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Abstract. Associating assessment items with hypothesized knowledge compo-
nents (KCs) enables us to gain fine-grained data on students’ performance within
an ed-tech system. However, creating this association is a time consuming pro-
cess and requires substantial instructor effort. In this study, we present the results
of crowdsourcing valuable insights into the underlying concepts of problems in
mathematics and English writing, as a first step in leveraging the crowd to expe-
dite the task of generating KCs.We presented crowdworkers with two problems in
each domain and asked them to provide three explanations about why one problem
is more challenging than the other. These explanations were then independently
analyzed through (1) a series of qualitative coding methods and (2) several topic
modeling techniques, to compare how they might assist in extracting KCs and
other insights from the participant contributions. Results of our qualitative coding
showed that crowdworkers were able to generate KCs that approximately matched
those generated by domain experts. At the same time, the topic models’ outputs
were evaluated against both the domain expert generated KCs and the results of
the previous coding to determine effectiveness. Ultimately we found that while
the topic modeling was not up to parity with the qualitative coding methods, it
did assist in identifying useful clusters of explanations. This work demonstrates
a method to leverage both the crowd’s knowledge and topic modeling to assist in
the process of generating KCs for assessment items.

Keywords: Knowledge component · Knowledge component modeling ·
Crowdsourcing · Topic modeling · Intelligent tutoring systems

1 Introduction

The combination of data-driven knowledge tracing methods and cognitive-based model-
ing has greatly enhanced the effectiveness of a wide range of educational technologies,
such as intelligent tutoring systems and other online courseware. In particular, these
systems often employ knowledge component modeling, which treats student knowledge
as a set of interrelated KCs, where each KC is “an acquired unit of cognitive func-
tion or structure that can be inferred from performance on a set of related tasks” [14].
Operationally, a KC model is defined as a mapping between each question item and a
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hypothesized set of associatedKCs that represent the skills or knowledge needed to solve
that item. This mapping is intended to capture the student’s underlying cognitive process
and is vital to many core functionalities of educational software, enabling features such
as adaptive feedback and hints [22].

While machine learning methodologies have been developed to assist in the auto-
matic identification of new KCs, prior research has shown that human judgment remains
critical in the interpretation of the improved model and acquisition of actionable insights
[19, 24]. An emerging area that has the potential to provide the human resources needed
for scaling KCmodeling is crowdsourcing. Naturally, the challenge with this approach is
that the population of crowdworkers is highly varied in their education level and domain
knowledge proficiency. Therefore, as a first step towards examining and promoting the
feasibility of crowdsourced KC modeling, we studied how crowdworkers can provide
insights into different word problems that might suggest areas of improvements and
generating KCs for the questions. We took these insights via explanations, coded them
and ran them through two topic models to analyze how they might be utilized for the
task. Our research questions are as follows:

RQ1: Are the explanations provided by crowdworkers indicative of any KCs that the
problems require?
RQ2: How effective is topic modeling compared to qualitative coding in identifying
explanations indicative of KCs?
RQ3: Do the explanations provide insights into how the presented assessment items may
be improved?

2 Related Work

KC models are typically developed by domain experts through Cognitive Task Anal-
ysis methods [29], which lead to effective instructional designs but require substantial
human efforts. Fully automated methods can potentially discover models with better
performance than human-generated ones (in terms of statistical metrics such as AIC,
BIC and cross validation score), but they suffer from a lack of interpretability [31].
Other efforts of automatic cognitive model discovery make use of student data, such as
the Q-matrix algorithm [2]. On the other hand, [13] showed that a refined KCmodel that
results from both human judgment and computational metrics can help students reach
mastery in 26% less time. More generally, as pointed out in [18] the inclusion of human
factors in the KC modeling process can be advantageous, leading to lessons that can be
implemented in follow-up studies.

