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Abstract. Cylindrical algebraic decomposition (CAD) is a fundamen-
tal tool in computational real algebraic geometry. Previous studies have
shown that machine learning (ML) based approaches may outperform
traditional heuristic ones on selecting the best variable ordering when
the number of variables n ≤ 4. One main challenge for handling the
general case is the exponential explosion of number of different order-
ings when n increases. In this paper, we propose an iterative method for
generating candidate variable orderings and an ML approach for select-
ing the best ordering from them via learning neural network classifiers.
Experimentations show that this approach outperforms heuristic ones
for n = 4, 5, 6.
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1 Introduction

Cylindrical algebraic decomposition (CAD) was introduced by Collins for solving
real quantifier elimination problems [14]. The original framework for computing
CAD introduced by Collins is based on a projection and lifting scheme, which
has now been gradually improved by many others [1,3,5,19–23]. In 2009, Moreno
Maza, Xia, Yang and the first author [13] proposed a new way for computing
CAD, which first computes a cylindrical decomposition of complex space and
then transforms it into a CAD of real space based on the technique of triangular
decompositions and regular chains [13]. Its efficiency was substantially improved
in [7] based on an incremental algorithm, which can also take advantage of
equational constraints. A complete and efficient algorithm for real quantifier
elimination based on it was proposed in [12]. Moreover, it can utilize disjunctive
equational constraints via computing a truth table invariant CAD [2].

Today, despite of its doubly exponential complexity [6,14], CAD has been effi-
ciently implemented in many softwares such as QEPCAD, Mathematica, RED-
LOG and Maple, and found wide applications in geometry theorem proving,
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stability analysis of dynamical systems, control system design, verification of
hybrid systems, program verification, nonlinear optimization, automatic paral-
lelization, and so on. Recently, it also finds applications on studying quantum
nonlocality [8].

The choice of variable ordering has been shown to have a great impact on
the performance of CAD, both theoretically [6] and in practice [15]. Several
heuristic methods for variable ordering selection have been proposed. In partic-
ular, two heuristic strategies [4,9] are implemented in the SuggestVariableOrder
(SVO) command of the RegularChains library in Maple. On the other hand,
it also becomes a natural option to predict the best variable ordering by the
approaches of artificial intelligence, among which machine learning is a natural
choice [16–18,24,25].

Existing work for selecting variable ordering by machine learning focus on the
trivariate case. For more than three variables, it becomes more difficult to obtain
sufficient labelled data due to the doubly exponential behavior of CAD in terms
of the number of variables n. Another difficulty is the exponential explosion of
number of different orderings when n increases. In this paper, we first propose
an iterative approach for generating a better variable ordering starting from the
one given by SVO. Then we reduce the potential n! number of classes to predict
for the variable ordering problem to n by training a neural network classifier
with data generated by the iterative approach. Experiments show that both
the iterative approach and the machine learning approach outperform SVO for
n = 4, 5, 6.

The organization of the paper is as follows. In Sect. 2, we briefly review
the concept of CAD and the problem of variable ordering selection. In Sect. 3
and Sect. 4, we present respectively the iterative and the machine learning
approaches. In Sect. 5, we show the effectiveness of our approaches by exper-
imentation. Finally, we draw the conclusion in Sect. 6.

2 Cylindrical Algebraic Decomposition

Consider a set of polynomials F ⊂ Q[x1, . . . , xn] and a variable ordering xi1 >
· · · > xin . An F -invariant cylindrical algebraic decomposition (CAD) partitions
Rn into disjoint and cylindrically arranged semi-algebraic subsets (called cells)
such that the projection of any two cells onto Rk (with coordinate variables
xin−k+1 , . . . , xin), 1 ≤ k ≤ n − 1, is either disjoint or identically equal. The
variable ordering also specifies the order to eliminate variables and the order to
construct CAD from projection factors or a complex cylindrical decomposition.

The algorithms presented in [2,10,13] for computing CADs based on regu-
lar chains have been implemented in the command CylindricalAlgebraicDecom-
pose in the RegularChains library of Maple [11]. Its latest version is available
from http://www.regularchains.org and we use the version from http://www.
arcnl.org/cchen/software/cadorder. In the RegularChains library, the command
SuggestVariableOrder (SVO for short) implements two different heuristic meth-
ods for variable ordering selection, namely the one by Brown [4] (with option

http://www.regularchains.org
http://www.arcnl.org/cchen/software/cadorder
http://www.arcnl.org/cchen/software/cadorder
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“decomposition = cad”, SVO(B) for short) and the one by Chen et al. [9] (default
option, SVO(C) for short).

The variable ordering plays an important role in the efficiency of computing
CAD, as illustrated by the following example.

Example 1. Let F := {68 x1 2−12 x3 x2 +46 x3 −126,−54 x2 x1 +11 x1 +92 x2 −
21,−60 x3 x1 2 − 42 x3 x2 x1 + 45 x4 2 − 35}. Table 1 lists the computation times
and number of cells for several variable orders. As we can see, for this example,
current heuristic methods avoid picking the worst variable order, but also miss
the best variable order.

