapid processing of these sorts of queries on a large
metagraph in local RAM, and for distributed processing of these sorts of queries on a
metagraph that is stored across numerous machines.

This means it is not important that Atomese be especially efficient at, say, sorting
lists or computing the FFT. What is important is that it is efficient at doing the above two
operations and piping around, and doing simple manipulations on, the results of these
operations. If e.g. list-sorting or mathematical calculations are needed, it is assumed that
Atomese will get these things done via referencing libraries coded in other languages.
Elegant and efficient interfacing with a variety of other languages and toolkits is thus
highly important.

3.1 Decomposing the Pattern Matching and Rule System Execution Process

In OpenCog, the two key operations mentioned above are packaged up into the Pattern
Matcher, which embodies a particular search algorithm and a variety of programming-
language mechanisms along with basic pattern-matching functionality; and the Unified
Rule Engine which executes a set of rules using forward or backward chaining, using
the Pattern Matcher to manage rule application. This is a powerful approach but also
can be overly rigid.

One design idea under discussion regarding Atomese 2 is that the interpretation
process should break down an Atomese program into small chunks, which will mostly
exemplify the two operations mentioned above (local pattern matching and local rewrite
rules), plus operations of traversal within the metagraph. Atomese scripts will then com-
bine these chunks in various ways, dispatching some to remote machines as needed. Im-
proved versions of what the current OpenCog Pattern Matcher and URE do would then
be implemented at Atomese scripts combining these elementary chunks. In essence,
in this approach Atomese scripts will use functional programming constructs to inter-
weave pattern matching with procedural content execution.

A few other particularities of pattern matching in an integrative AGI context are
that:

– Static pattern matching must include matching against Atoms representing vari-
ables (i.e. variables must be first-class citizens, treated like any other cognitive
content)

– It must also include matching of individual query terms against sub-hypergraphs
(not just individual nodes/links)

It should also be noted that static Atomspace pattern matching via Breadth-First-
Search can be implemented so as to efficiently exploit multi-GPU architectures (using
Gunrock [10] or similar tools).

4 A Two-Layer Language Design

This section outlines a potential high level approach to Atomese 2 design based on the
above concepts.

4.1 A Generic Atomese Core

To enable the flexible exploration needed to work from our current state of knowledge
toward a refined AGI design, the Atomese core must be something quite generic – e.g.
it must comprise both

– a way of defining/manipulating Atoms (including specifying Atoms that embody
rewriting rules for mapping sub-metagraphs into sub-metagraphs)

– a way of defining/utilizing Atom type systems and Atom indexes associated w/
specific Atom types or type-systems. (Note that the type systems defined should be
defined within the same metagraph in which the Atoms reside.)

For each Atom type system that one defines, one should be able to plug in a type-checker
/ type-inference-system.

The Atomese core may then need to be a rather generic gradual-typing framework,
that deals with a system involving some Atoms that have incompletely specified or
nonspecified types, and other Atoms that are defined w/in specific type systems.

Gradual Typing For background on gradual typing see: [8] [9].
While the matter seems not to have been explored theoretically in great detail, it

seems intuitive that gradual typing in programming languages should map via Curry
Howard type isomorphisms into paraconsistent logics of some sort.

Achieving efficient execution of gradually typed languages is challenging (though
not infeasible) because of obvious issues regarding casting between the dynamically
and statically types parts of a program [6]. However, given the peculiarities of Atomese,
this bottleneck may not matter as the pattern-matching bottleneck may be more severe.

4.2 Critical Formalizations Atop the Core

The next larger layer of the onion would then be a specific type system (or small set of
type systems) that we find to be interesting and potentially adequate for the particular
AGI-oriented algorithms we’re developing in practice. This would be a set of languages

/ formal systems developed on top of core Atomese. This is where, tentatively, it seems
probabilistic linear dependent types will come in.

The obvious advantage of this sort of layered approach is that we can then modify
the ”probabilistic linear dependent types” or other specific formalizations a little later
without having to rebuild the architecture. However, we should expect that in practice
nearly all users are going to end up working with the ”specific type system” layer of
the onion we initially create, rather than the ”generic gradual-typing based Atom and
Atom-type-system framework” layer.