Recently, crowdsourcing has become increasingly popular for content development
and refinement in the education domain [21, 27]. The process of crowdsourcing data from
learners, or learnersourcing, has been used to identify which parts of lecture videos are
confusing [12], and to describe the key instructional steps and subgoals of how-to videos
[11]. In particular, [33] explored a crowdsourcing-based strategy towards personalized
learning in which learners were asked to author explanations on how to solve statistics
problems. The explanations generated by learnerswere found to be comparable in quality
to explanations produced by expert instructors.
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As the fields of natural language processing and text mining continue to advance,
they are being increasingly leveraged by education to help automate arduous tasks [6].
Previous work has looked at using different machine learning models [25, 26] and
utilizing a search engine [10] to tag educational content with KCs. Recent efforts have
utilized topic modeling on a set of math problems from an intelligent tutoring system to
assist in the labeling of KCs [30]. While their initial model had promising results, there
was an issue of human interpretability for the topics it produced, that may be relieved
by different models [17]. Much of the work in this space is focused towards predicting
KCs for content, after being trained on similarly KC tagged problem. Few studies have
tried to leverage text mining techniques to generate KCs for content, with no training or
prediction modeling involved.

3 Methods

Our study consists of two experiments with the same procedure, but involve different
domain knowledge. The first domain is mathematics, with a focus on the area of shapes;
the second is English writing, with a focus on prose style involving agents and clause
topics. In both domains, we deployed an experiment using Amazon’s Mechanical Turk
(AMT). Forty crowd workers on AMT, known as “turkers,” completed the math experi-
ment, and thirty turkers completed the writing experiment, for a total of 70 participants.
In each domain, the tasks took roughly five minutes. Participants were compensated
$0.75 upon completion, providing a mean hourly wage of $9.

The main task of the experiment presented participants with two word problems
positioned side by side, labeled Question 1 and Question 2. In the math experiment, both
problems involve finding the area of two different structures. In the writing experiment,
both problems involve identifying the agents and actions of two different sentences.
Participants were truthfully told that past students were tested on these problems and
that the collected data indicates Question 2 is more difficult than Question 1. They were
then asked to provide three explanations on why this is the case. The specific question
prompt stated: “Data shows that from the two questions displayed above, students have
more difficulty answering Question 2 than Question 1. Please list three explanations on
why Question 2 might be more difficult than Question 1”.

3.1 Math and Writing Experiments

The two mathematics word problems used for the explanation task can be seen in Fig. 1.
These problems come from a previous study of a geometry cognitive tutor [32], where
the data indicates that students struggle more with the problem involving painting the
wall (the right side of Fig. 1). Both problems are tagged with the same three KCs by the
domain experts that created the problems, so they assess the same content. These KCs
are: Compose-by-addition, Subtract, and Rectangle-area.

Both problems used in thewriting experiment come from an online prose style course
for freshman and sophomore undergraduates (Fig. 2). Similar to the math problems,
student data collected from the online course indicates students struggle more with one
problem over the other. The KCs were generated by domain experts and are: Id-clause-
topic, Discourse-level-topic, Subject-position, and Verb-form.
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Fig. 1. The two word problems for which participants provided three explanations in the math
experiment, with the one on the right being more difficult.

Fig. 2. The two problems for which participants provided three explanations in the writing
experiment, with the one on the right being more difficult.

3.2 Categorization of Explanations

We collected three explanations from each of the 40 participants in the math experiment,
for a total of 120, and three explanations from each of the 30 participants in the writing
experiment, for a total of 90.Overall therewere 210 explanations,where each explanation
is defined as the full text provided by a participant into the answer space. These mostly
consisted of sentence fragments or full sentences, but therewere several that hadmultiple
sentences. Such explanations were still treated as a single unit, to which the best fitting
code was applied [9].

Using data collected from a brief pilot study, two researchers followed the process
in [7] to develop a codebook from the explanations in the math experiment, and a
separate codebook for the writing experiment. This involved assigning the participant
explanations to a set of codes based on their interpreted meaning. These codebooks were
iteratively refined until agreement on the codes was achieved. Two research assistants
then applied the codebook to the pilot data and discussed discrepancies, seeking clarity
for any codes they were unfamiliar with. Table 1 shows the finalized version of the
codebook applied to the collected math and writing explanation data. The codebook
was then applied to the full dataset from each domain by the two research assistants.
Next, we measured the code agreement via Inter-Rater Reliability (IRR). The coders
achieved a Cohen’s kappa κ = 0.813 for the math experiment and κ = 0.839 for the
writing experiment, which indicates a high level of agreement [15].

