
Phase Portraits of Bi-dimensional Zeta
Values

Olivier Bouillot(B)

Gustave Eiffel University, Marne-la-Vallée, France
olivier.bouillot@u-pem.fr

http://www-igm.univ-mlv.fr/∼bouillot/

Abstract. In this extended abstract, we present how to compute and
visualize phase portraits of bi-dimensional Zeta Values. Such technology
is useful to explore bi-dimensional Zeta Values and in long-term quest
to discover a 2D-Riemann hypothesis.

To reach this goal, we need two preliminary steps:
• the notion of phase portraits and a general tool to visualize phase

portrait based on interactive Jupyter widgets.
• the ability to compute numerical approximations of bi-dimensional

Zeta values, using mpmath, a Python library for arbitrary-precision
floating-point arithmetic. To this end, we develop a theory to numer-
ically compute double sums and produce the first algorithm to com-
pute bi-dimensional Zeta Values with complex parameters.

Keywords: Phase portrait · Lindelöf formula · double Zeta Values

1 Introduction

The Riemann Zeta function ζ and the bi-dimensional Zeta Values, also called
2D-Zeta Value, bizetas or double Zeta Values, are respectively defined by:

ζ(s) =
∑

k>0

1
ks

, for all s ∈ C , �e s > 1. (1)

Zes1,s2 =
∑

k>l>0

1
ks1 ls2

, for all s1, s2 ∈ C ,

{�e s1 > 1.
�e (s1 + s2) > 2.

(2)

It is well-known that these functions can be respectively meromorphically
extended to C and C

2 (see [9]). It is also conjectured that the zeros of the

Riemann Zeta function be complex numbers with real part
1
2
: this is the Rie-

mann hypothesis, stated by Riemann himself in 1859 in [10]. A nice long term
quest is to discover the location of zeros of bi-dimensional Zeta Values.

This quest needs first a tool to visualize a representation of a function f
defined over (a part of) C and valued in C, such that looking for zeros of f
becomes easy.
c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 393–405, 2020.
https://doi.org/10.1007/978-3-030-52200-1_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52200-1_39&domain=pdf
https://doi.org/10.1007/978-3-030-52200-1_39

394 O. Bouillot

Constructing a graphical representation of a function f : R −→ R is quite
easy, we just need a 2-dimensional space. However, constructing the graph of a
function f : C −→ C is not so simple because we need a 4-dimensional space. In
particular, this implies that most of us have difficulties visualizing such a graph.
The first objective of this note is to review how to read and construct phase
portraits, which are heat maps where colors encode simultaneously phase and
modulus (see Sect. 2).

Let us notice that there already exists a tool, developed by Elias Wegert in
Matlab (see [12]), to represent phase portraits of complex functions. In parti-
cular, it has been used to explore many functions and illustrate a first course
on complex analysis (see [13]). Unfortunately, this tool computes a lot of values
to produce the desired representation and does not save them. So, research the
localization of the zeros of a function with it is necessarily time-consuming. In
other words, it is not an efficient tool for our purpose.

Nevertheless, Jupyter widgets (see [14]) are wonderful tools that easily enable
us to construct a general phase portrait visualization tool, where the input is just
a complex function. The author has implemented such a widget (see [1]) where,
with interactivity, the user can change the visualization window, the number of
pixels used in a unit square, reuse already computed values or store new ones in
a database, save pictures or see information on how the computations progress.

This widget can be extended to visualize phase portraits of functions with two
complex variables. Visualizing such a function is nothing else than drawing a rep-
resentation of the partial functions and move inside them. According to this, the
author has implemented a second interactive Jupyter widget to realize this walk.

To benefit from the power of the second widget, we need to have an efficient
algorithm to numerically compute bi-dimensional Zeta Value. This is the second
preliminary step to look for a 2D-Riemann hypothesis.

Nowadays, researchers can compute multiple zeta values (and in particular
bizetas), with integer parameters, with as many digits as we wanted (see [3]).
But, to the best of the author’s knowledge, nothing is known to compute these
numbers with complex parameters in any length.

Therefore, the last objective of this note is to present how a double sum can be
numerically computed, and apply the developed method to bizetas. This method
is based on a generalization of a poorly known Lindelöf formula explaining how
to compute the sum of the values at integers of a class of holomorphic functions.
Section 3 contains a presentation of Lindelöf formula, as well as a comparison
between three methods to compute evaluations of the Riemann Zeta function.

