Lecture Notes in Computer Science

12097

Founding Editors

Gerhard Goos Karlsruhe Institute of Technology, Karlsruhe, Germany Juris Hartmanis Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino Purdue University, West Lafayette, IN, USA Wen Gao Peking University, Beijing, China Bernhard Steffen TU Dortmund University, Dortmund, Germany Gerhard Woeginger RWTH Aachen, Aachen, Germany Moti Yung Columbia University, New York, NY, USA More information about this series at http://www.springer.com/series/7407

Anna Maria Bigatti · Jacques Carette · James H. Davenport · Michael Joswig · Timo de Wolff (Eds.)

Mathematical Software – ICMS 2020

7th International Conference Braunschweig, Germany, July 13–16, 2020 Proceedings

Editors Anna Maria Bigatti Dipartimento di Matematica Università degli Studi di Genova Genova, Genova, Italy

James H. Davenport Department of Computer Science University of Bath Bath, UK

Timo de Wolff D Technische Universität Braunschweig Braunschweig, Germany Jacques Carette D Computing and Software McMaster University Hamilton, ON, Canada

Michael Joswig D Institut für Mathematik, MA 6-2 TU Berlin Berlin, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-030-52199-8 ISBN 978-3-030-52200-1 (eBook) https://doi.org/10.1007/978-3-030-52200-1

LNCS Sublibrary: SL1 - Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

These are the proceedings of the 7th International Congress on Mathematical Software, which was held during July 13–16, 2020, and hosted by the Technische Universität Braunschweig, Germany. In fact, in the middle of the pandemic caused by the Sars-Cov-2 virus, the conference took place online, and the video recordings of the talks are available on the conference website to accompany this book.

The ICMS community believes that the appearance of mathematical software is one of the most important current developments in mathematics, and this phenomenon should be studied as a coherent whole. We hope this conference can serve as the main forum for mathematicians, scientists, and programmers who are interested in development of mathematical software. The program of the 2020 meeting consisted of 14 topical sessions, which made up the core of the program, consisting of more than 120 contributed talks. Session contributors were given the option to submit their work for publication in these proceedings, and 48 papers were selected through a peer-review process. For the first time this ICMS featured a special session with parallel software demonstrations.

The conference also featured three invited talks. Erika Ábrahám gave a talk on "Solving Real-Algebraic Formulas with SMT-RAT," Alan Edelman on "Julia—The Power of Language," and Victor Shoup on "NTL: a Library for Doing Number Theory." Short abstracts of these talks also appear in these proceedings. We thank the invited speakers for accepting our invitations to speak at ICMS 2020. We also thank all the contributors, session organizers, PC members, as well the local arrangement team and the members of the Advisory Board for helping to make this conference a success. Finally, we thank our sponsors, listed on the following pages, for the financial support of the event. Sebastian Gutsche and Amazon kindly provided technical support.

July 2020

Anna Maria Bigatti Jacques Carette James H. Davenport Michael Joswig Timo de Wolff

Organization

General Chair

Michael Joswig	TU Berlin and MPI for Mathematics in the Sciences,
Germany	

Program Committee Chairs

Anna Maria Bigatti	Università degli Studi di Genova, Italy
Folkmar Bornemann	TU München, Germany
Jacques Carette	McMaster University, Canada

Program Committee

Erika Ábrahám	RWTH Aachen, Germany
Carlo Angiuli	Carnegie Mellon University, USA
Katja Berčič	FAU Erlangen-Nürnberg, Germany
Anton Betten	Colorado State University, USA
Gavin Brown	University of Warwick, UK
Taylor Brysiewicz	Texas A&M University, USA
Changbo Chen	Chinese Academy of Sciences, China
Tom Coates	Imperial College London, UK
Wolfgang Dalitz	Zuse Institute Berlin, Germany
James H. Davenport	University of Bath, UK
Bettina Eick	TU Braunschweig, Germany
Matthew England	Coventry University, UK
Claus Fieker	TU Kaiserslautern, Germany
Florian Hess	Oldenburg University, Germany
Alexander Kasprzyk	Nottingham University, UK
Michael Kohlhase	FAU Erlangen-Nürnberg, Germany
Christoph Koutschan	RICAM Linz, Austria
Viktor Levandovskyy	RWTH Aachen, Germany
Anders Mörtberg	Stockholm University, Sweden
Yue Ren	Swansea University, UK
Anna-Laura Sattelberger	MPI for Mathematics in the Sciences, Germany
Benjamin Schröter	Binghamton University, USA
Moritz Schubotz	FIZ Karlsruhe, Germany
Emre Can Sertöz	Leibniz Universität Hannover, Germany
Nicolas M. Thiery	Université Paris-Saclay, France
Rebecca Waldecker	Martin-Luther-University Halle-Wittenberg, Germany
Timo de Wolff	TU Braunschweig, Germany