3.3 Topic Modeling Explanations

Topic models estimate latent topics in a document from word occurrence frequencies,
based on the assumption that certain words will appear depending on potential topics in



402 S. Moore et al.

Table 1. Coding dictionary for the math and writing experiment responses.

Code Definition Example explanation

Math experiment

Calculation Mentions the computational aspects
involved in the problem, e.g.,
subtraction or use of area

“Because they don’t know how to
calculate the area”

Clarity-Shape Relates to the understanding of the
depicted shape

“It may be less clear which part should
be calculated because of shading”

Clarity-Text Relates to the understanding of the
text

“Wording is kinda confusing”

Complexity Claiming that one problem is more
complicated than the other, without
further clarification

“Problem two is more complicated
than problem one”

Composite Addresses an embedded shape used
in the problem

“The picture itself shows other objects
such as windows and this might throw
off the student”

Content General remarks about the problem
content that are not captured by other
content subcategories

“The numbers displayed have decimal
points”

Meta A mention of general skills needed to
solve any type of word problem, such
as focusing, reading, and attention

“It takes more time to read in
problem 2 so students are more prone
to getting discouraged”

N/A Does not provide any sensible
explanation

“340”

Shape-Layout Mentions the visual element of the
word problem’s shapes

“It is more difficult based on the
shapes presented in question two”

Step-Num Indicates one problem requires a
certain number of steps/more steps

“There are more steps to complete in
problem 2”

Value-Num Indicates one problem has more
variables/values to work with

“It has more variables”

Writing experiment

Answer # Relating to the number of answer
choices present in the question

“In option one there is only one right
answer”

Complexity Discusses the general
difficulty/complexity

“More complex knowledge needed”

Content Touches on the content of the
question

“They have to revise it instead of just
saying what is wrong”

Meta Describing a skill required by similar
problems, at a more meta level

“It is hard to write”

(continued)
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Table 1. (continued)

Code Definition Example explanation

N/A Not applicable or relevant “Poor communication with suppliers”

Prework Discusses the prior knowledge or
prework that might be required to
answer

“The second isn’t explained in the
coursework”

Question-type Addresses the question’s type (MCQ
or free response) in the explanation

“Written answer instead of multiple
choice”

Question-text Mentions the question’s text in some
capacity, e.g., longer/confusing

“Sentence 2 is more vague”

Rules Mentions the rules a student would
need to know to solve the problem

“Problem one only requires an
understanding of grammar”

Technical Mentions a specific technical term
that might be required to answer

“In problem two, the subject is not in
the beginning of the sentence”

the text. We used two topic modeling techniques, Latent Dirichlet Analysis (LDA [5])
and Non-negative Matrix Factorization (NMF [16]), to further analyze the explanations.
LDAmaps all documents, in this case the explanations, to a set number of topics in a way
such that the words in each document are captured by the topics [1]. NMF uses linear
algebra for topic modeling by identifying the latent structure in data, the explanations,
represented as a non-negative matrix [20]. The explanation text was lemmatized and
stop words were removed, using a common NLP library in Python [4]. No further text
processing was performed on the explanation data before running them through the
models, as we wanted results without fine-tuning any parameters or heavily processing
the data. The results of the topic models were then evaluated against the researcher-
generated codes, categorizations, and the expert generated KCs for the problems, in
order to gauge their effectiveness for this task.

4 Results

RQ1: Are the explanations provided by crowdworkers indicative of any KCs that the
problems require? From the coded explanations in the math and writing experiments, we
constructed a set of themes, shown in Table 2, formed by grouping several of the related
codeswithin each experiment together [28]. In themath experiment the first three themes,
Greater Quantity, Shapes Present, and Domain Knowledge, all comprise explanations
which address features of the given problems and are indicative of a KC required to solve
the problem. Explanations that are grouped into these three themes can be translated into
KCs that fit the problem and are indicative of the underlying skill(s) required to solve it.
However, the only explanations that suggested a KC that matched any of the expert ones
(Compose-by-addition, Subtract, and Rectangle-area) came from the Calculation code.
The fourth theme, Clarity/Confusion, pertains to the problem’s question text or visuals
being unclear and hard to decipher. This theme contains explanations that relate to what
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makes the problems particularly difficult outside of the knowledge required to solve it;
from these explanations, one could also derive ways to improve the assessment, such as
making the question text more explicit or clarifying the depicted image. The fifth theme,
Irrelevant, holds the remaining explanations – those that do not address the problem in
a meaningful way, i.e., they are too general or abstract.

