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Abstract. Computations with algebraic number fields and algebraic
curves have been carried out for a long time. They resulted in many
interesting examples and the formation of various conjectures.

The aim of this talk is to report on some computations with algebraic
surfaces that are currently possible.
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1 Introduction

Algebraic geometry is the study of the sets of solutions of systems of algebraic
equations. In dimension zero, these sets consist of a finite number of points.
From an arithmetic perspective, the points are usually not defined over the base
field. Thus, a detailed inspection requires to work with algebraic number fields.
Many algorithms for them are described in [9] and [10].

In dimension 1, the solution sets are algebraic curves. Projective curves are
classified by the degree, abstract irreducible curves by the genus. A smooth plane
curve of degree 1 or 2 has genus 0. Thus, from a geometric perspective, the curve
is isomorphic to the projective line. However, the isomorphism is only defined
over the base field if the curve has a rational point. The answer to this question
can be found using the famous theorem of Hasse-Minkowski.

Smooth curves of degree 3 are of genus one. They have been studied by many
authors from various perspectives. Most notable are the investigations towards
the Birch and Swinnerton-Dyer conjecture [1,2].

Increasing the dimension once more leads us to algebraic surfaces. Here, we
have the Enriques-Kodaira classification, which is based on the Kodaira dimen-
sion. Prominent surfaces of Kodaira dimensions −∞ are the projective plane,
quadratic and cubic surfaces. Ruled surfaces, i.e. surfaces birationally equivalent
to P1 × C, for a curve C of arbitrary genus, are in this class too.
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The most important family of surfaces of Kodaira dimension 0 are K3 sur-
faces. This family includes all smooth quartic surfaces. Further, abelian surfaces
have Kodaira dimension 0, as well.

Finally, there are surfaces of Kodaira-dimensions 1 and 2. They will not be
considered in this talk.

The algorithms presented in this article have been implemented by the
authors over the past 10 years as a part of their research. The given examples
are based on magma [4], version 2.25.

2 Computation with Cubic Surfaces

2.1 Definition

A cubic surface is a smooth algebraic surface in P3 given as the zero set of a
homogeneous cubic form in four variables.

2.2 Properties of Cubic Surfaces

1. It is well known that every smooth cubic surface contains exactly 27 lines. As
the lines generate the Picard group of the surface, many other properties of
the surface relate to them [24].

2. The moduli stack of cubic surfaces if of dimension 4.

For a modern presentation of the geometry of cubic surfaces we refer the inter-
ested read to [12, Chap. 9].

2.3 Computational Questions

1. Given two cubic surfaces, can we test for isomorphy?
2. Given a cubic surface over a finite field, can we count the number of points

on the surface efficiently?
3. Given a cubic surface over the rationals, what is known about the number of

rational points on the surface? Is there a computational approach to this?

2.4 Invariants and Isomorphy Testing

As proven by Clebsch, the ring of invariants of even weight of cubic surfaces is
generated by five invariants of degrees 8, 16, 24, 32, and 40 [8]. Further, there
is an invariant of odd weight an degree 100. These invariants can be computed
in magma:

r4<x,y,z,w>:= PolynomialRing(Rationals(),4);
f:= x^3 + y^3 + z^3 + w^3 + (3*x+3*z+4*w)^3;
time ClebschSalmonInvariants(f);
[ -2579, -46656, 0, 0, 0 ]
-708235798046072773554016875
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Time: 0.010
> time Factorization(708235798046072773554016875);
[ <3, 27>, <5, 4>, <13, 4>, <2281, 2> ]
Time: 0.000
> time SkewInvariant100(f);
0
Time: 0.010

The last return value of ClebschSalmonInvariants is the discriminant of the
surface. Thus, this surface has bad reduction only at 3, 5, 13 and 2281. Fur-
ther, the degree 100 invariant vanishes. This shows that the surface has at least
one non-trivial automorphism. Multiplication of y by a 3rd root of unity and
interchanging x- and z-coordinate are automorphisms of the example.

A detailed description of the algorithm is given in [19]. As an isomorphism
of smooth cubic surfaces is always given by a projective linear map, they are
isomorphic if and only if the invariants coincide.

2.5 Counting Points over Finite Fields

The number of points on a variety over a finite field relates to the Galois module
structure on its etale cohomology [25]. In the case of a cubic surface, the coho-
mology is generated by the lines on the surface. Using Gröbner bases, one can
explicitly determine the lines on a cubic surface and compute the Galois module
structure. In magma, this is available as follows:

r4<x,y,z,w>:= PolynomialRing(Rationals(),4);
f:= x^3 + y^3 + z^3 + w^3 + (x+2*x+3*z+4*w)^3;
p:= NextPrime(17^17);
time NumberOfPointsOnCubicSurface(PolynomialRing(GF(p),4)!f);
684326450885775034172205518946819088355253 9
Time: 0.170

The second return value is the action of the Frobenius on the lines encoded by its
Swinnerton-Dyer number. A detailed description of the lines on a cubic surface
and potential Frobenius actions are given in [24].

