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Abstract. Commercial facial affect detection software is typically trained on large
databases and achieves high accuracy in detecting basic emotions, but their use in
educational settings is unclear. The goal of this research is to determine how basic
emotions relate to the achievement emotion states that are more relevant in aca-
demic settings. Such relations, if accurate and consistent, may be leveraged to make
more effective use of the commercial affect-detection software. For this study, we
collected affect data over four days from a classroom study with 65 students using
Betty’s Brain. Basic emotions obtained from commercial software were aligned
to achievement emotions obtained using sensor-free models. Interpretable classi-
fiers enabled the study of relationships between the two types of emotions. Our
findings show that certain basic emotions can help infer complex achievement
emotions such as confusion, frustration and engaged concentration. This suggests
the possibility of using commercial software as a less context-sensitive and more
development-friendly alternative to the affect detector models currently used in
learning environments.
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1 Introduction

Detecting student emotions in computer-based learning environments (CBLEs) is cen-
tral to the development of pedagogical interventions that respond to students’ emotional
needs during learning. With the growth of the affective computing field [31] and the inclu-
sion of emotion as an important aspect of self-regulated learning (SRL) [1], researchers
studying SRL and affect regulation have emphasized the development of affect detec-
tion technologies [7] that can be integrated with CBLEs to obtain automated measures
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of student emotions during learning. However, the focus of researchers studying affect
detection in the learning context has been different from other fields.

A majority of affective computing research outside education has emphasized the
detection of the prototypical basic emotions that are considered fundamental to human
psychology [17, 20]. This has led to the development of affect detectors that capture a
person’s basic emotions using models trained on data from multimodal sources, such as
facial expressions (cf., FACS in [14]), physiological sensors (EEG), and bodily gestures.
There are commercially available affect detector models, such as Affectiva [26], that are
trained and tested on large datasets (~10,000 labeled facial images - see [33]). These
systems predict basic emotions from face video frames with high accuracy, using only
facial features as action units (AUs) [25]. Therefore, they can be integrated with any
webcam-equipped computer to offer accurate and non-intrusive emotion detection.

However, most affect detection with CBLEs has been limited in tapping into the
power of commercial software. In complex learning settings, learners face achievement
scenarios that are hypothesized to elicit the experience of achievement emotion states
(such as confusion, frustration, and engaged concentration), which are more complex
than basic emotions (such as joy, anger, fear, and sadness). Achievement emotions reflect
how learners cope with cognitive difficulties in different learning situations as they
progress towards their achievement goals [30]. Therefore, research needs to focus more
on detecting achievement emotions rather than basic emotions.

In recent years, AIED researchers have built classifiers to detect students’ achieve-
ment emotions from features available during learning, such as learner activities [22] or
facial expressions [5]. While these non-intrusive models are usable in real classrooms
[28], the models driven by activity-based features are context-sensitive, since the fea-
tures are based on activities specific to the learning environment. Therefore, these models
require considerable effort to develop and the features have to be recomputed (or even
re-designed) every time the models are deployed in new learning environments. While
facial feature-based models are more generally applicable, current models for detecting
achievement emotions using facial features are limited by a lack of large testing datasets
across diverse populations. In general, they have a lower accuracy for predicting specific
affective states [5].

Therefore, an alternate approach is to develop methods to link achievement and basic
emotions so that the commercial software output can be transformed to report academic
achievement emotions. After discussing our framework and the Betty’s Brain system,
this paper presents a first attempt at this approach. We report findings from data on
learners’ emotions collected from a classroom study.

2 Background

Emotions have been widely studied in psychology. Plutchik [32, p. 345] describes emo-
tion as “a complex chain of loosely connected events that begins with a stimulus and
includes feelings, psychological changes, impulses to action and specific, goal-directed
behavior”, thereby suggesting that an emotion is not an isolated event but more of a
human response to certain actions or situations.
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2.1 Basic Emotions

Over time, researchers have defined a set of basic emotions that deal with universal
human situations [14] or have served certain fundamental biological and social func-
tions through human evolution [20], e.g., as the basis for coping strategies and adaptation.
Multiple research studies support this concept of basic emotions, e.g., how sadness elic-
its empathy [4] or fear elicits protection behaviors [6]. Another view of basic emotions
deals with their fundamental role in ‘universal human predicaments’ [15, p. 46]. These
emotions can be distinguished from each other and from other emotions [14]. Ekman’s
list of seven basic emotion states are: anger, contempt, disgust, fear, joy, sadness, and
surprise [16]. Ekman [14] claimed that there is robust and consistent evidence of distinc-
tive facial expressions for each basic emotion. Currently, commercial software, such as
iMotions AffDex, predicts these basic emotions from facial features with high accuracy
by using the Emotional Facial Action Coding System (EMFACS) [18] that provides
a comprehensive taxonomy for coding facial behaviors. The AffDex SDK uses binary
support vector machine classifiers that compute the likelihood values of the seven basic
emotions by detecting facial landmarks from video frames, extracting features, classify-
ing facial action units (AUs), and then modeling emotion expressions using EMFACS.
While iMotions does not provide public information about the accuracy of their emotion
prediction models, they report very high accuracy (with ROC values ranging from 0.75
to 0.96 for AU-classifiers) for the identification of AUs [26].