Table 2. Themes for the math (above) and writing (below) experiments created from the coded
data and if the theme is akin to a KC or an area of problem improvement.

Theme (# of explanations) Codes KC Improvement

Greater quantity 27 Step-num, value-num ✔

Shapes present 30 Shape-layout, composite ✔

Domain knowledge 33 Content, calculation ✔

Clarity/confusion 15 Clarity-text, clarity-shape ✔

Irrelevant 15 Complexity, meta, N/A

Process to solve 13 Rules, content ✔

Domain knowledge 07 Prework, technical ✔

Question specific attributes 42 Question-text, question-type,
answer-num

✔

Irrelevant 28 Complexity, meta, N/A

In the writing experiment the first two themes, Process to Solve and Domain Knowl-
edge, are indicative of KCs that were required to solve the problems. The only expla-
nations that matched any of the expert generated KCs (Id-clause-topic, Discourse-
level-topic, Subject-position, and Verb-form) for the problems came from the Rules
and Technical codes. The third theme, Question Specific Attributes, discusses the rel-
ative level of difficulty between problems, due to one being multiple-choice and the
other being free-response, or the question text differences between the two. This theme
relates explanations that address ways to improve the assessment, such as simplifying
the answer choices. Finally, the Irrelevant theme again consists of explanations that are
not meaningful or overly general.

RQ2: How effective is topic modeling compared to qualitative coding in identifying
explanations indicative of KCs? The 10 topics identified by both the LDA and NMF
models, along with the five most common words associated with them, are presented in
Table 3. From themath experiment data, both the LDA andNMFmodels had comparable
results to one another. They share the same set of topic interpretations and an equally
low number of N/A topics. While certain topics in both models are attributed to KC
codes, it would be challenging to discern the explicit KC just from the terms. The three
primary themes across the ten topics from each model are calculation of area, the visual
nature of the shapes in the problems’ figures, and how one problem is generally more
complicated than the other. We expected some of the expert-generated KCs for the math
problems (Compose-by-addition, Subtract, & Rectangle-area) to be identifiable in the
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topics. Surprisingly ‘subtract’ was not a top five term for any topic nor was ‘area’ a term
alongside ‘rectangle’ for any topics.

Similar to the math topics, both the LDA and NMF models produced compara-
ble results for the writing experiment, with slightly different terms used for the topics
between the two. The predominant topic in both models is related to the question type,
which is appropriate as it was a dominating category from the qualitative coding. Inter-
estingly, there are not as many topics involving Complexity or N/A, both irrelevant codes
that attribute little to no meaning. The majority of the topics focus on the high-level fea-
tures of the questions, such as thewording or type. Topic 9 from the LDAmodel and topic
7 from the NMF one include vocabulary used in two of the expert generated KCs (Id-
clause-topic, Discourse-level-topic, Subject-position, and Verb-form). However, these
topics and the others are not interpretable enough to discern such KCs explicitly from
the terms.

RQ3: Do the explanations provide insights into how the presented assessment itemsmay
be improved? In addition to some of the explanations being indicative of a KC, such as
ones that fall into the Calculation or Technical codes, many of the other explanations
suggested complications with the word problems. In the math experiment, 15 of the
120 total explanations (12.5%) fall into the Clarity/Confusion theme from Table 2.
Additionally, only 15 of the 120 (12.5%) were deemed Irrelevant to the problems,
meaning that in general the majority of the explanations were either suggestive of an
improvement that could bemade or a KC required to solve them. The writing experiment
had a greater number of explanations, 42 out of 90 (46.67%), that fell into the Question
Specific Attributes theme in Table 2. Only 28 of the 90 (31.11%) explanations in this
experiment were deemed Irrelevant to the problems.

