
Chordality Preserving Incremental
Triangular Decomposition and Its

Implementation

Changbo Chen1,2(B)

1 Chongqing Key Laboratory of Automated Reasoning and Cognition,
Chongqing Institute of Green and Intelligent Technology,

Chinese Academy of Sciences, Chongqing, China
chenchangbo@cigit.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China
http://www.arcnl.org/cchen

Abstract. In this paper, we first prove that the incremental algorithm
for computing triangular decompositions proposed by Chen and Moreno
Maza in ISSAC’ 2011 in its original form preserves chordality, which
is an important property on sparsity of variables. On the other hand,
we find that the current implementation in Triangularize command of
the RegularChains library in Maple may not always respect chordality
due to the use of some simplification operations. Experimentation show
that modifying these operations, together with some other optimizations,
brings significant speedups for some super sparse polynomial systems.

Keywords: Triangular decomposition · Chordal graph · Incremental
algorithm · Regular chain

1 Introduction

The method of triangular decomposition pioneered by Ritt [19] and Wu [23]
has become a basic tool for computing the solutions of polynomial systems over
an algebraically closed field. Given a finite set of polynomials F , this method
decomposes F into finitely many systems of triangular shape such that the
union of their zero sets is the same as that of F . With such decomposition
in hand, many information on the solution set, such as emptiness, dimension,
cardinality, etc., can be easily obtained. Triangular decomposition has been stud-
ied and gradually improved by many others in both theory [1,2,14,15,25] and
algorithms [7,10,12,13,16,17,22,24]. Efficient implementations exist in a Maple
built-in package RegularChains as well as many other libraries and softwares,
such as Epsilon, Wsolve, Magma, and so on.

Nowadays, triangular decomposition has also become an important back-
end engine for several algorithms in studying semi-algebraic sets, such as real
root classification [24] and comprehensive triangular decomposition of paramet-
ric semi-algebraic sets [5], computing sample points of semi-algebraic sets [4],
c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 27–36, 2020.
https://doi.org/10.1007/978-3-030-52200-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52200-1_3&domain=pdf
http://orcid.org/0000-0002-7412-7667
https://doi.org/10.1007/978-3-030-52200-1_3


28 C. Chen

describing semi-algebraic sets [4], as well as computing cylindrical algebraic
decompositions and performing quantifier elimination [3,8,9]. These algorithms
and their implementations make triangular decomposition become an efficient
tool in many applications, such as theorem proving, program verification, sta-
bility analysis of biological systems, and so on.

To further improve the efficiency of triangular decomposition, one impor-
tant direction is to explore the structure of input systems, such as symmetry
and sparsity. The work of [11] brings the concept of variable sparsity to the
world of triangular decomposition by virtue of the chordal graph of polynomial
systems. Chordal graph already exists in many other contexts, such as Gauss
elimination [20] and semidefinite optimization [21].

It has already been shown that some top-down algorithms [22] (up to minor
modification of its original form) preserve chordality [18]. Incremental algo-
rithms [7,16,17] are another important class, which compute triangular decom-
positions by induction on the number of polynomials. It is a natural question
to ask if the incremental algorithms can also preserve chordality. In this paper,
we provide an affirmative answer to this question for the incremental algorithm
proposed in [6,7]. On the other hand, we find that the current implementation of
this algorithm in Triangularize command of the RegularChains library in Maple
may not always respect chordality. After a careful examination of the imple-
mentation, we point out this is due to the use of some simplification operations.
Finally, we show by experimentation that modifying these operations, together
with some other optimizations, bring significant speedups for Triangularize on
some super sparse polynomial systems.

2 Basic Lemmas

Definition 1 (Graph). Let x = x1, . . . , xn and F ⊂ k[x]. The (associated)
graph G(F ) of F is an undirected graph defined as follows:

– The set V of vertices of G(F ) is the set of variables appearing in F .
– The set E of edges of G(F ) is the set of (xi, xj), i �= j, where xi and xj

simultaneously appear in some f ∈ F .

Denote by v(G(F )) an operation which returns V .

Definition 2 (Perfect elimination ordering). Let G = (V,E) be a graph
with vertices V = {x1, . . . , xn}. An ordering x = xi1 > · · · > xin is a perfect
elimination ordering for G if for any xij , the induced subgraph on the set of
vertices Vij = {xij}∪{xik | xik < xij and (xij , xik) ∈ E} is a clique. If a perfect
elimination ordering x exists for G, we say G is chordal (w.r.t. x). We say that
a graph G with vertices V = {x1, . . . , xn} is a chordal completion of G, if G is
chordal and G is a subgraph of G.