2.6 Rational Points on Cubic Surfaces

As soon as a smooth cubic surface over Q has one rational point, one can con-
struct infinitely many other rational points. Further, there are numerous conjec-
tures and questions towards the set of rational points.

If we fix a search bound B, then we can ask for the number of points,

n(B) := #{(x : y : z : w) ∈ P3(Q) | x, y, z, w ∈ Z, |x|, |y|, |z|, |w| < B,

f(x, y, z, w) = 0} ,
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on the surface, given by f = 0. For cubic surfaces, this question is covered by
the Manin conjecture [20]. More precisely, when counting only the points that
are not contained in any of the lines on the surface

n′(B) := #{(x : y : z : w) ∈ P3(Q) | x, y, z, w ∈ Z, |x|, |y|, |z|, |w| < B,

f(x, y, z, w) = 0, (x : y : z : w) not on a line of f = 0} ,
the conjecture predicts the existence of a constant C such that

n′ ∼ C · B logr−1(B) .

Here, r is the rank of the arithmetic Picard group. A conjecture for the value of
C is presented in [26]. Today, we have a lot of numerical and theoretical evidence
for this conjecture. Some numerical examples of smooth cubics are given in [15].
Examples such that a more complex set than just a fixed finite collection of lines
on the variety needs to be excluded from the count are given in [13] and [14].

Finally, the conjecture is proven for some singular surfaces [5]. The interested
reader my also consult [6] for a general introduction to the Manin conjecture.

3 Computations with K3 Surfaces

3.1 Definition

A K3 surface is a smooth algebraic surface which is simply connected and has
trivial canonical class.

3.2 Examples

As the definition of K3 surfaces is abstract, they arise in various forms.

1. Let f6(x, y, z) = 0 be a smooth plane curve of degree 6. Then the double
cover of P2, given by

w2 = f6(x, y, z),

is a K3 surface of degree 2 in P(1, 1, 1, 3).
2. A smooth quartic surface in P3 is a K3 surface.
3. A smooth complete intersection of a quadric and a cubic in P4 is a K3 surface

of degree 6.
4. A smooth complete intersection of three quadrics in P5 is a K3 surface of

degree 8.

If a surface of the shape above has only ADE-singularites, then the minimal
resolution of singularities is still a K3 surface.

3.3 Questions Towards K3 Surfaces

1. Can we test isomorphy of K3 surfaces?
2. What is known about its cohomology?
3. Can we count point over finite fields on K3 surfaces efficiently?
4. What is known about the rational points on a K3 surface defined over Q?
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3.4 Invariants and Isomorphy

For none of the above models of K3 surfaces, a complete system of invariants
is known. In contrast to cubic surfaces, an isomorphism of K3 surfaces may not
be given by a projective linear map. Thus, the isomorphy test is harder in this
instance as different embeddings have to be taken into account.

3.5 Cohomology of K3 Surfaces

The cohomology H2(V,Z) of a K3 surface V over Q is isomorphic to Z22. All
algebraic cycles defined over Q generate a sublattice called the geometric Picard
group. Its rank r ∈ {1, . . . , 20} is called the geometric Picard rank.

3.6 Counting Points over Finite Fields

Counting points over finite fields can always be done naively by enumeration.
However, there are more efficient methods available. Most notable are the p-adic
methods developed by Kedlaya, Harvey, and others [11,21,22]. The following is
available in magma:

r3<x,y,z>:= PolynomialRing(Rationals(),3);

f:= x^6+y^6+z^6+(x+2*y+3*z)^6;

time WeilPolynomialOfDegree2K3Surface(f,31);

Time: 72.700

t^22 + 58*t^21 + 372*t^20 - 55738*t^19 - 1549132*t^18

- 12929294*t^17 - 572583020*t^16 - 15975066258*t^15

+ 495227053998*t^14 + 10234692449292*t^13 - 608111309695433*t^12

+ 584394968617311113*t^10 - 9451953405462597132*t^9

- 439515833354010766638*t^8 + 13624990833974333765778*t^7

+ 469305239836893718599020*t^6 + 10183923704460593693598734*t^5

+ 1172606072256462645291511372*t^4

+ 40545109959944612235271873978*t^3

- 260047946639644754336571329652*t^2

- 38963850671506772358096270892858*t

- 645590698195138073036733040138561

This gives us the characteristic polynomial of the Frobenius on the etale
cohomology and the number of points over F31d is encoded in this. Some details
on this function are given in [18].