Advisory Board

James Davenport (Chair) Manuel Kauers George Labahn Josef Urban Jonathan Hauenstein Peter Paule Andrew Sommese Thorsten Koch University of Bath, UK University of Linz, Austria University of Waterloo, Canada Czech Technical University in Prague, Czech Republic University of Notre Dame, USA RISC Linz, Austria University of Notre Dame, USA TU Berlin, Germany

Local Organizers

Timo de Wolff (Chair) Alexander Cant Bettina Eick Janin Heuer Birgit Komander Khazhgali Kozhasov Dirk Lorenz Tobias Moede Matthias Neumann-Brosig Silke Thiel Oğuzhan Yürük

Additional Reviewers

Christoph Brauer Lars Kastner Benjamin Lorenz Dennis Müller Tom Wiesing

Sponsors

Technische Universität Braunschweig Emmy Noether-Programm der DFG Einstein Stiftung Berlin Berlin Mathematics Research Center MATH⁺ SFB/TRR 195: Symbolic Tools in Mathematics and their Application Amazon Maplesoft

Abstracts of Invited Talks

Solving Real-Algebraic Formulas with SMT-RAT

Erika Ábrahám

RWTH Aachen, Germany abraham@cs.rwth-aachen.de

In this talk we present our SMT solver named SMT-RAT, a tool for the automated check of quantifier-free real and integer arithmetic formulas for satisfiability. As a distinguishing feature, SMT-RAT provides a set of decision procedures and supports their strategic combination. We describe our CArL C++ library for arithmetic computations, the available modules implemented on top of CArL, and how modules can be combined to satisfiability-modulo-theories (SMT) solvers. Besides the traditional SMT approach, some new modules support also the recently proposed and highly promising model-constructing satisfiability calculus approach.

Julia—The Power of Language

Alan Edelman

MIT, USA

edelman@mit.edu

We often think of a programming language as a means to implement and check mathematics or as a sideshow to raise conjectures only to be hidden when the paper comes out. We argue that while all this is true, elegant open source software has the power to create much more. In this talk, we will provide examples, and suggest how the traditional academic view of paper first, computation secondary needs to be more flexible.

NTL: A Library for Doing Number Theory

Victor Shoup

Courant Institute, USA shoup@cs.nyu.edu

NTL is a high-performance C++ library for doing arithmetic on polynomial over various rings (integers and finite fields), as well as a number of other algebraic structures. I will discuss the history of NTL, as well as some of the basic elements of its design and the algorithms it employs. I will also discuss recent work on making NTL exploit multicore and SIMD computer architectures, as well as NTL's use in implementing fully homomorphic encryption schemes.

Topical Sessions

Gröbner Bases in Theory and Practice

Session Chair

Viktor Levandovskyy RWTH Aachen, Germany

Real Algebraic Geometry

Session Chairs

Erika Ábrahám	RWTH Aachen, Germany
James Davenport	University of Bath, UK
Matthew England	Coventry University, UK

Algebraic Geometry via Numerical Computation

Session Chairs

Taylor Brysiewicz	Texas A&M University, USA
Emre Sertöz	Leibniz Universität Hannover, Germany

Computational Algebraic Analysis

Session Chairs

Christoph Koutschan	RICAM, Austria
Anna-Laura Sattelberger	MPI for Mathematics in the Sciences, Germany