5 Some Specific Type Systems of Apparent AGI Relevance

One hypothesis that seems very much worth exploring is to use probabilistic linear de-
pendent types with IsoType type inference as a formalization on top of Atomese core,
with power to drive both probabilistic logic and also related applications such as prob-
abilistic program learning.

It seems that this particular flavor of type system may meet the needs of a variety
of AI algorithms currently existing in OpenCog, plus others that have been proposed
for OpenCog integration: Probabilistic Logic Networks, surprisingness-based pattern
mining, probabilistic evolutionary program learning (MOSES), probabilistic program-
ming (including cases with neural nets or probabilistic logic inference on the back
end), nonlinear-dynamical attention allocation, content-addressable episodic memory,
neural-symbolic perception processing and action control.

The full argument why this particular formalization direction is valuable for meeting
these needs of these AI algorithms is involved with many parts and would be too lengthy
to full elaborate here. Rather, here only a few of the more critical points will be sketched.

5.1 Dependent Types

Dependent types are valuable in an AGI context because they enable elegant manifesta-
tion of the morphism between declarative knowledge (logic expressions) and procedural
knowledge (programs). Programs expressed with dependent types can be very straight-
forwardly interpreted as logic expressions. Converting between procedural and declar-
ative knowledge is key to AGI, and having a formalism that makes this convenient is
high value. An elegant prototype interpreter for lambda calculus with dependent types
is Lambda-Pi, available as open source code on Github 2.

5.2 IsoType Systems

Pure IsoType Systems (PITS) are a way to get (a lot of) the power of dependent types
without making type-checking undecidable [11]. They may also help with making de-
pendent type checking not only decidable but reasonably fast, though this is still an
active research topic. Whether their limitations are important from an AGI perspective
is not clear.

2 https://github.com/lambda-pi-plus/lambda-pi-plus , https:
//github.com/tdietert/lambda-pi

https://github.com/lambda-pi-plus/lambda-pi-plus
https://github.com/tdietert/lambda-pi
https://github.com/tdietert/lambda-pi

5.3 Linear Types

Engineering General Intelligence [3] [4], the foundational book outlining the theory
behind OpenCog, has a whole section on ”effort management” – counting the computa-
tional resource usage of each cognitive operation and using this in planning etc. This is
important and ties into Occam’s Razor heuristics which are key to AGI theory. though
we haven’t dealt with explicit effort management much in our practical OpenCog work
so far.

Linear logic basically lets you count resource usage in the guts of your logic engine
(or equivalently, your program execution process). Of course there are always other
ways to do this, but having it built into the logic is a way that fits naturally with reflection
and meta-computation. Dependent types have been gotten to work with linear types [5];
and pattern matching with linear types has also been explored [7].

We note that to make probabilistic linear lambda calculus confluent you choose ei-
ther call-by-value or call-by-reference. Similarly making either of these choices renders
type checking decidable in dependent type theory w/ isotypes. One guesses that making
probabilistic linear lambda calculus with dependent linear types, if one wants to restrict
type equivalency to isotyping, then one will get both confluence and decidability from
either choice of call-by-reference or call-by-value.

5.4 Probability/Logic Interoperation

Probabilistic methods are probably the biggest innovation in AI over the last couple
decades, and it seems clear that including probabilistic representation and manipulation
at the basic level is going to be a good idea for any AGI engine.

Recent work [1] gives a variant of probabilistic lambda calculus that is confluent (it
achieves confluence by limiting the reductions that can take place, in a manner framed
via linear logic).

This sort of low-level probability/logic integration lays the groundwork for specific
probabilistic-logic math aimed at deductive, inductive, abductive and other forms of
inference, such as e.g. OpenCog’s Probabilistic Logic Networks (PLN) framework [2]
carries out.

PLN depends heavily on non-confluent reductions in probabilistic logic expressions,
however these are necessarily going to be kind of heuristic and history-guided, so it
makes sense for them to live in the next layer of the onion – i.e. we have core Atomese,
then probabilistic linear dependently types lambda calculus or similar built on that, then
PLN built on that. But the building of PLN on top of elaborated lambda calculus can
use the same basic Atomese syntax and interpreter as the building of elaborated lambda
calculus on core Atomese.

6 Toward an Integrative AGI Language and Architecture

Figure 6 summarizes the overall ”next-generation OpenCog” architecture that is sug-
gested by the above thoughts on Atomese 2 design.