Example 1. Let F := {x2
1 − x2

2 + x2x4, x
2
2 − x3x4}. Then G(F ) is illustrated in

Fig. 1, where the vertex xi is renamed as i for short. The ordering x1 > x2 >
x3 > x4 is a perfect elimination ordering and G is chordal w.r.t. this ordering.
Another ordering x2 > x1 > x3 > x4 is not a perfect elimination ordering.



Chordality 29

Fig. 1. Chordal graph.

Definition 3. Let x be a given ordering and F ⊂ k[x]. Let M : 2k[x] → 22
k[x]

.
Let G(F ) be any chordal completion of G(F ) w.r.t. the ordering x (that is x is a
perfect elimination ordering for G(F )). We say that M preserves chordality in
G(F ) (resp. G(F )) if for any S ∈ M(F ), we have G(S) ⊆ G(F ) (resp. G(S) ⊆
G(F )). In the former case, we say that M strongly preserves chordality (for F ).
In the latter case, that is M preserves chordality in any chordal completion of
G(F ) w.r.t. x, we say that M preserves chordality (for F ).

Remark 1. Let O : k[x] → 2k[x] be a unary operation which maps f ∈ k[x]
to O(f) ⊂ k[x]. Then it induces a map M which maps {f} to {O(f)}. Let
O : k[x] × k[x] → 2k[x] be a binary operation which maps (f, g) to O(f, g).
Then it induces a map M which maps {f, g} to {O(f, g)}. For both cases, if M
(strongly) preserves chordality, we say that the operation O (strongly) preserves
chordality.

Example 2. Consider F := {x1
3 − 1, x2

3 − 1, x3
3 − 1, x4

3 − 1, x1
2 + x1x2 +

x2
2, x2

2 + x2x3 + x3
2, x3

2 + x3x4 + x4
2, x1

2 + x1x4 + x4
2}. Figure 1 depicts a

chordal completion G(F ) of G(F ) w.r.t. the ordering x1 > x2 > x3 > x4. Let
M be the Triangularize command in Maple 2019, which computes a set of regular
chains as follows:

{{x1 + x4 + 1, x2 − x4, x3 + x4 + 1, x4
2 + x4 + 1},

{x1 − 1, x2 − x4, x3 + x4 + 1, x4
2 + x4 + 1},

{(x4 − 1)x1 − x4 − 2, x2 − 1, x3 + x4 + 1, x4
2 + x4 + 1},

{x1 − 1, x2
2 + x2 + 1, x3 − 1, x4

2 + x4 + 1},
{x1 + x4 + 1, (x4 + 2)x2 − x4 + 1, x3 − 1, x4

2 + x4 + 1},
{(x3 + 2)x1 − x3 + 1, x2 + x3 + 1, x3

2 + x3 + 1, x4 − 1},
{x1

2 + x1 + 1, x2 − 1, x3
2 + x3 + 1, x4 − 1}}.

As we see, it does not preserve chordality since the graph of the fifth regular
chain is not a subgraph of G(F ).

Definition 4. Let O : K[x] → 2K[x] be a unary operation. We say that it
respects the (elimination) ordering x for f ∈ k[x] if v(O(f)) ⊆ v(f).

Lemma 1. If a unary operation O respects the ordering, then it strongly pre-
serves chordality.



30 C. Chen

Proof. It trivially holds since G(f) is a clique for any f ∈ k[x].

Definition 5. Given f ∈ k[x], let mvar(f) be the largest variable appearing in
f . Let O : k[x] × k[x] → 2k[x] be a binary operation. Let S := O(f, g). We say
that O respects the ordering x (for f and g) if the following are satisfied:

– If mvar(f) = mvar(g), we have v(S) ⊆ v({f, g}).
– If mvar(f) �= mvar(g), we have v(S) ⊆ v(f) or v(S) ⊆ v(g).

Lemma 2. Suppose that O respects the ordering x, then we have the following.

– If mvar(f) �= mvar(g), then O strongly preserves chordality.
– If mvar(f) = mvar(g), then O preserves chordality.