Table 1. Impact of different variable orders

Order Method Timing (seconds) #cells

x4 � x3 � x2 � x1 – 5 3373

x3 � x1 � x4 � x2 – 93 43235

x2 � x3 � x4 � x1 SVO(B) 16 11953

x3 � x2 � x4 � x1 SVO(C) 14 9253

3 An Iterative Method

In this section, we present an iterative variable ordering selection method, called
IVO, for cylindrical algebraic decomposition. It starts with an initial ordering
xi1 > xi2 > · · · > xin provided by SVO. Then it calls a subroutine, called
RVO, to generate n orderings in a round-robin manner and picks the best by
calculating the shortest time of computing CAD with them. Next, it fixes the
largest variable and calls RVO again on the rest ones to select the second largest
variable, and so on. Precise description of IVO and RVO are given as below. We
denote by || the concatenation of two sequences.

– Algorithm RVO.
– Input: a set of polynomials F ; a sequence of variables O defining a descending

ordering; the time t for running CAD(F,O), an integer k.
– Output: a new ordering O′ and running time t′ of CAD(F,O′) such that t′ ≤ t.
– Steps:

1. Let P := O1, . . . , Ok and Q := Ok+1, . . . , On.
2. Let Q(i) := Qi, Q \ {Qi}, i = 1, . . . , |Q|.
3. For each Q(i) �= Q, i = 1, . . . , |Q|, call CAD(F, P ||Q(i)), Q(i) �= Q and

record the running times.
4. Compare these running times with t and return the shortest one and the

corresponding order.
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– Algorithm IVO.
– Input: a set of polynomials F ; a sequence of variables X.
– Output: a permutation of X, which defines a descending variable order.
– Steps:

1. If X ≤ 1, return X.
2. Let OB := SVO(F,X,B) and OC := SVO(F,X,C).
3. Let t be the shorter running time between CAD(F,OB) and CAD(F,OC)

and let O be the corresponding order with shorter time (if equal, we use
OB).

4. For k from 0 to n − 2 do
(a) O, t := RVO(F,O, t, k).

5. Return O.

It is easy to see that IVO calls CAD at most 2 +
∑n

k=1(k − 1) = (n2 − n + 2)/2
times. In the rest of this paper, if no confusion arises, we denote by SVO(*) an
oracle that always returns the better ordering between SVO(B) and SVO(C) and
by SVO either of the three.

4 A Machine Learning Approach

To train a useful machine learning model for predicting the best variable ordering
for CAD, it is important to have a dataset of enough labelled examples and the
size of the dataset cannot be too small. On the other hand, since computing
CAD is expensive when the number of variables is larger than 3, a larger dataset
demands more computing resources. To make the learned model useful, it is
better that the training dataset contains diverse examples. On the other hand, if
the data are too diverse, it will be hard to learn. The following table summarizes
the information of the dataset we generate using random polynomials as input
to IVO. The whole dataset is divided into three datasets, used respectively for
training, validation and testing with ratio 9/1/1. The validation dataset is used
for tuning the machine learning model while the testing dataset is treated as
unseen data used only once for reporting experimental results in the paper and
showing the generalization ability of the ML model.

Table 2. Dataset

n Degree #terms #polynomials Equations #valid examples

4 2..3 2..5 2 No 10957

5 2..3 3..6 2 No 6875

6 2..3 4..6 2 No 3751

The data in Table 2 were generated on a cluster (4 compute nodes, each of
which has two Intel E5-2620 CPU (6-core each) and 64 GB memory). On each
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node, 6 Maple sessions were run in parallel. The time limit is set as 15 min.
The total time for generating the dataset is about 1 month. In Table 2, we only
record the number of valid examples. An example is valid if CAD finishes the
computation within the time limit for at least one ordering computed by IVO.
Note that it is possible that SVO returns an ordering for which CAD times out.

Next, we recall the features to represent the polynomials introduced in our
earlier work [24]. These features are generated based on a graph structure defined
for polynomial systems. For a given variable xi, i = 1, . . . , n, an equivalent
description of the features is summarized in the following Table 3. Let E(i) be
the features associated with xi. Then the feature vector E = ∪n

i=1E(i).

Table 3. Features

Feature Description

E1(xi) |{xj : xj , j �= i, appears in the same polynomial as xi}|
E2(xi) |{f ∈ F : xi appears in f}|
E3(xi) maxf∈F {deg(f, xi)}
E4(xi)

∑
f∈F deg(f, xi)

E5(xi) maxf∈F {deg(lc(f, xi))}, where lc denotes for leading coefficient

E6(xi) maxf∈F {|{M : M is a monomial of f and xi|M}|}
E7(xi) maxf∈F {deg(M) : M is a monomial of f and xi|M}
E8(xi)

∑
f∈F

∑
M is a monomial of f and xi|M deg(M,xi)

E9(xi)
∑

f∈F {deg(lc(f, xi))}
E10(xi)

∑
f∈F |{M : M is a monomial of f and xi|M}|

We aim to train a model which can predict variable orders for n = 4, 5, 6.
Instead of treating a variable order as a class, which may lead to huge number of
classes for a fixed n, we would like to train a multiclass classifier Mn, which only
predicts the largest variable in an ordering. To achieve this, for each example in
the dataset, we will call SVO to return an initial ordering, and then call RVO
once to get a hopefully better ordering. Then the first variable in the ordering

Fig. 1. The neural network classifier
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is set as the label of the example. For each n = 4, 5, 6, we train an artificial
neural network classification model implemented in TensorFlow. The structure
and parameters of the neural network are illustrated in Fig. 1. Each Mn is a
full-connected neural network with one input layer, three hidden layers and one
softmax output layer. The activation function used is ReLu. Hyperparameters
of the network are hand-tuned to maximize validation accuracy.