Software for Number Theory and Arithmetic Geometry

Session Chairs

Claus Fieker	TU Kaiserslautern, Germany
Florian Hess	Oldenburg University, Germany

Groups and Group Actions

Session Chairs

Bettina Eick	TU Braunschweig, Germany
Rebecca Waldecker	Martin-Luther-University Halle-Wittenberg, Germany

The Classification Problem in Geometry

Session Chair

Polyhedral Methods in Geometry and Optimization

Session Chairs

Yue Ren	Swansea University, UK
Benjamin Schröter	Binghamton University, USA

Univalent Mathematics: Theory and Implementation

Session Chairs

Carlo Angiuli	Carnegie Mellon University, USA
Anders Mörtberg	Stockholm University, Sweden

Artificial Intelligence and Mathematical Software

Session Chairs

Changbo Chen	Chinese Academy of Sciences, China
Matthew England	Coventry University, UK

Databases in Mathematics

Session Chairs

Gavin Brown	University of Warwick, UK
Tom Coates	Imperial College London, UK
Alexander Kasprzyk	Nottingham University, UK

Accelerating Innovation Speed in Mathematics by Trading Mathematical Research Data

Session Chairs

Katja Berčič	FAU Erlangen-Nürnberg, Germany
Wolfgang Dalitz	Zuse Institute Berlin, Germany
Moritz Schubotz	FIZ Karlsruhe, Germany

The Jupyter Environment for Computational Mathematics

Session Chair	
Nicolas M. Thiéry	Paris-Sud University, France
General Session	
Session Chair	
Michael Joswig	TU Berlin and MPI for Mathematics in the Sciences, Germany

Software Demonstrations

- The Quantifier Elimination Package in Maple for QE and Real Algebraic Geometry Zak Tonks
- HomotopyContinuation.jl a package for solving systems of polynomials in Julia Sascha Timme and Paul Breiding
- A variant of van Hoeij's algorithm for computing hypergeometric term solutions of holonomic recurrence equations

Bertrand Teguia Tabuguia

- Classifying Cubic Surfaces over Finite Fields with Orbiter
 Anton Betten and Fatma Karaoglu
- Software for Generating Points Uniformly in a Convex Polytope
 Mark Korenblit and Efraim Shmerling

Contents

Gröbner Bases in Theory and Practice

A Design and an Implementation of an Inverse Kinematics Computation in Robotics Using Gröbner Bases	3
Real Algebraic Geometry	
Curtains in CAD: Why Are They a Problem and How Do We Fix Them? Akshar Nair, James Davenport, and Gregory Sankaran	17
Chordality Preserving Incremental Triangular Decomposition and Its Implementation <i>Changbo Chen</i>	27
Algebraic Geometry via Numerical Computation	
$\mathbb{Q}(\sqrt{-3})$ -Integral Points on a Mordell Curve	39
A Numerical Approach for Computing Euler Characteristics of Affine Varieties	51
Evaluating and Differentiating a Polynomial Using a Pseudo-witness Set Jonathan D. Hauenstein and Margaret H. Regan	61
Computational Algebraic Analysis	
Algorithms for Pfaffian Systems and Cohomology Intersection Numbers of Hypergeometric Integrals	73
Software for Number Theory and Arithmetic Geometry	
Computations with Algebraic Surfaces Andreas-Stephan Elsenhans and Jörg Jahnel	87
Evaluating Fractional Derivatives of the Riemann Zeta Function Ricky E. Farr, Sebastian Pauli, and Filip Saidak	94