5 Discussion and Implications

Firstly, we wanted to see if the provided explanations could be used to generate fitting
KCs for the problems. We found that many of the provided explanations did address
the underlying concepts required to solve a problem, more so in the math domain than
the writing domain. For example, explanations from the math experiment in the Greater
Quantity theme often discuss how one problem required the area calculation of more
shapes than the other. Solving a problem that involves the area of multiple shapes instead
of just a single one has been identified as a knowledge component for similar problems
from a previous study [32]. This type of difficulty may be overlooked due to expert
blindspot, as the explicit steps taken to solve a problem can get grouped together when
it becomes second nature [23]. Eliciting the crowd for explanations such as these can
help bring in a diverse level of knowledge, ranging from novice to expert, that can help
to make this KC explicit.

From the writing experiment, the Process to Solve theme consists of the most KC
indicative explanations. These often discuss a step required to solve one of the problems,
which was usually at the granularity that would make it a fitting KC. Unfortunately the
explanations contributed by participants that were indicative of KCs were relatively
rare, making up only 20 of 90 (22.22%) of the total explanations from the writing data,
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Table 3. Top 5 terms from 10 topics identified by the LDA and NMF topic models

Topic # LDA terms LDA topic
interpretation

NMF terms NMF topic
interpretation

Math experiment

1 Figure, question,
hard, shape,
confusing

Clarity-shape Problem, longer,
figure, steps, lines

Step-Num

2 Problem,
complicated, 1,
complex, 2

Complexity Area, windows,
given, figure, door

Calculation

3 Step, calculation,
need, require,
work

Step-num Confusing, wording,
question, painted,
wall

Complexity

4 Consider, answer,
visually,
complicated,
simple

Shape-layout Shapes, deal,
irregular, question,
rectangles

Shape-Layout

5 Width, 223,
calculate,
problem, attention

Calculation Numbers, deal, size,
work, need

N/A

6 Area, complicated,
window, 143, 2

Clarity-shape Complicated,
calculation,
somewhat, problem,
involves

Complexity

7 Confusing, know,
abstract,
somewhat, term

Complexity Simple, question,
involves, consider,
shape

Complexity

8 Accommodate,
time, difficult,
shading, shape

Clarity-shape Harder, visually,
figure, shape, make

Clarity-Shape

9 Instruction,
measurement,
equal, forward,
straight

N/A Areas, account,
figure, need, just

Calculation

10 Detail, variable,
340, long, contain

N/A Difficult, calculate,
solve, door, width

Calculation

Writing experiment

1 Answer, prework,
specific, pick,
confine

Prework Choice, multiple,
problem, allows,
simple

Question-type

(continued)
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Table 3. (continued)

Topic # LDA terms LDA topic
interpretation

NMF terms NMF topic
interpretation

2 Multiple, choice,
1, problem,
thinking

Question-type Sentence, meaning,
needs, subject,
problem

Rules

3 Sentence, vague,
problem, option,
right

Question-text Problem, requires,
understanding, rules,
thinking

Meta

4 Long, response, 1,
free, variable

Question-type Answer, free, easier,
pick, right

Question-type

5 Know, comment,
paraphrase, range,
contain

Rules People, writing, hard,
write, questions

Meta

6 People, write,
simplified,
question, multiple

N/A Comments, written,
eliminate, like, level

N/A

7 Need, complex,
written,
knowledge,
number

Complexity Know, subject, verb,
tense, agent

Technical

8 Comment,
problem, choice,
multiple, complex

Question-type Answers, correct,
just, questions,
incorrect

Question-type

9 Comment, clause,
look, agent,
suggest

Technical Clause, concept,
agent, ended, like

Technical

10 Concept, rewrite,
choose, sentence,
end

Content Complex, concept,
written, ended, like

Complexity

compared to 73 of 120 (60.83%) from the math domain. We attribute this difference
between domains due to the knowledge required for them, as the math problems were
from amiddle school class and the writing questions from a college-level writing course.