Proof. Let G be any chordal completion of G({f, g}) and xi be the common
main variable of f and g. By the definition of chordal graph, the subgraph of G
induced by the set of vertices v(G) \ {xi} is a clique. So the conclusion holds.

Corollary 1. The irreducible factorization Factor strongly preserves chordality.
If the two input polynomials have the same main variable, then the subresul-
tant chain SubRes, the resultant res, the pseudo remainder prem and the pseudo
quotient pquo operations w.r.t. the main variable preserve chordality.

If the input two polynomials do not have the same main variable, then these
operations may destroy chordality, see Example 3.

Example 3. Consider the system F := {f1, f2} again from Example 1 and the
ordering x1 > x2 > x3 > x4. We have mvar(f1) = x1 and mvar(f2) = x2. Then
prem(f1, f2, x2) = x1

2 + x2x4 − x3x4. Clearly prem does not preserve chordality
for f1 and f2.

Lemma 3. Let F ⊂ Q[x]. Let p be a polynomial in F . Assume that F is chordal
w.r.t. the variable order x. Let F ′ := F \ {p}. Then there exists a chordal com-
pletion G(F ′) of G(F ′) (with the same set of vertices) w.r.t. the order x such
that G(F ′) ⊆ G(F ).

Proof. Let G(F ′) := {(u, v) | (u, v) ∈ G(F ), v < u, u ∈ G(F ′) and v ∈ G(F ′)}.
For any u in v(F ′), the set {(u, v), v < u, v ∈ v(F ′)} is a also clique since
{(u, v) | (u, v) ∈ G(F ), v < u, v ∈ v(F )} is a clique by the assumption that F is
chordal. Thus G(F ′) is a chordal completion of G(F ′).

3 The Incremental Algorithm Preserves Chordality

In this section, we prove that the incremental algorithm, namely Algorithm 1,
proposed in [7] preserves chordality. The main subroutine of Algorithm 1 is the
Intersect operation, which takes a polynomial p and a regular chain T as input,
and returns a sequence of regular chains T1, . . . , Tr such that

V (p) ∩ W (T ) ⊆ ∪r
i=1W (Ti) ⊆ V (p) ∩ W (T ), (1)



Chordality 31

where V (p) is the variety of p, W (T ) is the quasi-component of T and W (T ) is
the Zariski closure of W (T ). Due to limited space, we refer the reader to [7] for
a precise definition of these concepts and a detailed description of the algorithm
Intersect and its subroutines Extend, IntersectAlgebraic, IntersectFree, CleanChain,
and RegularGcd.

Algorithm 1: Triangularize(F,R)
1 if F = { } then return {∅};
2 Choose a polynomial p ∈ F ;
3 for T ∈ Triangularize(F \ {p}, R) do output Intersect(p, T,R);

Lemma 4. One can transform Algorithm Triangularize into an equivalent one
with the original flow graph illustrated by the left subgraph of Fig. 2 replaced by
the one depicted in the right subgraph of Fig. 2.

Proof. The transformation can be done in two steps. Firstly one can easily
replace the direct recursions in Extend, Triangularize and IntersectAlgebraic by
iterations. Secondly one can make the function calls to Extend, IntersectAlgebraic,
IntersectFree, CleanChain, RegularGcd inline. As a consequence, one obtains an
equivalent form of Triangularize with the flow graph of function calls depicted in
the right subfig of Fig. 2.

CleanChain

IntersectAlgebraic

IntersectFree

Regularize

Extend

Intersect

RegularGcd

Triangularize

Original flow graph.

Intersect

Triangularize

Regularize

Transformed flow
graph.

Fig. 2. Transform flow graph of the algorithm.



32 C. Chen

Lemma 5. For each algorithm in Fig. 2, any polynomial in it, if appearing in
the output of the algorithm or appearing as the output or input of subroutines
in Fig. 2 of the algorithm, is obtained through chordality preserving operations.
Moreover, if we remove step 1 in Intersect, which calls prem to test if p belongs
to the saturated ideal of T (the algorithm is still correct), all basic operations
appearing in the algorithm preserve chordality.