Lindelöf formula generalization to double sum, and therefore to bizetas, is
discussed in Sect. 4. One could notice that Lindelöf formula can be written as
an integral. Therefore, we generalize the process to compute double sums using
double integrals and, then, expansions of these integrals. Of course, this technic
is still valid for multiple sums and gives, in theory, an algorithm to compute
multiple Zeta Value in any length, with complex parameters!

Phase Portraits of 2D MZV 395

Finally, once the Jupyter visualization widget of a two complex variables
function is available and the computational machinery is developed, we can
explore phase portraits of convergent 2D-Zeta Values, or linear combinations
of these numbers, to find out some zeros. Therefore, the last necessary point is
to be able to numerically compute the analytic extension of bizetas. Only then,
using our Jupyter widget, a Riemann hypothesis for bizetas could be conjectured.

2 Drawing Function from C to C: Phase Portraits

In this section, we review how to construct and read phase portraits. We will see
how to find zeros and poles of a function, but also points (called color saddle)
where the derivative becomes null. References for this section are [11] and [13].

2.1 Analytic Landscapes vs Phase Portraits

Drawing a function R
2 �−→ R is typically achieved through 2D heat maps

(see [15]) or 3D plots. For a function f : C �−→ C, these approaches may be
used to visualize the modulus; that is analytic landscapes. We could also use
such plots to visualize the phase of f .

However, many applications like ours require to visualize the modulus and
the phase at the same time to visualize poles and zeroes. In addition, such
visualization should highlight simultaneously very small modulus (near zeroes)
and huge modulus (near poles).

Here come into play phase portraits: heat maps where the color of a pixel
z encodes simultaneously the phase of f(z) (by giving color to its values) and
the (logarithm of the) modulus (by using different brightness). Eventually, the
modulus can then be emphasized by adding contours.

2.2 HSL-representation of Colors

Fig. 1. The HSL cylinder Source:
Wikipedia, “HSL and HSV” (Color figure
online)

The HSL-representation of colors is an alterna-
tive representation of the RGB color model and
can be seen as a cylindrical geometry (see Fig. 1).
Its angular dimension, the hue, starts at the red
color at 0◦, passing through the green color at
120◦ and the blue one at 240◦ to finally come
back to red at 360◦. The lightness, i.e. the cen-
tral vertical axis, describes the gray colors, rang-
ing from black at the bottom of the cylinder with
lightness or value 0 to white at the top of the cylinder with lightness or value 1.

396 O. Bouillot

2.3 Principle of Phase Portraits

A pixel of coordinates (x, y) is associated with a complex number z. Then, we
find a color c related to the value f(z) = ρeiθ using the HLS representation of
colors. Therefore, the pixel (x, y) is colored by the color c. (See Fig. 2).

Let us mention that zeros and poles play an important role when visualizing a
phase portrait. Using the logarithm of the modulus, instead of the modulus itself,
allows us to have a smoother graphic representation and also to have symmetrical
behavior between zeros and poles, as well as symmetric visualization of small
and big values.

Moreover, to encounter all the possible values of the modulus, we compactify
the extended real number line [−∞; +∞] to [−1; 1], using x �−→ x

1 + |x| .

x

y

ρ′
=

ln ρ

1 + | ln ρ|

θ

(x, y) ∈ N
2 ←→ z ∈ C

f(z) = ρeiθ

Fig. 2. Color coding of pixels to draw phase portraits of a complex function f

Consequently, a pixel of coordinates (x, y), via its associated complex number
z, is associated with the color obtained in the HSL model by:

H = phase
(
f(z)

)
L =

1
2

(
ln |f(z)|

1 +
∣∣ ln |f(z)|∣∣ + 1

)
S = 1. (3)

In particular, positive real numbers appear reddish in a phase portrait when
negative real numbers appear cyan. Moreover, a zero is a black point while a
pole is a white point.

Let us notice that the color map can be, in principle, adapted to colorblind
people provided that the inherent periodicity of color be fulfilled.

