
GeoLogic – Graphical Interactive
Theorem Prover for Euclidean Geometry

Miroslav Oľsák(B)

University of Innsbruck, Innsbruck, Austria
mirek@olsak.net

Abstract. Domain of mathematical logic in computers is dominated
by automated theorem provers (ATP) and interactive theorem provers
(ITP). Both of these are hard to access by AI from the human-imitation
approach: ATPs often use human-unfriendly logical foundations while
ITPs are meant for formalizing existing proofs rather than problem solv-
ing. We aim to create a simple human-friendly logical system for math-
ematical problem solving. We picked the case study of Euclidean geom-
etry as it can be easily visualized, has simple logic, and yet potentially
offers many high-school problems of various difficulty levels. To make the
environment user friendly, we abandoned strict logic required by ITPs,
allowing to infer topological facts from pictures. We present our system
for Euclidean geometry, together with a graphical application GeoLogic,
similar to GeoGebra, which allows users to interactively study and prove
properties about the geometrical setup.

Keywords: Euclidean geometry · Logical system

1 Overview

The article discusses GeoLogic 0.2 which can be downloaded from https://
github.com/mirefek/geo logic. It is a logic system for Euclidean geometry
together with a graphical application capable of automatic visualization of basic
facts (equal angles, equal distances, point being on a line, ...) and allowing user
interaction with the logic system. GeoLogic can be used for proving many clas-
sical high school geometry problems such as Simson’s line, Pascal’s theorem, or
some problems from International Mathematical Olympiad. Examples of such
proofs are available in the package. In this paper, we first explain our motiva-
tion, then we describe the underlying logical system, and finally, we present an
example of proving the Simson’s line to demonstrate GeoLogic’s proving and
visualization capabilities.

There are many mathematical competitions testing mathematical problem
solving capabilities of human beings, presumably most famous of which is the
International Mathematical Olympiad (IMO). Writing an automated theorem
prover (ATP) that could solve a large portion of IMO problems is a challenge

c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 263–271, 2020.
https://doi.org/10.1007/978-3-030-52200-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52200-1_26&domain=pdf
http://orcid.org/0000-0002-9361-1921
https://github.com/mirefek/geo_logic
https://github.com/mirefek/geo_logic
https://doi.org/10.1007/978-3-030-52200-1_26


264 M. Oľsák

Fig. 1. GeoLogic screenshot

recognized in the field of artificial intelligence [6], and could potentially lead to
strong ATPs in general.

IMO, as well as many regional mathematical olympiads divide problems into
four categories: algebra, geometry, combinatorics, and number theory. From a
human solver’s perspective, computers can significantly help with solving geom-
etry problems using an application such as GeoGebra – it allows the user to
draw the configuration precisely, and observe how it changes when moving the
initial points.

This is one of the reasons why we focused on geometry. Our objective is to
capture the steps performed by such human solver in more detail, hoping it could
eventually lead to better understanding of human thinking in general.

Therefore, we are building an interactive theorem prover, while preserving
usability as an exploration tool. We have implemented a very simple logic, as it
is sufficient for Euclidean geometry: most of the geometrical reasoning involves
only direct proofs without higher-order logic or case analysis. While some geo-
metrical proofs use case analysis for different topological configurations, we use
a different approach. In GeoLogic, we allow inferring topological facts (such as
the orientation of a triangle) from the picture (numerical model). This proves
only one case of the problem (and its neighborhood), and could potentially lead
to inconsistencies caused by numerical errors. However, we believe inconsistency
caused by a numerical error is unlikely because we require the fact to be satisfied
by a sufficient margin for postulating it.

In the future, we would like to experiment with machine learning agents
leading to human-like ATPs for geometry. We would like to also experiment with
computer vision components based on the GeoLogic’s image output. Another



GeoLogic – Graphical Interactive Theorem Prover for Euclidean Geometry 265

interesting research direction would be adding tools for case analysis, or proving
topological facts, so that a solving process of a problem would consist first from
finding a solution in the current GeoLogic’s flexible logic, and then transforming
it into a rigorous one. We believe that such an approach would be very close to
the geometrical problem-solving procedure of human beings.