Lemma 6. Let F ⊂ Q[x] be finite and assume that F is chordal. Let p be
a polynomial and T be a regular chain of Q[x] such that G(p) ⊆ G(F ) and
G(T ) ⊆ G(F ). Let (p1, T1), . . . , (pe, Te) be the processes in the output of Intersect
or Regularize, then we have G(pi, Ti) ⊆ G(F ). (The output Ti is treated as a spe-
cial process (0, Ti).) If this is true, we say that Intersect and Regularize preserves
chordality (w.r.t. F ).

Proof. We prove this by induction on the rank of the process (p, T ).

– Base: For each returned process (pi, Ti), if it is obtained without relying on
the output of recursive calls to Intersect or Regularize, then G({pi} ∪ Ti) ⊆
G({p} ∪ T ) holds.

– Induction: For each recursive calls to Intersect or Regularize, the rank of input
process is less than that of (p, T ). By the induction hypothesis, the recursive
calls preserve chordality. Moreover, by Lemma 5, we notice that the input
process for each recursive call is obtained by chordality preserving operations
as well as the output process of each recursive call is processed by chordality
preserving operations. Thus the lemma holds.

Theorem 1. Algorithm Triangularize preserves chordality.

Proof. We prove it by induction on the number of elements of F . The base case
trivially holds. Let p ∈ F and F ′ := F \{p}. By Lemma 3, there exists a chordal
completion G(F ′) of G(F ′) such that G(F ′) ⊆ G(F ). By induction hypothesis,
for each regular chain T in the output of the recursive call to Triangularize, we
have G(T ) ⊆ G(F ′) ⊆ G(F ). Then the conclusion follows from Lemma 6.

4 Modifying the Implementation of Triangularize

Algorithm 1 has been implemented in the RegularChains library with the same
name. After carefully tracing the code, we find that the only operation in the
implementation of Triangularize that may destroy the chordality is the pseudo-
reminder operation prem. As illustrated by Example 3 in Sect. 2, if two input
polynomials do not have the same main variable, prem can destroy chordality.
In particular, the operation prem was empolyed in several places for performing
the simplification q := prem(p, T ), where p, q are two polynomials and T is a reg-
ular chain. Such simplification does not hurt the correctness of the algorithm,
although it may affect the efficiency and should be empolyed with caution. For
instance, it was empolyed as a preprocessing step for Intersect but only if the
initials of polynomials in T are constants, which may reduce the degree of the



Chordality 33

polynomial. Note that we have V (p)∩W (T ) = V (q)∩W (T ), thus the correctness
of Intersect is not hurt by Eq. (1). However, if q is involved in producing poly-
nomials as input or output of some algorithms in Fig. 2, then Triangularize may
not preserve chordality. Thus, for all these places, we simply do not call prem to
preserve chordality. Note that q = 0 if and only if p is contained in the saturated
ideal of T (membership testing) [6]. If prem is only used for membership testing,
we do not suspend the call to prem as it does not affect chordality. There are
some other operations, such as iterated resultant, which may not preserve the
chordality either. But since they do not produce polynomials as input or output
of algorithms in Fig. 2, we keep the calls to them unchanged.

There are several other changes we made to improve the efficiency of the
code for chordal input. One is to control the generation of redundant regular
chains in Algorithm 1 after each recursive call. Another is to change the order
of polynomials in F to solve in Algorithm 1. In the current implementation of
Triangularize, one first solves polynomials with smaller rank (in particular with
smaller main variables). But this strategy seems to increase the chance of calling
operations not preserving chordality. So we instead now first solve polynomials
with larger rank. As an example, for lattice-r-10 in Table 1, the two different
strategies respectively lead to calling prem(p, T ) 2659 and 964 times.

The implementation preserving chordality is available in Triangularize in
the updated RegularChains library (downloadable from http://www.arcnl.org/
cchen/software/chordal) through option chordal = true.

5 Experiments

Table 2 compares its performance with Triangularize in Maple 2019. We also
include the performance of the regser command of the Epsilon library as a ref-
erence. In Table 1, the examples minor-k, lattice-k and coloring-k are chosen
from [11]. The examples minor-r-k (resp. lattice-r-k) is a slight modification of
minor-k (resp. lattice-k), but have the same associated graph as minor-k (resp.
lattice-k).