2.4 Easy Properties to Read on Phase Portraits

The phase portraits not only show the location of zeros and poles of a function
but also reveal their multiplicity. As an example, Fig. 3a shows a zero with
multiplicity three. It is easily recognizable: z3 travels 3 times around 0 when
z moves once around 0 along a small circle. We emphasize that the colors met
are in the reverse order for zeros and poles (compare the pole 0 to the three
zeros located in cube root of −2 in Fig. 3b).

Phase Portraits of 2D MZV 397

Moreover, it can be shown that the points where f ′(z) = 0, with f(z) �= 0,
are where the isochromatic lines meet. Such points are called color saddles. See
Fig. 3b where the color saddles are located at cube roots of −2. See also Fig. 3c.

2.5 Necessary Precision to Choose Exact Color

In most cases, only a few significant digits (typically five), need to be known to
plot phase portraits of a function f : C −→ C. In particular, we do not assume
that the underlying system can do arbitrary precision computations.

We review here how to assess the required precision and how to achieve that
precision.

If εL and εH denote the absolute error of L and H, the RGB components

of the associated color are fixed as soon as we have:
εH

60
+ 6εL ≤ 1

255
. More

precisely, we seek to have: εL ≤ 2040−1 and εH ≤ 20−1.
If we assume that Re f(z) and Im f(z) are known up to ε > 0, then, |f(z)|

is known up to 2ε. If |f(z)| ≥ 1, then we can prove that εL ≤ 2ε. If |f(z)| < 1,

then this time εL ≤ k + 2
ln2(k + 2)

ε, where k ∈ N
∗ is such that |f(z)| ∈

[
1

k + 1
;
1
k

[
.

(a) A zero with multiplicity 3:
phase portrait on [−2; 2] + i[−2; 2]
of z →−� z3

(b) A pole, three simple zeros:
phase portrait on [−2; 2] + i[−2; 2]
of z →−� z − z−2

(c) Alternating color saddles with
zeros: phase portrait of sin on
[−7; 7] + i[−7; 7]

Fig. 3. Examples of easy properties seen on phase portraits

Consequently, if f(z) is computed up to ε = 10−4 and satisfied |f(z)| ≥ 0.01,
we have εL ≤ 2040−1 for all cases and the parameter L is well-approximated.

On the H-side, if we assume that R = Re f(z) and I = Im f(z) are known
up to ε > 0 and satisfied |R|, |I| ≥ α for a positive real number α, then, we
can show that εH ≤ ε

(
α−1 + (α − ε)−1

)
. In particular, for α = 5 · 10−3 and

ε = 10−4, we thus have εH ≤ 20−1 and the parameter H is well-approximated.

398 O. Bouillot

Consequently, in most cases, we compute the function f : C −→ C up to 10−4.
However, in the other cases, i.e. when |f(z)| < 0.01, or |Re f(z)| < 5 · 10−3 or
|Im f(z)| < 5 · 10−3, then we will compute again f(z) up to a smaller precision,
e.g. ε = 10−5 or 10−6, in order to finaly have εL ≤ 2040−1 and εH ≤ 20−1.

2.6 Interactive Visualization of Phase Portraits for Jupyter
Notebook

The next step is to create a tool to visualize phase portraits of a given complex
function C −→ C.

Let us remind such a tool was already available in Matlab (see [12]). However,
for our long-term quest of a 2D Riemann hypothesis, we need a tool where the
visualization window of our phase portraits can be easily modified.

According to the official website, a “Jupyter Notebook is an open-source
web application that allows you to create and share documents that contain live
code, equations, visualizations and narrative text” (see also [7] about Jupyter).
Moreover, interactive widgets like Sliders, Buttons or Images are now available
in Jupyter (see [14]).

Consequently, the author has implemented an interactive Jupyter widget for
general visualization of phase portraits (see [1]). Figure 4 is a graphic representa-
tion of its usage. For examples of outputs, let us note that all the phase portraits
shown in this paper have been constructed from this widget.

The code of this interactive widget is already freely available in the following
GitHub repository: https://github.com/tolliob/PhasePortrait. In particular, the
interested reader will find in this repository an online usable Jupyter notebook.
The widget can also be installed using the pip Unix command.

