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Abstract. This paper considers the application of machine learning
to automatically generating heuristics for real polynomial constraint
solvers. We consider a specific choice-point in the algorithm for construct-
ing an open Non-uniform Cylindrical Algebraic Decomposition (NuCAD)
for a conjunction of constraints, and we learn a heuristic for making that
choice. Experiments demonstrate the effectiveness of the learned heuris-
tic. We hope that the approach we take to learning this heuristic, which
is not a natural fit to machine learning, can be applied effectively to
other choices in constraint solving algorithms.
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1 Introduction

In [2] the first author proposed Non-uniform Cylindrical Algebraic Decomposi-
tion (NuCAD) as an alternative to the well-known Cylindrical Algebraic Decom-
position (CAD) as a data-structure for representing sets of points in Euclidean
space defined by boolean combinations of real polynomial equalities and inequal-
ities. The process of constructing a NuCAD involves many points at which an
arbitrary choice needs to be made—a choice that does not affect correctness,
but can have a considerable impact on running time, memory usage, and qual-
ity of solution. The purpose of this work is to consider one such choice, and
attempt to use machine learning to automatically learn a successful heuristic.
This paper will introduce the problem, explain why the application of machine
learning to the problem is exceptionally challenging, describe the process we
developed to handle not just this heuristic-learning problem, but others with
similar challenges, and report experimental results.

2 The Problem

A semi-algebraic set is a set of points in Euclidean space defined by a boolean
combination of polynomial equalities and inequalities (known as a Tarski for-
mula). Non-uniform Cylindrical Algebraic Decomposition (NuCAD) is a data
structure providing an explicit representation of semi-algebraic sets. From this
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data structure, a variety of questions can be answered. In this article we only
address the question of whether the semi-algebraic set is non-empty or, equiva-
lently, whether the associated Tarski formula is satisfiable. For example, to deter-
mine the satisfiability of the Tarski formula [x2+y2 < 1∧y > x2∧3x > 2y2+1],
we would construct a NuCAD data structure representing the decomposition of
R

2 depicted in Fig. 1.

Fig. 1. Depicted on the left is the semi-algebraic set defined by the Tarski formula
[x2 + y2 < 1 ∧ y > x2 ∧ 3x > 2y2 + 1] along with the curves defined by the three
polynomials in the formula. On the right is depicted the decomposition described by
a NuCAD data structure produced from the formula. This is not unique, as different
choices during the construction lead to different NuCADs.

The NuCAD data structure contains a sample point for each cell in the
decomposition it represents. In this case, two cells have sample points at which
the input formula is satisfied. Thus, not only do we learn that the formula is
satisfiable, but we also have witness points to prove it.

NuCADs are constructed by a simple refinement process. At each step a cell
is selected, and from amongst the constraints that are violated at its sample
point, one is chosen to be the basis for splitting the selected cell into subcells—
thus refining the decomposition. The key idea is that the subcell containing the
original sample point has the property that the chosen constraint is violated
throughout the subcell. To illustrate, suppose that in the previous example our
initial sample point was (0, 0). Two constraints (the parabolas) are violated at
this point, so we must choose one. It is this choice that we concentrate on in the
present paper. We would like to learn a heuristic for it. To be precise, we give
the following definition of a choice function.

Definition 1. A choice function maps a set of multivariate polynomials and a
variable ordering to an element of the input polynomial set. When a cell has
been selected to refine, the set of polynomials from constraints that are violated
at the selected cell’s sample point is given as input to a choice function, and
the output of the choice function is the constraint that will be used for the next
refining step. Additional input consisting of state information from the selected
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cell and the NuCAD as a whole (e.g. the polynomials defining the selected cell’s
boundaries) are optionally allowed.

It is important to point out that making good choices vs. bad choices can
make orders of magnitude differences in computing time and number of cells in
the resulting NuCAD. Of course for very easy problems, the difference is not
that great. Likewise, there are combinations of problem and initial point for
which, at every sample point, there is only one violated constraint. This means
that there never is a real choice, and so the heuristic is not needed. However, as
our experiments show, there are also problems for which a good choice heuristic
vs. bad choice heuristic means the difference between problems that are solvable
within a reasonable amount of time and those that are not.