Table 1. Benchmark examples.

minor-k {x2i−1x2i+2 − x2ix2i+1 | i = 1, . . . , k}
minor-r-k {x2i−1x2i+2 − x2ix2i+1 + x2i + x2i+1 | i = 1, . . . , k}
lattice-k {xixi+3 − xi+1xi+2 | i = 1, . . . , k}
lattice-r-k {xixi+3 − xi+1xi+2 + x2

i+3 | i = 1, . . . , k}
coloring-k {x3

i − 1 | i = 1, . . . , k} ∪ {∑2
j=0 x

2−j
i xj

(i mod k)+1
| i = 1, . . . , k}

In Table 2, we write Triangularize for short as Tri and Triangularize with
chordal = true as Tri-C. Denote by K and L respectively the Kalkbrener and
Lazard triangular decomposition. For each system F , let n be the number of

http://www.arcnl.org/cchen/software/chordal
http://www.arcnl.org/cchen/software/chordal


34 C. Chen

variables, m be the number of polynomials in F , d be the maximum degree of
polynomials in F , t be the computation time (in seconds), c be the number of
components in the output. The timeout (−) is set as one hour. As we can see from
the table, for these particular sparse systems, Tri-C significantly outperforms Tri.
Meanwhile, Tri-C and regser each have their own favorite examples.

Table 2. Benchmark.

Sys n m d regser Tri (K) Tri (L) Tri-C (K) Tri-C (L)

Time c Time c Time c Time c Time c

minor-10 22 10 2 2.334 455 27.08 89 467.6 875 6.738 89 24.75 767

minor-15 32 15 2 86.13 8236 1701.9 987 − − 1147.7 987 − −
minor-18 38 18 2 1402.1 46810 − − − − − − − −
minor-20 42 20 2 − − − − − − − − − −
minor-r-10 22 10 2 32.05 2214 10.72 1 227.0 498 1.700 1 11.98 351

minor-r-12 26 12 2 336.7 11667 41.30 1 1859.6 1713 5.366 1 75.51 1081

minor-r-14 30 14 2 − − 153.4 1 − − 17.87 1 584.8 3329

minor-r-15 32 15 2 − − − − − − 33.23 1 1762.4 5842

lattice-10 13 10 2 0.140 18 7.065 15 7.6 15 0.417 24 0.417 24

lattice-20 23 20 2 1.640 154 − − − − 8.93 187 8.913 187

lattice-30 33 30 2 19.47 1285 − − − − 409.4 1549 406.2 1549

lattice-40 43 40 2 259.6 10733 − − − − − − − −
lattice-r-10 13 10 2 0.459 13 21.41 1 26.27 13 0.436 1 0.506 13

lattice-r-15 18 15 2 27.19 18 − − − − 2.134 1 2.297 18

lattice-r-18 21 18 2 − − − − − − 150.2 1 152.7 21

lattice-r-20 23 20 2 − − − − − − − − − −
coloring-10 10 20 3 6.45 123 13.45 123 9.89 123 4.916 102 4.636 102

coloring-12 12 24 3 56.87 322 92.67 322 56.96 322 23.06 267 22.79 267

coloring-14 14 28 3 986.5 843 667.7 843 380.1 843 128.8 699 130.2 699

coloring-15 15 30 3 − − − − − − 315.7 1131 312.7 1131

6 Conclusion

In this paper, we first proved that the incremental algorithm for computing
triangular decompositions proposed in [7] preserves chordality. Then we pointed
out that some simplification operations used in the implementation may destroy
chordality. We resolve this problem by carefully modifying the implementation
in Triangularize and the experimentation shows that significant speedups are
obtained for some very sparse polynomial systems. Finally, we remark that more
extensive experimentations on diverse polynomial systems are needed to decide
the best use of these simplifications with the guidance of theory and possibly
the help of artificial intelligence rather than simply relying on experience.



Chordality 35

Acknowledgments. The authors would like to thank anonymous referees for helpful
comments. This research was supported by NSFC (11771421, 11671377, 61572024),
CAS “Light of West China” Program, the Key Research Program of Frontier Sciences
of CAS (QYZDB-SSW-SYS026), and cstc2018jcyj-yszxX0002 of Chongqing.