The input of this widget is a complex function f : C −→ C. Interactivity
allows the user to fix a visualization window by setting the left below and right
upper corners. Once these corners fixed, the user can:
� launch the needed evaluations of the function f , or retrieve them;
� show the phase portrait of f in the desired window;
� save the produced image
Then, the user can change the visualization window by going back to these steps.

Another interactive Jupyter widget has also been implemented by the author.
It aims to visualize phase portraits of two variables complex functions from its
partial functions phase portraits. The input is a function f : C2 −→ C, outputs
are again phase portraits, alternatively of f(s0, ·) and f(·, s0). Interactivity allows
the user to move a partial function to another one by moving the point s0 to a
close complex point, or to switch from a partial function to the other one.

https://github.com/tolliob/PhasePortrait

Phase Portraits of 2D MZV 399

Fig. 4. Interactive Jupyter widget to construct phase portraits

3 Computation of the 1D-Zeta Value

In this section, we present a poorly known formula due to Lindelöf (see [8],
chapter 3) which explains how to compute the sum of the values at integers of
holomorphic functions. Then, we apply it to the Riemann Zeta Function and
compare its performances to the Euler-Mac Laurin summation.

However, we warn the reader that Lindelöf formula application to the Zeta
function could not compete computation technics dedicated to the Zeta function,
such that the Riemann-Siegel formula or the Odlyzko-Schönhage algorithm (see
[5] for example). However, Eqs. (7) and (9) will prove that Lindelöf formula
can be extended to the numerical computation of double sums, and so to the
numerical computation of 2D-Zeta Values, while it seems nowadays impossible
to adapt specific ζ computational technics to 2D-Zeta Values.

3.1 On Lindelöf Formula

Before giving the Lindelöf formula, we first emphasize a technical definition from
Chapter 3, p. 54, of [8].

Definition 1. Let m0 >
1
2

be a real number. Let also Ωs be the set defined for

all real number s by Ωs = {z ∈ C , Re z ≥ s}.
A holomorphic function f : Ωm0− 1

2
−→ C satisfies the 1D-Lindelöf hypothesis if:

1. for all s ≥ m0− 1
2
, lim

t−→±∞ e−2π|t|f(τ + it) = 0 uniformly for τ ∈
[
m0 − 1

2
; s

]
;

2. for all s ≥ m0 − 1
2
, t �−→ e−2π|t|f(s + it) ∈ L1(R) and

lim
s−→+∞

∫ +∞

−∞
e−2π|t||f(s + it) dt = 0. (4)

400 O. Bouillot

Now, exploring Chapter 3 of [8], one can reconstruct the following theorem
which gives an integral representation of sums of values of holomorphic functions.
The proof is based on a clever use of the residuum principle. Nevertheless, the
result is quite unknown.

Theorem 1. (Lindelöf, 1905)

Let m0 >
1
2

be a real number, m a positive integer such that m ≥ m0 and
f : Ωm0− 1

2
−→ C be an holomorphic function over Ωm0− 1

2
satisfying

• the 1D-Lindelöf hypothesis ; •
∑

ν≥m

f(ν) is a convergent series.
Then, f ∈ L1([m0 − 1

2 ; +∞[) and

∑

ν≥m

f(ν) =
∫ +∞

m− 1
2

f(t) dt − i

∫ +∞

0

f(m − 1
2 + it) − f(m − 1

2 − it)
e2πt + 1

dt. (5)

The Lindelöf formula (5) can be used to numerically compute sums, expand-
ing its second integral using Taylor expansion with integral remainder: this gives
us a Lindelöf’s Euler-Maclaurin like formula.

Theorem 2. (Lindelöf, 1905)
Let m0, m and f be like in Theorem 1. Then:

∀K ∈ N,
∑

ν≥m

f(ν) ≈
∫ +∞

m− 1
2

f(t) dt+
K∑

k=1

(
1 − 1

22k−1

)
B2k

(2k)!
f (2k−1)

(
m − 1

2

)
. (6)

Coefficients in (6) are nothing else than the Taylor coefficients of
z �−→ x

2 sinh
(z

2

) . So, in a certain sens, Eq. (6) means that:

∑

ν≥m

f(ν) ≈
∫ +∞

m− 1
2

d

dz

2 sinh
(

1
2

d

dz

) (f)(t) dt. (7)

While in Lindelöf’s days, it was not necessary to have a precise estimate of
the approximation error, we now need it due to the existence of computers and
their immense associated computing power.