3 ML and and Why Learning a Choice Function Is Hard

Machine Learning (ML) is a huge field, and one very much in the spotlight at
the moment. Moreover, machine learning has been applied to related problems
(see for example [5–8]), though in a significantly different ways than what we
do in this paper. So we will not try to explain what machine learning is, and
trust that any reader who is not sufficiently conversant in the subject will have
many options for obtaining the necessary background. Machine learning typically
centers around trying to learn a function that maps input feature vectors to
output result vectors. The dimensions and component types of these vectors is
fixed for a given learning problem. Also pertinent to this discussion is the basic
categorizations of learning as “supervised” vs. “unsupervised” and “regressions”
vs. “classification”.

Unfortunately, learning a choice function does not fit these typical machine
learning paradigms well. There is no limit on the size of the input space, since
there is no bound on the number of polynomials in the input set, nor is there a
bound on the number of variables, degrees, or number of terms in the individual
polynomials within the set. So it does not even fit the general framework. It
does not fit as a regression problem, because we don’t have continuous outputs
(the output being one polynomial from the set). It doesn’t fit as a classification
problem, because each polynomial from the input set constitutes a class label,
and there is not a fixed number of polynomials in the set (classification usually
assuming a fixed set of labels). It does not fit as a supervised learning problem
because we have no ground truth, i.e. we do not know what the “right” decisions
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are, so we do not have labeled data1. Unsupervised learning, at first, seems
like it might be promising. Specifically, we could try to cast learning a choice
function as a reinforcement learning problem, in which a decision made during
the construction of a NuCAD for an input is rewarded or penalized by the
success of the final result, appropriately discounted by its distance from that
result. Unfortunately, there are two problems with this approach. First is that
we have no basis for determining an award or penalty. If we end up with a
decomposition consisting of 500 cells, is that good? Perhaps a different sequence
of choices would have yielded a decomposition into 20 cells, or perhaps 500 is in
fact the minimum achievable. With no way of knowing, we cannot determine an
award or penalty. Second, the choices made during the construction of a NuCAD
are not generally linear. The first choice, for example, produces several sibling
cells, and the further refinement of each of those sibling cells is independent of
the others. It is then unclear how to split up rewards.

Another substantial impediment to applying ML to the problem of producing
an effective choice function is the very common problem of finding good data.
In the case of polynomial constraints, we have the issue that the problem space
is so vast, that it is not feasible to have anything like reasonable coverage of
the space. Moreover, it is typically observed that most symbolic algorithms for
dealing with polynomial constraints behave very differently on random problems
than on “real-world” problems. This means that if we learn from randomly
generated inputs we have to be concerned that the result might not transfer well
to real-world problems or, indeed, problems that were not generated in a similar
way to the training data. While we do have the SMT-LIB [1] QF NRA library
of problems as a valuable resource, we have to be careful learning from it as
well. This is specifically true because most problems come from a large group
generated by one of a relatively few applications. Typically all the problems
within a group are very similar. This means, that if you learn from some of the
problems in a given group and you evaluate on others from the same group, the
learned function may test well because it has memorized correct actions for that
group. This may result in overfitting that would only get exposed if you were
to test on problems that were not from any of the groups that were used in

1 In some other contexts in which machine learning has been applied to learn heuristic
choice functions in symbolic computing, for example in work about learning to choose
good variable orderings, the approach has been to compute the results of all possible
choices, so that one does indeed know ground truth. That is impractical in our
context for the following reason: in order to determine the best option for the first
choice-point, it is not enough to try each of the options for just that choice; one
has to make the optimum decision for each of the follow-on choices until NuCAD
construction is complete. This means that one would have to try every option at
every choice-point! One can compute that for the three-variable formula ∧3

i=1(0 <
xi + 1/5 ∧ 0 < xi + 2/5 ∧ 0 > xi + 3/5 ∧ 0 > xi + 4/5), which consists solely of
linear univariate constraints, there are 5,760 ways that these choices can be made,
each resulting in a different NuCAD data structure in the end. By comparison, for
three variables there are exactly six variable orders to consider. So this exhaustive
approach to finding ground truth to learn from is not feasible for our problem.
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training. Finally, the current implementation of NuCAD is for “open” NuCAD
only, and only for conjunctions. This means that we are restricted to problems
from the SMT-LIB that are conjunctions of strict inequalities.