xx Contents

Groups and Group Actions

Towards Efficient Normalizers of Primitive Groups	105
Homomorphic Encryption and Some Black Box Attacks Alexandre Borovik and Şükrü Yalçınkaya	115
Nilpotent Quotients of Associative Z-Algebras and Augmentation Quotients of Baumslag-Solitar Groups <i>Tobias Moede</i>	125
The GAP Package LiePRing Bettina Eick and Michael Vaughan-Lee	131
The Classification Problem in Geometry	
Classifying Simplicial Dissections of Convex Polyhedra with Symmetry Anton Betten and Tarun Mukthineni	143
Classification Results for Hyperovals of Generalized Quadrangles Bart De Bruyn	153
Isomorphism and Invariants of Parallelisms of Projective Spaces Svetlana Topalova and Stela Zhelezova	162
Classification of Linear Codes by Extending Their Residuals Stefka Bouyuklieva and Iliya Bouyukliev	173
The Program GENERATION in the Software Package QEXTNEWEDITION Iliya Bouyukliev	181
Polyhedral Methods in Geometry and Optimization	
Algebraic Polytopes in Normaliz	193
Real Tropical Hyperfaces by Patchworking in polymake Michael Joswig and Paul Vater	202
Practical Volume Estimation of Zonotopes by a New Annealing Schedule for Cooling Convex Bodies Apostolos Chalkis, Ioannis Z. Emiris, and Vissarion Fisikopoulos	212
Slack Ideals in Macaulay2 Antonio Macchia and Amy Wiebe	222

	Contents	xxi
Hyperplane Arrangements in polymake Lars Kastner and Marta Panizzut		232
A Convex Programming Approach to Solve Posynomial Systems Marianne Akian, Xavier Allamigeon, Marin Boyet, and Stéphane Gaubert		241
Univalent Mathematics: Theory and Implementation		
Equality Checking for General Type Theories in Andromeda 2 Andrej Bauer, Philipp G. Haselwarter, and Anja Petković		253
Artificial Intelligence and Mathematical Software		
GeoLogic – Graphical Interactive Theorem Prover for Euclidean Geometry		263
A Formalization of Properties of Continuous Functions on Closed Intervals Yaoshun Fu and Wensheng Yu		272
Variable Ordering Selection for Cylindrical Algebraic Decomposit with Artificial Neural Networks Changbo Chen, Zhangpeng Zhu, and Haoyu Chi		281
Applying Machine Learning to Heuristics for Real Polynomial Constraint Solving		292
A Machine Learning Based Software Pipeline to Pick the Variable O for Algorithms with Polynomial Inputs Dorian Florescu and Matthew England	-	302
Databases in Mathematics		
FunGrim: A Symbolic Library for Special Functions		315
Accelerating Innovation Speed in Mathematics by Trading Mathematical Research Data		
Operational Research Literature as a Use Case for the Open Research Knowledge Graph		327

Making Presentation Math Computable: Proposing a Context Sensitive Approach for Translating LaTeX to Computer Algebra Systems André Greiner-Petter, Moritz Schubotz, Akiko Aizawa, and Bela Gipp	335
Employing C++ Templates in the Design of a Computer Algebra Library Alexander Brandt, Robert H. C. Moir, and Marc Moreno Maza	342
Mathematical World Knowledge Contained in the MultilingualWikipedia ProjectDennis Tobias Halbach	353
Archiving and Referencing Source Code with Software Heritage Roberto Di Cosmo	362
The Jupyter Environment for Computational Mathematics	
Polymake.jl: A New Interface to polymake	377
Web Based Notebooks for Teaching, an Experience at Universidad de Zaragoza Miguel Angel Marco Buzunariz	386
Phase Portraits of Bi-dimensional Zeta Values	393
Prototyping Controlled Mathematical Languages in Jupyter Notebooks Jan Frederik Schaefer, Kai Amann, and Michael Kohlhase	406
General Session	
Method to Create Multiple Choice Exercises for Computer Algebra System Tatsuyoshi Hamada, Yoshiyuki Nakagawa, and Makoto Tamura	419
A Flow-Based Programming Environment for Geometrical Construction Kento Nakamura and Kazushi Ahara	426
MORLAB – A Model Order Reduction Framework in MATLAB and Octave.	432

Peter Benner and Steffen W. R. Werner

Contents	xxiii	
----------	-------	--

Markov Transition Matrix Analysis of Mathematical Expression Input Models	451
Certifying Irreducibility in $\mathbb{Z}[x]$ John Abbott	462
A Content Dictionary for In-Object Comments	473
Implementing the Tangent Graeffe Root Finding Method Joris van der Hoeven and Michael Monagan	482
Author Index	493