The two topic models were only able to identify a few topics, each relating to Cal-
culation, that fit into a code indicative of a KC that matched one an expert generated.
While the terms for the topics can be gleaned for words that suggest a KC such as “area”
or “window”, they still lack interpretability and a direct translation into a KC. This is
also true of the two models’ results in the writing domain, which identified several top-
ics relating to the Rule and Technical codes. Without further interpretation, the terms
suggest some vocabulary used in the problems, but they are insufficient to derive an
actionable KC without further human processing.
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Secondly, we wanted to see if the explanations provided insights into how the assess-
ment items might be improved. Both experiments had one theme directly related to
improving the surface level features of the problems, such as the question text or images.
For instance, in the math experiment, the theme Clarity/Confusion addresses the con-
fusion caused by the visual elements of the problems. The included images for the
questions are a key aspect to the assessment and beneficial to problem solving, but may
be misinterpreted in a way the content creators may not have intended [8]. Correcting
the images can allow for better assessments; based on the explanations we received, a
student may answer incorrectly purely based on the poor image design.

Across both domains, the 10 topics identified by eachmodel are mostly comprised of
those that indicate areas of problem improvement. While the models performed poorly
at generating KCs from the explanations, many of the topics and terms were indicative of
student struggle due to confusion with the text or image of the problems. In total, 12.5%
of the explanations in math and 31.11% in writing were considered irrelevant to the task
and presented problems. Even with limited instruction and the varying backgrounds,
participantswere able to provide insights into the problems that could be used for baseline
KC generation or identifying areas of assessment refinement.

6 Conclusion and Future Work

In this study, we gathered explanations for the relative difficulty between two mathemat-
ics questions and between two English writing questions from crowdworkers. We found
that crowdworkers were able to generate valuable explanations that were indicative of a
KC required to solve the problems or a suggestion for how to make the problems clearer.
Understandably, they were able to provide better explanations in the easier domain of
middle school math than in an undergraduate English writing domain. However, in both
experiments, a majority of the explanations either pertained to identifying a KC or area
of improvement, rather than being irrelevant. The LDA and NMF models created top-
ics akin to the researcher generated codes, although the interpretability of these topics
based solely on the terms is limited in usefulness. Nevertheless, the categories from the
coding and topic models ultimately assisted in clustering explanations that were either
indicative of a KC or an aspect of the problem that could be improved.

For future work, we plan to integrate this process in a learner-sourced context, where
participants (i.e., students) potentially have more commitment and domain knowledge
that could be leveraged [27]. This would enable us to properly train them to provide
such explanations throughout the course, rather than completing the task once with only
a brief instruction like the crowdworkers did in this study. Ultimately, we envision a
workflow in which students submit explanations for why certain problems are difficult;
these explanations are then peer reviewed and presented to the teachers (or relevant
parties) to help them identify potential KCs and improve the assessment items. This
procedure is analogous to the find-fix-verify pattern in crowdsourcing, which has been
shown to be effective [2]. However, before reaching this point, the interpretability of
the models will need to be improved or another technique should be utilized. This study
demonstrates a first step in developing such a workflow, providing initial insights into
how crowdsourced explanations might be leveraged for KC generation and assessment
content refinement.



Evaluating Crowdsourcing and Topic Modeling in Generating KCs 409

Acknowledgements. The research reported here was supported in part by a training grant from
the Institute of Education Sciences (R305B150008). Opinions expressed do not represent the
views of the U.S. Department of Education.

References

1. AlSumait, L., Barbará, D., Gentle, J., Domeniconi, C.: Topic significance ranking of LDA
generative models. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.)
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10. Karlovčec, M., Córdova-Sánchez, M., Pardos, Z.A.: Knowledge component suggestion
for untagged content in an intelligent tutoring system. In: Cerri, S.A., Clancey, W.J.,
Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 195–200. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30950-2_25

11. Kim, J., et al.: Learnersourcing subgoal labeling to support learning from how-to videos. In:
CHI 2013 Extended Abstracts on Human Factors in Computing Systems, pp. 685–690. ACM
(2013)

12. Kim, J., et al.: Understanding in-video dropouts and interaction peaks in online lecture videos.
In: Proceedings of the First ACM Conference on Learning@ Scale Conference, pp. 31–40.
ACM (2014)