4 Using ML to Learn Choice Functions

The preceding examination of all the reasons why it might not appear to be
promising to apply ML to the problem of learning choice functions is important
to understanding why we developed the approach described below.

Reduce to Binary Classification: Trying to learn a choice function directly
is problematic in part because the number of classes is not fixed, rather it is
determined by the size of the input set of polynomials, which varies from choice-
to-choice. In a crucial change of perspective, we redefine our problem to learn-
ing a choice ordering predicate, i.e. a function that takes two polynomials (and
optionally extra information about the underlying cell and NuCAD context),
and returns 1 if the first polynomial is a preferable choice to the second, and 0
otherwise. The choice function applied to a set of n polynomials then becomes
n − 1 applications of the choice ordering predicate, at each step retaining the
polynomial preferred by the predicate. If the choice ordering predicate fails to
induce a proper total order, the order in which the predicate is applied to the
polynomials in the set could affect the result. In the present experiments we
accept this fact.

Reduce Inputs to Fixed Size Feature Set: Having restricted the learning
problem to learning a choice ordering predicate, we have reduced the dimension
of the input vector to the function to be learned, but not yet fixed it to a
constant. After all, while there are now always two input polynomials, rather
than an arbitrary sized set, those polynomials are still unbounded in the number
of variables, degrees, number of terms and coefficient sizes. The solution to this is
clear cut from a machine learning perspective: extract from the two polynomials
(and optionally from the cell and NuCAD context) a fixed sized set of features.
Although part of the revolution in deep learning is that the learning algorithm
is, in some sense, supposed to do this “feature engineering” for us, in this case
our domain forces us to do it. However, because of our restriction to learning
choice ordering predicates, there are a number of natural comparative features,
for example the difference in level2 of the two input polynomials, or the difference
in the two polynomials’ total degrees, number of terms, etc.

Reduce to Supervised Learning: The biggest hurdle to applying ML to this
problem is that, as described above, it fits neither the supervised nor unsuper-
vised paradigms. To address this, we use the fact that we have total control of
the executing algorithm. In particular, for a given input problem, we execute

2 Prior to constructing a NuCAD, a variable ordering is fixed, and the level of a
polynomial is highest index within that ordering of any variable appearing in the
polynomial.
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NuCAD construction following the “current” choice ordering predicate, but we
stop at a random point in the process at which we have more than one constraint
violated at a sample point and thus have a choice to make. At this point, we sep-
arately try each of the possible choices (i.e. each polynomial), finishing out the
entire construction from that point using the “current” choice ordering predicate
for all subsequent choices. This gives us the exact number of cells resulting from
each polynomial we could have chosen. Thus, for each pairing of polynomials
from the set, we construct the associated feature vector and, since we know the
correct result for the choice ordering predicate with that pair as input, we have
the correct output to go along with it. By collecting these feature vectors and
correct output values over many inputs, we produce a data set that can be used
for a supervised, binary classification machine learning problem.

Of course, the “correct” results we gathered are only correct for what was
then the “current” choice ordering predicate, and by learning we have derived a
new choice ordering predicate. This means we should iterate the process until the
performance of NuCAD construction using the learned choice ordering predicate
converges. It is not clear that this convergence will happen. For example, the
initial choice ordering function is chosen at random, and it could easily happen
that NuCADs constructed with it are so far off from NuCADs constructed with
a good choice ordering predicate, that the data we try to learn from is garbage.
However, our experiments indicate that we get good performance in relatively
few iterations.

Learn from Randomly Generated Inputs, Evaluate With “Real”
Input: Our approach was to learn from randomly generated formulas—formulas
in five variables with many constraints, both linear and non-linear, different lev-
els of sparsity, and different numbers of variables appearing. Each input formula
was used to analyze only one choice-point. The rationale for this choice is sim-
ply that we need a lot of data to learn from. The justification is that our initial
experiments show that the learned choice ordering predicate does indeed trans-
fer well to the “real” problems pulled from SMT-LIB, despite the fact that they
often have very different shape and that all the problems we tested against had
fewer than five variables.