Finally, even though our main motivation was not to make a pedagogical
tool, and we do not market GeoLogic as an application for an arbitrary high
school student in its current form, we also believe that GeoLogic can be already
interesting for talented students. Our objective of making a user-friendly inter-
active theorem prover for geometry is well-aligned with educational purposes,
and if it will get adopted in the future, it can help us with obtaining data for
machine learning experiments.

2 Logical System

The logical system of GeoLogic consists of a logical core interacting with tools.
The logical core contains the following data.

– The set of all geometrical objects constructed so far. Every object can be
accessed as a reference (for logical manipulation), or as the numerical object
(e.g. coordinates of points, for numerical checking).

– The knowledge database. It consists of a disjoint-set data structure for equal-
ity checking, equation systems for ratios and angles, and a lookup table for
tools.

The logical core also possesses basic automation techniques for angle and ratio
calculations, and deductions around equality.

A tool is a general concept for construction steps, predicates, or inference
rules. It takes a list of geometrical references on an input (and sometimes addi-
tional hyper-parameters), possibly adds some objects and some knowledge to
the logical core and returns a list of geometrical references on the output, or
fails. A tool always fails if the numerical data do not fit.

Besides that, every tool can be executed in a check mode or a postulate mode.
A tool fails in the check mode (and not in the postulate mode) if it requires a
fact which is not known by the knowledge database. Otherwise, the outcomes of
the two modes are the same.

Most tools are memoized. When they are called, their input is associated
with their output in the lookup table of the logical core. In the next call of
the same tool on the same input, the tool does not fail (even in check mode)
and returns the stored output (the same logical references). This serves three
purposes: computation optimization, functional extensionality, and as a database
for predicates. In particular, a primitive predicate lies on is a memoized tool
which in postulate mode only checks whether a given point is contained by a
given line or circle. If it is not, it fails, otherwise, it returns an empty output. In
check mode, however, this tool always fails. It means that the only way how to
make this tool executable in the check mode is to have the input already stored



266 M. Oľsák

in the lookup table by calling it in the postulate mode before. This differs from
topological (coexact) predicates such as not on which in both modes only checks
the numerical conditions – whether a given point is not contained by the given
line or circle.

By proving a fact (any tool applied to given input) in the logic system, we
mean executing certain tools in the check mode (proof), so that in the end the
given fact can be also run in the check mode. The graphical interface allows
users to run tools in check mode only.

2.1 Composite Tools

A composite tool is a sequence of other tool steps applied to the input objects.
More precisely, a composite tool starts with just the input objects, runs several
previously defined tools on the objects it has so far, and in the end, it returns
some output objects selected from the available created objects. All composite
tools are loaded from an external file, so we will explain them together with their
format. An example code of the composite tool angle follows.

angle l0:L l1:L -> alpha:A
d0 <- direction_of l0
d1 <- direction_of l1
alpha <- angle_compute 0 d0 -1 d1 1

The first line of a composite tool is a header specifying the tool name, input,
and output objects, the other lines define the individual steps. The header line
consists of the name, input objects, forward arrow ->, and output objects sep-
arated by space. Every input or output object is given by its label before the
colon and its type after the colon. Types are given by letters P (point), L (line),
C (circle), A (angle), D (ratio/dimension). Note that the format allows name
overloading as long as the input types are different, so there can be an angle
tool accepting two lines, and also another angle tool accepting three points. The
lines after header describe the tool steps by output objects, backward arrow <-,
tool name, and input objects related to the subtool (possibly with numerical
hyperparameters) separated by space. Now, we use only labels without types
since the parser already knows the input types and it can infer the output types
by the used tool. The output labels must be unique unless an anonymous label
is used. Among the input parameters, there can be also hyperparameters in the
form of integers, floats, or fractions. It is not relevant how we mix the hyperpa-
rameters with the standard parameters but the order among hyperparameters,
and among parameters matters.