In the context of the above figure, e.g. PLN logic might end up using a type sys-
tem founded in probabilistic linear dependent types with IsoType type inference. On

Fig. 3. A software architecture for integrative AGI, with a pattern-matching-focused, gradually
typed Atomese language at the core.

the other hand, for automated program learning it might be decided that the IsoType
approach is too restrictive, and it’s better to bite the inefficiency bullet a little harder
and go with a more flexible type inheritance mechanism.

In this case, via the gradual typing approach, we could have some Atoms that are
not typed at all, and can thus play a role in either the PLN or program learning focused
type systems. On the other hand, if program learning generates a program that then
needs to be reasoned about, this will necessitate a mapping from the program-learning
type system to the probabilistic-logic type system. There will be some equations that
are consistent in one of these logics but not the other (in particular, perhaps some that
are consistent using IsoTypes and not using more flexible inheritance mechanisms) –
thus rendering the overall framework paraconsistent, rather than strictly consistent.

7 Conclusion

There is much more to be learned here and we are in the middle rather than at the end
of the Atomese 2 language design process. However, the thinking we’ve done so far has
already highlighted some issues of likely broader relevance in the context of integrative
approaches to AGI. For instance, the dominance of RAM-based pattern matching in
terms of runtime resource consumption, and the convenience of a gradual typing ap-
proach, are points going well beyond the particulars of OpenCog’s chosen assemblage
of AI algorithms.

Formulating the right programming language is very unlikely to magically pro-
duce a workable AGI system. However, a programming language and environment that
eases rapid implementation and scalable deployment of cross-paradigm AI algorith-
mics, could certainly dramatically accelerate progress.

Acknowledgements

Many of the ideas reviewed here originated in discussions with Alexey Potapov, Cassio
Pennachin, Vitaly Bogdanov and other SingularityNET colleagues – though the specific
presentation of these ideas here is my own responsibility for better and/or worse.

References

1. Faggian, C., Rocca, S.R.D.: Lambda calculus and probabilistic computation. CoRR
abs/1901.02853 (2019), http://arxiv.org/abs/1901.02853

2. Goertzel, B., Ikle, M., Goertzel, I., Heljakka, A.: Probabilistic Logic Networks. Springer
(2008)

3. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 1: A
Path to Advanced AGI via Embodied Learning and Cognitive Synergy. Springer: Atlantis
Thinking Machines (2013)

4. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 2: The
CogPrime Architecture for Integrative, Embodied AGI. Springer: Atlantis Thinking Ma-
chines (2013)

5. Krishnaswami, N.R., Pradic, P., Benton, N.: Integrating linear and dependent types. In: Pro-
ceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. p. 17?30. POPL ?15, Association for Computing Machinery, New
York, NY, USA (2015), https://doi.org/10.1145/2676726.2676969

6. New, M.S., Licata, D.R.: Call-by-Name Gradual Type Theory. In: Kirchner, H. (ed.) 3rd
International Conference on Formal Structures for Computation and Deduction (FSCD
2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 108, pp. 24:1–24:17.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018), http:
//drops.dagstuhl.de/opus/volltexte/2018/9194

7. Schack-Nielsen, A., Schürmann, C.: Pattern unification for the lambda calculus with linear
and affine types. vol. 34, pp. 101–116 (09 2010)

8. Siek, J.: What is gradual typing? (2010), https://wphomes.soic.indiana.edu/
jsiek/what-is-gradual-typing/

9. Siek, J., Garcia, R.: Interpretations of the gradually-typed lambda calculus (09 2012)
10. Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: A high-

performance graph processing library on the gpu. In: Proceedings of the 21st ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming. pp. 1–12 (2016)

11. YANG, Y., OLIVEIRA, B.C.D.S.: Pure iso-type systems. Journal of Functional Program-
ming 29, e14 (2019)

http://arxiv.org/abs/1901.02853
https://doi.org/10.1145/2676726.2676969
http://drops.dagstuhl.de/opus/volltexte/2018/9194
http://drops.dagstuhl.de/opus/volltexte/2018/9194
https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing/
https://wphomes.soic.indiana.edu/jsiek/what-is-gradual-typing/

	What Kind of Programming Language Best Suits Integrative AGI?