Theorem 3. Let m0, m, K and f be like in Theorem 1. Let also assume that,

for all u ≥ m0 − 1
2
, the quantity Mu(f) = sup

ζ∈C

Re ζ≥u

|f(ζ)| is well-defined.

If we denote by RK,m(f) the Lindelöf remainder in Eq. (6), i.e. the difference
between the right hand side and the left hand side of Eq. (6), then we have the
following upper bound:

|RK,m(f)| ≤
Mm0− 1

2
(f)

(m − m0)2K+1
· (2K + 1)!

(2π)2K+1
. (8)

Phase Portraits of 2D MZV 401

3.2 Application to the Riemann Zeta Function

To produce a phase portrait of the Riemann Zeta function ζ, we will compute
the values ζ(s) for s in a grid up to 10−4.

First, the Euler-Maclaurin summation process applies (see [2]).
Moreover, the functions fs : z �−→ eiπzz−s satisfy the 1D-Lindelöf hypothesis

for all complex numbers s such that �es > 0. So, Eq. (5) can be used, its second
integral being numerically computed with the mpmath Python library.

Equation (6) can also be used. We just have to find the best choice of triplet
(m0,m,K). Note that the bigger K is, the longest the computation, due to
the computation of the successive derivative which concentrates most of the
multiplications. However, the size of m also intervenes.

This allows us to compute η(s) =
∑

n>0

(−1)nn−s and ζ(s), for all s ∈ Ω 1
2
.

Now, classical tools can be used to compute ζ on the whole punctured complex
plane C − {1} (reflection formula, analytic continuation process; see [4]). Using
the Jupyter widget [1], this generates the phase portraits available in Figs. 5a–5c.

3.3 Comparaison of the Three Methods

Figures 6a to 6d show some comparisons between the three previous methods
(i.e. the Euler-Maclaurin summation process, the Lindelöf formula (5) and the
Lindelöf Euler-Maclaurin like formula given by Eq. (6)).

First, we can see that the integral Lindelöf method is the most stable method,
even if there are some discontinuities (see Fig. 6c and 6d). This is explained by
the different numerical integration methods used by the mpmath Python library.

According to these Figures, we see that to have numerous exact digits, the
bigger |s| is, the more efficient the Lindelöf Euler-Maclaurin-like method is.

Finally, for the three methods, we observe that the computation gets longer
as we want more exact digits. This increase is correlated to the modulus of |s|.
It turns out that Lindelöf Euler-Maclaurin-like formula is the method with the
slower computation time increase relatively to the required number of digits in
the computation of ζ(s).

(a) On [−40; 20] + i[−40; 40] (b) On [−18; 14] + i[−10; 10] (c) Near the first non triv-
ial zero z1 ≈ 0.5 + 14.135

Fig. 5. Three phase portraits of the Rieman Zeta function ζ

402 O. Bouillot

(a) ζ(n) for n ∈ [[2; 50]] up to 10−4 (b) ζ(2 + i im) up to 10−50

(c) ζ(2+ i) with different precision (d) ζ(2 + 40i) with different precision

Fig. 6. Comparaison between three methods to compute Zeta Values

4 Computation of Convergent Two Dimentional Multiple
Zeta Values by a 2D-Lindelöf Formula

To the best of the author’s knowledge, no one was able to numerically com-
pute a convergent Multiple Zeta Values (MZV) with complex exponents so far.
The only known algorithm was dedicated to MZV with integers parameters: it
uses binomial expansions where exponents are related to the MZV parameters
(see [3]).

To produce and explore phase portraits of 2D-Zeta Values, we nevertheless
need, first, to be able to compute these numbers, then to compute them efficently
because producing phase portraits of 2D-Zeta Values could easily require millions
of different evaluations. This difficulty is, of course, the cornerstone of our quest
for a 2D-Riemann hypothesis.

Hopefully, one of the most important advantages of Lindelöf formulas (5)
and (6) over Euler-Maclaurin formula is that it could be extended to higher
dimensions. Consequently, in this section, we will present the first general method
to compute double sums and then apply it to produce the first bi-dimensional
Zeta Values with complex exponents computing algorithm.

Efficientness will not be discussed here for technical reasons, as well as the
upper bound of the error term in the computation of a double sum.