5 Experiments

The Tarski3 system [9] was used in our experiments for its implementation of
NuCAD. For our machine learning, we used the Keras [4] package.

Random formulas were generated to consist of 13 “<” constraints, eight
quadratic and five linear, with between two and four terms. Below is an example
of one of them.

[0 < 18v − 9w ∧ 0 < 9vx + 4vy − 3y + 3 ∧ 0 < 5yz + 8y + 2 ∧ 0 < −4x2 + 6w − 6y − 7 ∧ 0 < −8wz

+9z2 + 8w ∧ 0 < −3vz + 6w − 8z − 4 ∧ 0 < v2 + 22vy + 13y2 + 4 ∧ 0 < −27w2 − 72wz − 48z2

− 20v + 14w − 8z ∧ 0 < −10w − 10y − 5z ∧ 0 < 9v + 8w − 4x ∧ 0 < −8v + 7w + 7x ∧ 0 < −8v

− 5w + 1 ∧ 0 < −4w − 8x + 1]

(1)

3 Tarski is available from https://www.usna.edu/Users/cs/wcbrown/tarski/.

https://www.usna.edu/Users/cs/wcbrown/tarski/


298 C. W. Brown and G. C. Daves

Given a choice-point in a NuCAD construction and two polynomials, we con-
struct a vector of 22 features capturing individual and comparative properties of
the two polynomials and the context of the NuCAD construction. These features
are described in the table below. The first six are comparative features based
on the two polynomials under consideration (p1 and p2). Note that “spsize” is a
function that measures the size of the internal representation of a polynomial—it
is roughly proportional to the print length, but without any dependency on the
length of variable names. Features 6–10 are comparative, but based on “p∗

1” and
“p∗

2”. Here p∗
1 is the same as p1, but with any term removed for which p2 has a

term with the same power product, and p∗
2 is defined analogously. For example,

if p1 = 2xz2 −3zy +x+1 and p2 = −xz2 −2y2 +y −5x then p∗
1 = −3zy +1 and

p∗
2 = −2y2 + y. Features 11–14 involve a process we call “pseudo-projection”,

which gives estimates of the size of the projection set arising from choosing a
particular polynomial with which to refine the current cell. It gives a very rough
estimate, as no resultants or discriminants are computed. Features 15–18 are
based on geometric information concerning the roots of p1(α1, . . . , αn−1, z) and
p2(α1, . . . , αn−1, z), where α is the cell’s sample point. Feature 21 is an arbitrary
feature—in the context of learning, it is pure noise.

0 ite tdeg p1 = 1 ∧ tdeg p2 > 1,−1, (ite tdeg p1 > 1 ∧ tdeg p2 = 1,+1, 0)
1 (level p1 − level p2)/(n − 1), where n = number of variables
2 (tdeg p1 − tdeg p2)/5
3 spsize p1 − spsize p2, where spsize is the internal data structures size
4 degree of p1 in its main variable
5 degree of p2 in its main variable

6−10 same as 1–5 except with p∗
1 and p∗

2

11−14 pseudo-projection sizes and weighted sizes for p1 and p2
15 number of roots of p1(α1, . . . , αn−1, z) inside cell
16 number of roots of p2(α1, . . . , αn−1, z) inside cell
17 ±1 according to which polynomial gives a weaker lower bound over α
18 ±1 according to which polynomial gives a weaker upper bound over α
19 number of constraint polynomials known to be sign-invariant in cell
20 number of constraint polynomials not known to be sign-invariant in cell
21 ±1 based on hashes of p1 and p2

There is an existing hand-crafted heuristic used in Tarski, called “BPC”,
against which we will compare our learned heuristic. It is expressible in terms
of features zero, one and three of the feature vector F for polynomials p1 and
p2, but we describe it more directly here as follows: if exactly one of p1 and
p2 has total degree one, choose it; otherwise choose the polynomial with lower
level, breaking ties by choosing the polynomial with smaller “spsize”. The first
feature in our feature vector was included so that other, less capable, learning
paradigms (like decision lists) would still be expressive enough to learn BPC.
For neural nets we could have replaced features zero and one with tdeg p1 and
tdeg p2, which would have been more natural, but these same feature vectors
were used for experiments outside of the scope of this paper.
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For our learning model, we use a feed forward neural network that takes a
dense network with 22 inputs and dimension 22 × 22 × 5 × 5 × 1 with ReLU
activation functions for internal nodes and sigmoid activation function for the
output node. This network, seeded with random weights initially, represents the
“current” choice ordering predicate.