The composite tool we described so far is the simplest composite tool (we
call it a macro) which runs all its tool steps in the same mode as in what the
macro is called. If any of the steps fail, the entire macro fails as well. Next
to macros, there can be axioms and lemmata. The axiomatic tool is such a
composite tool that contains a single line THEN among the steps. All the steps
after THEN are then executed in postulate mode, even if the axiomatic tool is



GeoLogic – Graphical Interactive Theorem Prover for Euclidean Geometry 267

called in a check mode. We call the steps before THEN assumptions and the steps
after THEN implications. Axiomatic tools are used for wrapping up primitive
constructions (see direction of, and line), or formulating real axioms (see
isosceles ss).

direction_of l:L -> a:A
THEN
a <- prim__direction_of l

line A:P B:P -> p:L
<- not_eq A B
THEN
p <- prim__line A B
<- lies_on A p
<- lies_on B p

isosceles_ss A:P B:P C:P ->
<- not_eq B C
<- eq_dist A B A C
THEN
<- eq_angle A B C B C A

Finally, a lemma is similar to the axiomatic tool with the exception that
there is a third sequence of steps (called proof ) following a PROOF line. When a
lemma is executed in a check-mode, it works the same as an axiomatic tool, but
it also calls a proof check. The proof check consists of the following steps:

1. opening a new logical core for the following steps,
2. adding the numerical values of input objects as the initial objects,
3. running the assumptions in postulate mode,
4. running the proof in check mode,
5. running the implications in check mode.

If all the tools succeed, the proof check is considered successful. In the following
example of isosceles aa, we have a lemma stating that if the angles β, γ in
a triangle ABC are equal, so are the sides b, c. This is proven using an axiom
sim aa r which takes two indirectly similar triangles CAB and BAC, checks
that they are non-degenerated, and their angles are proven to be equal, and
infers that the ratios of the sides of the two triangles are equal.

isosceles_aa A:P B:P C:P ->
<- not_collinear A B C
<- eq_angle A B C B C A
THEN
<- eq_dist A B A C
PROOF
<- sim_aa_r C A B B A C



268 M. Oľsák

Adding a macro or a lemma to the toolset creates a conservative extension
of the logic – anything that is provable with the usage of lemmata and macros
can be proven without them.

3 Example – Simson’s Line

We provide an example GeoLogic usage on the example of proving Simson’s line.
We used Geologic’s graphical interface to define the following construction steps
written as a code. During the construction, we also directly exported pictures
from GeoLogic to show how GeoLogic visualizes known facts.

We start by drawing a triangle ABC, and a point X on its circumcircle.

A <- free_point -79.20758056640625 -119.095947265625
B <- free_point -126.97052001953125 23.91351318359375
C <- free_point 108.5352783203125 19.20867919921875
a <- line B C
b <- line C A
c <- line A B
o <- circumcircle A B C
X <- m_point_on 0.6169557687823527 o

Simson’s line is a line passing through feet Fa, Fb, Fc of the point X to the
sides of the triangle. However, GeoLogic is not aware (yet) of the fact that these
three points are collinear.

Fa <- foot X a
Fb <- foot X b
Fc <- foot X c
d <- line Fc Fa
e <- line Fb Fa



GeoLogic – Graphical Interactive Theorem Prover for Euclidean Geometry 269

We can use the fact that the angles CFaX and CFbX are equal (they are both
right angles) to conclude that points C, X, Fa, Fb are concyclic. We consequently
use this fact to obtain that the angles FbFaC and FbXC are equal.

<- angles_to_concyclic C X Fa Fb
<- concyclic_to_angles Fb C X Fa

We can similarly reason that the points B, X, Fa, Fc are concyclic and
consequently the angles BFaFc and BXFc are equal.

<- angles_to_concyclic B X Fc Fa
<- concyclic_to_angles Fc B Fa X

Finally, we use concyclicity of X, A, C, B to conclude that the angle XCA
is equal to the complementary angle of ABX.