References

1. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J.
Symb. Comput. 28(1–2), 105–124 (1999)

2. Boulier, F., Lemaire, F., Moreno Maza, M.: Well known theorems on triangular
systems and the D5 principle. In: Proceedings of Transgressive Computing 2006,
Granada, Spain (2006)

3. Chen, C., Moreno Maza, M.: An incremental algorithm for computing cylindrical
algebraic decompositions. In: Computer Mathematics: Proceedings of ASCM 2012,
pp. 199–222 (2014)

4. Chen, C., Davenport, J.H., May, J.P., Moreno Maza, M., Xia, B., Xiao, R.: Trian-
gular decomposition of semi-algebraic systems. J. Symb. Comput. 49, 3–26 (2013)

5. Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive tri-
angular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-75187-8 7

6. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions
of polynomial systems. In: Proceedings of ISSAC, pp. 83–90 (2011)

7. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition
of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

8. Chen, C., Moreno Maza, M.: Quantifier elimination by cylindrical algebraic decom-
position based on regular chains. J. Symb. Comput. 75, 74–93 (2016)

9. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic
decomposition via triangular decomposition. In: Proceedings of ISSAC 2009, pp.
95–102 (2009)

10. Chen, X.F., Wang, D.K.: The projection of quasi variety and its application on
geometric theorem proving and formula deduction. In: Winkler, F. (ed.) ADG
2002. LNCS (LNAI), vol. 2930, pp. 21–30. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24616-9 2

11. Cifuentes, D., Parrilo, P.A.: Chordal networks of polynomial ideals. SIAM J. Appl.
Algebra Geom. 1(1), 73–110 (2017)

12. Dahan, X., Moreno Maza, M., Schost, E., Wu, W., Xie, Y.: Lifting techniques for
triangular decompositions. In: Proceedings of ISSC, pp. 108–115 (2005)

13. Gao, X.S., Chou, S.C.: Computations with parametric equations. In: Proceedings
of ISSAC, pp. 122–127 (1991)

14. Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms
I: polynomial systems. In: Winkler, F., Langer, U. (eds.) SNSC 2001. LNCS, vol.
2630, pp. 1–39. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45084-
X 1

15. Kalkbrener, M.: A generalized euclidean algorithm for computing triangular rep-
resentations of algebraic varieties. J. Symb. Comput. 15(2), 143–167 (1993)

16. Lazard, D.: A new method for solving algebraic systems of positive dimension.
Discrete Appl. Math. 33(1–3), 147–160 (1991)

17. Moreno Maza, M.: On triangular decompositions of algebraic varieties. Technical
report, TR 4/99, NAG Ltd., Oxford, UK (1999). Presented at MEGA-2000

https://doi.org/10.1007/978-3-540-75187-8_7
https://doi.org/10.1007/978-3-540-75187-8_7
https://doi.org/10.1007/978-3-540-24616-9_2
https://doi.org/10.1007/978-3-540-24616-9_2
https://doi.org/10.1007/3-540-45084-X_1
https://doi.org/10.1007/3-540-45084-X_1


36 C. Chen

18. Mou, C., Bai, Y.: On the chordality of polynomial sets in triangular decomposition
in top-down style. In: Proceedings of ISSAC, pp. 287–294 (2018)

19. Ritt, J.F.: Differential equations from the algebraic standpoint, vol. 14. American
Mathematical Society (1932)

20. Rose, D.J.: Triangulated graphs and the elimination process. J. Math. Anal. Appl.
32(3), 597–609 (1970)

21. Vandenberghe, L., Andersen, M.S.: Chordal graphs and semidefinite optimization.
Found. Trends Optim. 1(4), 241–433 (2015)

22. Wang, D.: Elimination Methods. Springer, Vienna (2001). https://doi.org/10.
1007/978-3-7091-6202-6

23. Wu, W.T.: Basic principles of mechanical theorem proving in elementary geome-
tries. J. Auto. Reasoning 2(3), 221–252 (1986)

24. Yang, L., Hou, X., Xia, B.: A complete algorithm for automated discovering of a
class of inequality-type theorems. Sci. China Seri. F Inf. Sci. 44(1), 33–49 (2001)

25. Yang, L., Zhang, J.: Searching dependency between algebraic equations: an algo-
rithm applied to automated reasoning. Technical report, International Centre for
Theoretical Physics (1990)

https://doi.org/10.1007/978-3-7091-6202-6
https://doi.org/10.1007/978-3-7091-6202-6

	Chordality Preserving Incremental Triangular Decomposition and Its Implementation
	1 Introduction
	2 Basic Lemmas
	3 The Incremental Algorithm Preserves Chordality
	4 Modifying the Implementation of Triangularize
	5 Experiments
	6 Conclusion
	References