3.7 Computing Algebraic Cycles

As explained above, the algebraic cycles on a K3 surface form a lattice of
rank r = 1, . . . , 20. Thus, a first step to determine its rank is a computa-
tion of lower and upper bounds. Lower bounds can be generated by enumer-
ating cycles. Upper bounds can be derived by point counting [23]. Applying
WeilPolynomialToRankBound to the above example gives us the bound r ≤ 10.
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Combining this with a modulo 71 computation and ArtinTateFormula, one can
sharpen this bound to r ≤ 9. These functions were implemented as part of the
research described in [16].

As worked out by Charles [7], primes resulting in sharp upper bounds have
positive density, as long as the surface does not have real multiplication. The
first explicit family Vt of K3 surfaces such that the approach fails was given
in [17]:

Vt : w2 = q1q2q3

with

q1 :=
(

1
8
t2 − 1

2
t +

1
4

)
y2 + (t2 − 2t + 2)yz + (t2 − 4t + 2)z2,

q2 :=
(

1
8
t2 +

1
2
t +

1
4

)
x2 + (t2 + 2t + 2)xz + (t2 + 4t + 2)z2,

q3 := 2x2 + (t2 + 2)xy + t2y2.

3.8 Rational Points

For the structure of the set of rational points on K3 surfaces, only conjectures
are known. Most notable is a conjecture of Bogomolov [3]: Every rational point
on a K3 surfaces lies on some rational curve on the surface.

Up to the authors knowledge, there are no computational investigations on
this conjecture.
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5. de la Bretèche, R., Browning, T.D., Derenthal, U.: On Manin’s conjecture for a
certain singular cubic surface. Annales Scientifiques de l’École Normale Supérieure
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Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS, vol. 6197, pp. 126–141. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14518-6 13

17. Elsenhans, A.-S., Jahnel, J.: Examples of K3 surfaces with real multiplication. In:
Proceedings of the ANTS XI Conference (Gyeongju 2014) (2014). LMS Journal of
Computation and Mathematics 17, 14–35

18. Elsenhans, A.-S., Jahnel, J.: Point counting on K3 surfaces and an application con-
cerning real and complex multiplication. In: Proceedings of the ANTS XII Confer-
ence (Kaiserslautern 2016) (2016). LMS Journal of Computation and Mathematics
19, 12–28

19. Elsenhans, A.-S., Jahnel, J.: Computing invariants of cubic surfaces. In: Le Matem-
atiche (to appear)

20. Franke, J., Manin, Y.I., Tschinkel, Y.: Rational points of bounded height on
Fano varieties. Invent. Math. 95(2), 421–435 (1989). https://doi.org/10.1007/
BF01393904

21. Harvey, D.: Computing zeta functions of arithmetic schemes. Proc. Lond. Math.
Soc. 111(6), 1379–1401 (2015)

22. Kedlaya, K.S.: Computing zeta functions via p-adic cohomology. In: Buell, D. (ed.)
ANTS 2004. LNCS, vol. 3076, pp. 1–17. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24847-7 1

23. van Luijk, R.: K3 surfaces with Picard number one and infinitely many rational
points. Algebra Number Theory 1(1), 1–15 (2007)

24. Manin, Y.I.: Cubic Forms. North Holland, Amsterdam (1986)
25. Milne, J.S.: Etale Cohomology. Princeton University Press, Princeton (1980)
26. Peyre, E.: Hauteurs et mesures de Tamagawa sur les variétés de Fano. Duke Math.

J. 79(1), 101–218 (1995)

https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-1-4419-8489-0
https://doi.org/10.1007/978-1-4419-8489-0
https://doi.org/10.1007/11792086_23
https://doi.org/10.1007/11792086_23
https://doi.org/10.1007/978-0-8176-4745-2_14
https://doi.org/10.1007/978-3-642-14518-6_13
https://doi.org/10.1007/BF01393904
https://doi.org/10.1007/BF01393904
https://doi.org/10.1007/978-3-540-24847-7_1
https://doi.org/10.1007/978-3-540-24847-7_1

	Computations with Algebraic Surfaces
	1 Introduction
	2 Computation with Cubic Surfaces
	2.1 Definition
	2.2 Properties of Cubic Surfaces
	2.3 Computational Questions
	2.4 Invariants and Isomorphy Testing
	2.5 Counting Points over Finite Fields
	2.6 Rational Points on Cubic Surfaces

	3 Computations with K3 Surfaces
	3.1 Definition
	3.2 Examples
	3.3 Questions Towards K3 Surfaces
	3.4 Invariants and Isomorphy
	3.5 Cohomology of K3 Surfaces
	3.6 Counting Points over Finite Fields
	3.7 Computing Algebraic Cycles
	3.8 Rational Points

	References