Suppose that we have obtained the well-trained models Mn, n = 4, 5, 6. We
then employ the following procedure PVO to predict the variable ordering.

– Algorithm PVO
– Input: a set of polynomials F ; a sequence of n variables X.
– Output: a permutation of X, which defines a descending variable order.
– Steps:

1. Compute a sequence of feature vectors E = E(1), . . . , E(n) for F .
2. Let O := SVO(F,X).
3. Let xi := Mn(E).
4. Return O \ {xi}.

The overall training and predicting process is depicted in Fig. 2.

Fig. 2. The flow graph for finding variable order based on an artificial neural network.

5 Experiments

In this section, we report on the experimental results of the iterative method
and the machine learning approach for selecting variable orderings.

Note that when we call PVO to predict the variable ordering, we have three
options. One can use SVO(B) or SVO(C) to get an initial ordering without
calling CAD. Or one can use SVO(*) to get the better one between SVO(B)
and SVO(C), but this requires calling CAD twice. Nevertheless, for a = B,C, ∗,
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we use IVO(a), RVO(a) and PVO(a) to denote the iterative method, the first
iteration of the iterative method and the ML-based method for variable ordering
selection which uses SVO(a) as an initial ordering. As a result, the testing dataset
for a = B,C, ∗ is respectively the set of examples, for which SVO(a) provides
the initial ordering in the original testing dataset. Table 4 summarizes the size
of the datasets. Note that the dataset for a = C does not contain timeout
examples. This is because whenever CAD times out with the ordering given
by SVO(C), IVO will use the ordering given by SVO(B). Although the testing
datasets and inference procedures for a = B and a = C are different, for a
given n, both a = B and a = C use the same classifier trained with the dataset
in Table 2, where the examples are labelled by RVO(*) with an initial variable
ordering provided by SVO(*). Table 5 summarizes the average computation times
(in seconds) and timeout rates of IVO(*) and RVO(*) for the whole datasets. Note
that the datasets only contain examples on which IVO(*) succeeds.

Table 4. Size of testing datasets

n B C ∗ n B C ∗ n B C ∗
4 593 404 997 5 359 266 625 6 214 127 341

Table 5. Comparison between IVO(*) and RVO(*)

n RVO(*) (time) IVO(*) (time) RVO(*) (timeout) IVO(*) (timeout)

4 7.46 2.25 0.5225 0

5 38.45 9.91 0.3025 0

6 63.69 18.36 0.1954 0

Fig. 3. Accuracies of different order selecting methods
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Figure 3 summarizes the accuracies of six ordering selecting methods. Here
the ground truth for SVO(a) and PVO(a) is given by RVO(a), for a = B,C, ∗. The
accuracy is defined as the percentage of best orderings chosen by each method
over the total number of test examples, given in Table 4. We observe that the
accuracy of PVO(a) is higher than SVO(a) for n = 5, 6, for all a = B,C, ∗. For
n = 4, the accuracy of PVO(a) is slightly lower than SVO(a) for a = C, ∗ and
higher than SVO(a) for a = B.

Figure 4 provides the average running time of CAD with the variable order-
ings predicted by different methods. If there is a timeout, the time is counted as
twice the time limit, that is half an hour. For n = 4, 5, 6 and a = ∗, B, the aver-
age computation time of PVO(a) is considerably less than SVO(a). The average
computation time of PVO(C) is less than SVO(C) for n = 4, 6 but greater than
SVO(C) for n = 5.

Fig. 4. Average running time of CAD with different variable orderings

Figure 5 gives the percentage of timeout examples for CAD with the variable
orderings predicted by different methods. The phenomenon here is similar to the
computation time as illustrated in Fig. 4.
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Fig. 5. Percentage of timeout examples for CAD with different variable orderings

6 Conclusion and Future Work

In this paper, we propose a machine learning based approach for predicting
the best variable ordering for CAD targeting on n > 3. The experiments show
that it outperforms traditional heuristic approaches for n = 4, 5, 6 on randomly
generated datasets. The CylindricalAlgebebraicDecompose command can compute
CAD for even larger n, say n ≤ 10 in reasonable time if there are several equa-
tional constraints in the system [7]. It will be interesting to extend the model
for n > 6, test it on CAD-QE problems from real applications and finally make
the ML-based variable ordering selection method a useful option for Suggest-
VariableOrder. The data and code used in this paper is available at http://doi.
org/10.5281/zenodo.3818086.
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