Phase Portraits of 2D MZV 403

4.1 On the 2D-Lindelöf Formula

First, we extend the 1D-Lindelöf hypothesis to the bi-dimensional case:

Definition 2. We say that a function f : Ωm01 × Ωm02 −→ C satisfies the
2D-Lindelöf hypothesis when:

1. ∀z1 ∈ Ωm01 , f(z1, ·) satisfies the 1D-Lindelöf hypothesis over Ωm02 ;
2. S =

∑

l≥m2

f(·, l) is a well-defined function over Ωm01 satisfying the 1D-Lindelöf

hypothesis;

Then, using an iteration of (7), we can prove the following:

Theorem 4. Let m01 and m02 be two real number greater than 1
2 , m1 and m2 be

two positive integers such that mi ≥ m0i, i ∈ {1; 2} and f : Ωm01 × Ωm02 −→ C

a fonction satisfying the 2D-Lindelöf hypothesis.
Let us also suppose that

∑

k≥m1
l≥m2

f(k, l) is a convergent double series. Then:

•
∑

k≥m1
l≥m2

f(k, l) ≈
∫ +∞

m1− 1
2

∫ +∞

m2− 1
2

d

dz1

2 sinh

(
1

2

d

dz1

)

d

dz2

2 sinh

(
1

2

d

dz2

) (f)(u, v) dudv (9)

•
∑

k≥m1
l≥m2

f(k, l) ≈
∑

p,q∈N

p+q≤K

(
1 − 1

22p−1

) (
1 − 1

22q−1

)
B2p

(2p)!

B2q

(2q)!

×
(∫ +∞

m1− 1
2

∫ +∞

m2− 1
2

∂2p+2qf

∂2p
z1 ∂2q

z2

(u, v) du dv

)
(10)

for all integers K.

Some of the integrals in Eq. (10) could be explicitely computed; some could
not. So, to obtain numerical approximation, we use the mpmath Python library
for arbitrary-precision floating-point arithmetic (see [6]).

4.2 Computation of a Double Sum over N
2

Now, we are able to compute a double sum over N2 by cutting N
2 onto six parts

(see Fig. 7):

∑

k≥0

∑

l≥0

f(k, l) =
m1−1∑

k=0

m2−1∑

l=0

f(k, l) +
m1−1∑

k=0

q−1∑

l=m2

f(k, l) +
m1−1∑

k=0

∑

l≥q

f(k, l)

+
p−1∑

k=m1

m2−1∑

l=0

f(k, l) +
∑

k≥p

m2−1∑

l=0

f(k, l) +
∑

k≥m1

∑

l≥m2

f(k, l). (11)

404 O. Bouillot

For “good” functions f , we can compute
m1−1∑

k=0

∑

l≥q

f(k, l) and
∑

k≥p

m2−1∑

l=0

f(k, l)

using the 1D-Lindelöf Euler-Maclaurin-like formula, while
∑

k≥m1

∑

l≥m2

f(k, l) is

computed using the 2D-Lindelöf Euler-Maclaurin-like formula.

Let us consider the function fs1,s2 : (z1, z2) �−→(z1 + 1)−s2(z1 + z2 + 2)−s1 .

k

l

finite
sum

finite
sum

finite
sum

simple
infinitesum

simple
infinitesum

double
infinitesum

m1

m2

p

q

Fig. 7. Decomposition of N
2

onto 6 parts to compute a dou-
ble sum

fs1,s2 satisfies the 2D Lindelöf hypothesis, while
its partial functions satisfy the 1D-Lindelöf
hypothesis. Therefore, we can use the decompo-
sition (11) to compute the double Zeta Value
(see Fig. 8a and 8b).

According to Fig. 8a, we could conjecture
that there is a pole near (s1, s2) = (1, 0).

According to [9], we know exactly the local-
ization of the poles of double Zeta values and
(1, 0) is actualy a pole. Up to long computations,
we now are able to find out zeros of convergent
double Zeta Values.

k = −10 k = −9 k = −8 k = −7 k = −6 k = −5 k = −4

k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3

k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

(a) s �−→ Zes, 6+ik
5 , on

[
6

5
; 3

]
+ i[−2; 2]

k = 6 k = 7 k = 8 k = 9 k = 10

k = 11 k = 12 k = 13 k = 14 k = 15

(b) s �−→ Ze
k
5 −2i,s, on

[
6

5
; 3

]
+ i[−2; 5]

Fig. 8. Expansion of phase portrait of partial functions of double Zeta values

Acknowledgment. The author would like to warmly thank the reviewers for their
time and effort devoted to improving the quality of this work.