<- concyclic_to_angles X A C B

From this point on, GeoLogic’s logical core realizes by itself that

∠BFaFc = ∠BXFc = 90◦ − FcBX = 90◦ − FbCX = CXFb = CFaFb,

and since BFaC are collinear, FcFaFb are collinear as well.



270 M. Oľsák

4 Related Work

Jeremy Avigad et al. [1] developed a logical system for formalizing elementary
geometrical proofs from Euclid’s elements, also distinguishing exact and coexact
predicates. Their approach is more formal than ours allowing also proving the
coexact statements in the end but it is less extensible by further tools. Michael
Beeson et al. [2] connected the interactive theorem prover CoQ with GeoGebra
for visualization of the theorem (but not for the proving procedure). Also, note
that using a rigid logic system such as in CoQ does not allow numerical checks
to be trusted in coexact statements.

The logical core of GeoLogic is partially inspired by General Deduction
Database [3] and Full Angle [4] methods for automated synthetic proofs in
Euclidean Geometry. These methods are supported by a graphical application
Geometry Expert [7] which allows user to state a geometrical problem, run an
automated geometrical theorem prover on it, and visualize the proof. Julien
Narboux presented a similar graphical interface for construction of geometrical
statement translated to CoQ [5]. None of these tools, however, supports con-
structing and checking proofs in the graphical interface.

5 Conclusion

We designed a semi-formal logic for Euclidean geometry which can be to a great
extent controlled with a graphical interface and allows us to prove many standard
high school problems. In the future, we would like to perform experiments with
machine learning agents.

Acknowledgement. Supported by the ERC starting grant no.714034 SMART.

References

1. Avigad, J., Dean, E., Mumma, J.: A formal system for Euclid’s elements. Rev.
Symbolic Logic 2(4), 700–768 (2009). https://doi.org/10.1017/S1755020309990098

https://doi.org/10.1017/S1755020309990098


GeoLogic – Graphical Interactive Theorem Prover for Euclidean Geometry 271

2. Beeson, M., Boutry, P., Braun, G., Gries, C., Narboux, J.: GeoCoq (2018).
(swh:1:dir:97ce53176b7d5e89d069bc60f49c3fa186831307). (hal-01912024)

3. Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: A deductive database approach to auto-
mated geometry theorem proving and discovering. J. Autom. Reasoning 25, 219–246
(2000). https://doi.org/10.1023/A:1006171315513

4. Chou, S., Gao, X., Zhang, J.: Automated generation of readable proofs with geo-
metric invariants. J Autom. Reasoning 17, 349–370 (1996). https://doi.org/10.1007/
BF00283134

5. Narboux, J.: A graphical user interface for formal proofs in geometry. J. Autom.
Reasoning 39(2), 161–180 (2007). https://doi.org/10.1007/s10817-007-9071-4

6. Selsam, D.: IMO Grand Challenge. https://imo-grand-challenge.github.io/
7. Ye, Z., Chou, S.-C., Gao, X.-S.: An introduction to Java geometry expert. In: Sturm,

T., Zengler, C. (eds.) ADG 2008. LNCS (LNAI), vol. 6301, pp. 189–195. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21046-4 10

https://archive.softwareheritage.org/browse/directory/97ce53176b7d5e89d069bc60f49c3fa186831307/
https://hal.inria.fr/hal-01912024
https://doi.org/10.1023/A:1006171315513
https://doi.org/10.1007/BF00283134
https://doi.org/10.1007/BF00283134
https://doi.org/10.1007/s10817-007-9071-4
https://imo-grand-challenge.github.io/
https://doi.org/10.1007/978-3-642-21046-4_10

	GeoLogic – Graphical Interactive Theorem Prover for Euclidean Geometry
	1 Overview
	2 Logical System
	2.1 Composite Tools

	3 Example – Simson's Line
	4 Related Work
	5 Conclusion
	References