Learning proceeded in rounds. In each round the neural net is used as the
choice ordering predicate for producing data, as described in the previous section.
From this training data, a new set of network weights was learned (starting from
a different set of random weights), and this newly learned function served as the
“current” choice ordering predicate for the subsequent round. This process ran
for 10 rounds, producing the initial (randomly weighted) choice ordering predi-
cate, and 10 learned predicates. Figure 2 shows the performance of the learned
heuristics. Also shown is performance of “BPC” the hand-crafted heuristic that
is used by default in our implementation of NuCAD. The performance does not
smoothly increase from one iteration to the next, nor show the classic “U” shape
often seen in machine learning, which warrants further investigation. The neural
net resulting from the 6th iteration, “NN06”, is the best performing network on
these test problems.

Fig. 2. This plot shows the performance of the trained neural networks for each round
on the test data, which consists of problems generated randomly in the same way as
the training data. Though difficult to see, “NN06”, the network generated after the 6th
round performs the best. Also shown is the performance of “BPC” the hand-crafted
heuristic that is used by default in our implementation of NuCAD.
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The crucial question is whether our learned choice ordering predicate trans-
fers to problems that aren’t of the same “shape” as the problems on which we
trained. To evaluate this, we considered two data sets. The first is a set of 4,235
problems from [3]. These problems are conjunctions of strict inequalities derived
from a subset of problems in the SMT-LIB QF NRA collection by simplifica-
tions and case splittings. Essentially, in these problems “simplification” alone
was insufficient, so we need to turn to a solver, like NuCAD. They are a natural
choice for us to test with, as they meet the requirements of the current NuCAD
implementation, namely that they are conjunctions of strict inequalities. None of
these problems are terribly difficult—almost all have three or fewer variables—so
we also produced a more challenging set consisting of 1,000 randomly generated
four variable problems, generated in a different way than our test problems:
each formula consisted of x > 0 ∧ y > 0 and nine conditions generated in
Maple as randpoly([x,y,z,w],degree=2,terms=4,coeffs=rand(-9..9))>0.
These examples differ from the training data in a number of ways. They have
four variables instead of five. The only linear constraints are x > 0 and y > 0,
whereas the training examples had five linear constraints, each of which was a
multi-term constraint, like −8v+7w+7x > 0, that ties variables together. Finally
the eight non-linear constraints in the training data were generated differently.
Figure 3 shows the performance of BPC, NN06, and NN00, a randomly weighted
neural net, which serves to show the performance of a random choice function.
These experiments indicate that what gets learned from the training set does
transfer over to other, unrelated input formulas. Obviously more testing on a
wider range of inputs is required to be very confident of this, but these results
are promising.

Fig. 3. Plots showing the performance of the hand-crafted heuristic BPC, the randomly
weighted network NN00, and NN06, the trained network that performed best on the
original set of training data. The left plot shows performance for the problem set
stemming from the SMT-LIB, and the right plot shows performance on the four-variable
randomly generated problem set. Note that NN00 failed to solve 51 problems within
the 60 s timeout, BPC failed 13 problems within the 60 s timeout, and NN06 failed to
solve two problems within the 60 s timeout.



Applying ML to Polynomial Constraint Solving 301

6 Future Work and Acknowledgments

There are several avenues for future work that should be considered. The first is
to improve upon what we’ve already done by training on a broader range of input
formula “shapes”—different numbers of variables, different distributions for the
constraints within formula, etc.—and by evaluating on a wider range of data sets,
especially more “real” rather than randomly generated problems. The second
avenue is to apply the basic approach outlined here to different problems, for
example to the problem of selecting a variable ordering in Cylindrical Algebraic
Decomposition, considered in [7], or choosing pivots in parametric Gaussian
elimination.
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