References

1. Bouillot, O.: Phaseportrait, a github repository (2020). https://github.com/
tolliob/PhasePortrait

2. Cohen, H., Olivier, M.: Calcul des valeurs de la fonction zêta de riemann en mul-
tiprécision. C.R. Acad. Sci. Paris Sér I Math. 314, 427–430 (1992)

3. Crandall, R.E.: Fast evaluation of multiple zeta sums. Math. Comp. 67(223), 1163–
1172 (1998)

https://github.com/tolliob/PhasePortrait
https://github.com/tolliob/PhasePortrait

Phase Portraits of 2D MZV 405

4. Edwards, H.E.: Riemann’s Zeta Function. Academic Press, New York (1974)
5. Gourdon, X., Sebah, P.: Numerical evaluation of the riemann ζ-function. http://

numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf
6. Johansson, F., et al.: mpmath: a Python library for arbitrary-precision floating-

point arithmetic (version 0.18), December 2013. http://mpmath.org/
7. Kluyver, T., et al.: Jupyter notebooks - a publishing format for reproducible com-

putational workflows. In: Loizides, F., Schmidt, B. (eds.) Positioning and Power in
Academic Publishing: Players, Agents and Agendas, pp. 87–90. IOS Press, Ams-
terdam (2016)

8. Le Lindelöf, E.L.: calcul des résidus et ses applications à la théorie des fonctions.
Gauthier-Villars, Paris (1905)

9. Mehta, J., Saha, B., Viswanadham, G.K.: Analytic properties of multiple zeta
functions and certain weighted variants, an elementary approach. J. Number Theor.
168, 487–508 (2016)

10. Riemann, B.: Über die anzahl der primzahlen unter einer gegebenen grösse. Mon.
Not. Berlin Akad. 2, 671–680 (1859)

11. Semmler, G., Wegert, E.: Phase plots of complex functions: a journey in illustration.
Notices Am. Math. Soc. 58, 768–780 (2011)

12. Wegert, E.: Complex function explorer. https://www.mathworks.com/
matlabcentral/fileexchange/45464-complex-function-explorer. Accessed 08 May
2020. MATLAB Central File Exchange

13. Wegert, E.: Visual Complex Functions. An Introduction with Phase Portraits.
Springer, Basel (2012). https://doi.org/10.1007/978-3-0348-0180-5

14. Jupyter widgets community: ipywidgets, a github repository (2015). https://
github.com/jupyter-widgets/ipywidgets

15. Wilkinson, L., Friendly, M.: The history of the cluster heat map. Am. Stat. 63,
179–184 (2009)

http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf
http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf
http://mpmath.org/
https://www.mathworks.com/matlabcentral/fileexchange/45464-complex-function-explorer
https://www.mathworks.com/matlabcentral/fileexchange/45464-complex-function-explorer
https://doi.org/10.1007/978-3-0348-0180-5
https://github.com/jupyter-widgets/ipywidgets
https://github.com/jupyter-widgets/ipywidgets

	Phase Portraits of Bi-dimensional Zeta Values
	1 Introduction
	2 Drawing Function from C to C: Phase Portraits
	2.1 Analytic Landscapes vs Phase Portraits
	2.2 HSL-representation of Colors
	2.3 Principle of Phase Portraits
	2.4 Easy Properties to Read on Phase Portraits
	2.5 Necessary Precision to Choose Exact Color
	2.6 Interactive Visualization of Phase Portraits for Jupyter Notebook

	3 Computation of the 1D-Zeta Value
	3.1 On Lindelöf Formula
	3.2 Application to the Riemann Zeta Function
	3.3 Comparaison of the Three Methods

	4 Computation of Convergent Two Dimentional Multiple Zeta Values by a 2D-Lindelöf Formula
	4.1 On the 2D-Lindelöf Formula
	4.2 Computation of a Double Sum over N2

	References