13. Koedinger, K.R., et al.: Automated student model improvement. 5th Int. Educ. Data Min.
Soc. (2012)

14. Koedinger, K.R., et al.: The knowledge-learning-instruction framework: bridging the science-
practice chasm to enhance robust student learning. Cogn. Sci. 36(5), 757–798 (2012)

15. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data.
Biometrics 33, 159–174 (1977)

16. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in
Neural Information Processing Systems, pp. 556–562 (2001)

17. Lee, T.Y., et al.: The human touch: how non-expert users perceive, interpret, and fix topic
models. Int. J. Hum.-Comput. Stud. 105, 28–42 (2017)

https://doi.org/10.1007/978-3-642-04180-8_22
http://arxiv.org/abs/200103067
https://doi.org/10.1007/978-3-642-30950-2_25


410 S. Moore et al.

18. Liu, R., et al.: Interpreting model discovery and testing generalization to a new dataset. In:
Educational Data Mining 2014. Citeseer (2014)

19. Liu, R.,Koedinger,K.R.: Closing the loop: automated data-driven cognitivemodel discoveries
lead to improved instruction and learning gains. J. Educ. Data Min. 9(1), 25–41 (2017)

20. Luo, M., et al.: Probabilistic non-negative matrix factorization and its robust extensions for
topic modeling. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

21. Moore, S., et al.: Crowdsourcing explanations for improving assessment content and iden-
tifying knowledge components. In: Proceedings of the 14th International Conference of the
Learning Sciences (2020)

22. Moore, S., Stamper, J.: Decision support for an adversarial game environment using automatic
hint generation. In: Coy, A., Hayashi, Y., Chang, M. (eds.) ITS 2019. LNCS, vol. 11528,
pp. 82–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22244-4_11

23. Nathan, M.J., et al.: Expert blind spot: when content knowledge eclipses pedagogical con-
tent knowledge. In: Proceedings of the Third International Conference on Cognitive Science
(2001)

24. Nguyen, H., et al.: Using knowledge component modeling to increase domain understanding
in a digital learning game. In: Proceedings of the 12th InternationalConference onEducational
Data Mining, pp. 139–148 (2019)

25. Pardos, Z.A., Dadu, A.: Imputing KCs with representations of problem content and context.
In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization,
pp. 148–155 (2017)

26. Patikorn, T., Deisadze, D., Grande, L., Yu, Z., Heffernan, N.: Generalizability of methods
for imputing mathematical skills needed to solve problems from texts. In: Isotani, S., Millán,
E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol.
11625, pp. 396–405. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23204-7_33

27. Paulin, D., Haythornthwaite, C.: Crowdsourcing the curriculum: redefining e-learning
practices through peer-generated approaches. Inf. Soc. 32(2), 130–142 (2016)

28. Saldana, J.: An introduction to codes and coding. Coding Man. Qual. Res. 3, 1–31 (2009)
29. Schraagen, J.M., et al.: Cognitive Task Analysis. Psychology Press (2000)
30. Slater, S., et al.: Using correlational topic modeling for automated topic identification in

intelligent tutoring systems. In: Proceedings of the Seventh International Learning Analytics
& Knowledge Conference. pp. 393–397 (2017)

31. Stamper, J., et al.: A comparison of model selection metrics in datashop. In: Educational Data
Mining 2013 (2013)

32. Stamper, J.C., Koedinger, K.R.: Human-machine student model discovery and improvement
using datashop. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS
(LNAI), vol. 6738, pp. 353–360. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21869-9_46

33. Williams, J.J., et al.: Axis: generating explanations at scale with learnersourcing and machine
learning. In: 2016 Proceedings of the Third ACM Conference on Learning@ Scale, pp. 379–
388. ACM (2016)

https://doi.org/10.1007/978-3-030-22244-4_11
https://doi.org/10.1007/978-3-030-23204-7_33
https://doi.org/10.1007/978-3-642-21869-9_46

	Evaluating Crowdsourcing and Topic Modeling in Generating Knowledge Components from Explanations
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Math and Writing Experiments
	3.2 Categorization of Explanations
	3.3 Topic Modeling Explanations

	4 Results
	5 Discussion and Implications
	6 Conclusion and Future Work
	References