2.2 Achievement Emotions

Achievement emotions are tied directly to students’ achievement activities and out-
comes in learning situations [30]. Since students’ learning activities and outcomes are
often judged with respect to achievement standards (e.g.., the COPES SRL model [34]),
emotions pertaining to these learning situations may be seen as achievement emotions.
Individuals experience specific achievement emotions based on their perceived control
of the achievement activities and the personally meaningful outcomes (cf., control-value
theory [30]). Researchers also constitute these emotions as cognitive-affective states [3]
due to the relevance of learner cognition to these emotional experiences. Several studies
(e.g., [11, 27]) have shown the relation of these emotions to cognitive activities and
performance in the learning environment. These achievement emotion states include
boredom, confusion, frustration, engaged concentration, and delight. D’Mello et al.
[12] have explored the transitions between emotion states during learning. Affect obser-
vation methods such as BROMP [29] have facilitated the observation and coding of these
emotions in classrooms. Classifier models trained on BROMP affect labels can capture
the probability of occurrence of the emotion states during learning from log data [22]
and facial AUs [5]. However, these models may not be as robust as commercial models
that detect basic emotions (cf. Sect. 1). In this paper, we apply methods for basic and
achievement emotion detection to collect both types of affect data for students working
in Betty’s Brain, a learning-by-teaching environment [24].
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3 The Betty’s Brain Learning Environment

Betty’s Brain adopts a learning-by-teaching method to teach complex scientific pro-
cesses, such as climate change or thermoregulation, to middle school students. Students
teach the virtual pedagogical agent Betty by building causal (cause-and-effect) relation-
ships between concepts, and they have access to a set of hyperlinked science book pages
to learn the science topic. A causal map equipped with a palette of editing tools helps
them build and annotate their causal map. A quiz module offers students the ability to
let Betty take a quiz on causal relationships she has been taught. A mentor agent named
Mr. Davis helps students evaluate the quiz results by comparing their causal model to
an expert model that is hidden from the student’s view. These tools allow the student to
constantly refine their maps and engage in learning and understanding of the scientific
process as they teach Betty.

The learning environment supports SRL as students engage in cognitive activities
and develop strategies to teach Betty a correct causal model. This enables achievement
scenarios, which elicit the experience of achievement emotions. Prior research [27]
has explored the relationships between students’ cognitive and affective experiences in
Betty’s Brain and emphasized how automated affect detector models can be beneficial for
providing students with personalized guidance that respond to their affective-cognitive
states during learning.

In the following section, we describe our classroom study and data collection proce-
dures. We analyze and relate two types of emotion data obtained from separate automated
affect detector models in Betty’s Brain.

4 Methodology

4.1 Study Design and Data Collection

The classroom study involved 65 sixth-grade students in an urban public school in the
southeastern USA. The study was conducted over a period of 7 days. Day1 included a
pre-test of domain knowledge and causal reasoning skills. Day2 familiarized students
with the features of Betty’s Brain. For the next four days, students built causal models
of climate change, and then took a post-test (identical to pre-test) on Day7.

In addition to pre-post test scores that showed statistically significant learning gains
(» < 0.05, Cohen'sd = 1), we collected timestamped logs of students’ activities in
Betty’s Brain over 4 days. Our action-view logging mechanism (based on the cognitive
task model in [23]) captured and categorized student activities. Affect detector models
(binary classifiers trained on BROMP affect labels aligned to learners’ activity sequences
- cf., [22]) were used to measure students’ achievement emotion probabilities at a 20-
s interval based on a sliding window of their cognitive activities within the learning
environment. Individual students worked on their own webcam-enabled laptops, and
their facial videos were processed post hoc using iMotions AffDex [26] to obtain basic
emotion likelihoods at a 30 Hz frequency. (Our facial videos suffered from occasional
data loss when students moved or changed their laptop orientations.)
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4.2 Data Analysis

Data Processing Stages. The basic emotion likelihood scores (between O(absent) to
I(present)) for joy, anger, surprise, contempt, fear, sadness, and disgust were obtained
from AffDex [26] at the frame rate of 30 Hz. Separate classifiers detect likelihood values
for each facial AU, and emotion likelihoods are calculated by weighting averages of the
relevant AU likelihood scores for each basic emotion.

The achievement emotions (confusion, frustration, engaged concentration, boredom,
delight) were obtained at a 0.05 Hz frequency (i.e., one set of emotion likelihood values
every 20 s), as probability scores (between O to 1) from the affect detector models
(originally validated using BROMP data) integrated with Betty’s Brain.

Data Synchronization. We aligned the two affect data streams using logged timestamps.
Since achievement emotions were available at a coarser time scale (one set of likelihood
values every 20 s) than basic emotions (30 likelihood values per emotion every 1 s),
the two data streams were aligned at the coarser granularity, i.e., one set of emotion
likelihood values every 20-s. We extracted the sets of basic emotion likelihoods for
20-s intervals and picked the set with the highest sum of likelihoods for that interval.
(This set represented the most pronounced likelihood predictions from the iMotions
software for that time interval). Assuming at time = t secs, the set of likelihood values
of the 7 basic emotions is denoted by Lg,,.._, = [Lp1,Lp2, ..., Lp7lsime=s> then the
representative set of basic emotion likelihoods for the time interval {¢, ¢ + 20}secs can be

obtained as the set Lg,,,, _, where 3°/_| Lpi,. 7 = maxie(s.1420) [ZL] Lg,-,] and t <

T < t + 20. The joined likelihood set {Lg,,,_ ;. L.} is the representative set of
basic and achievement emotions after the selection and merging of data at the 20-s time
interval. This set was then aligned with the set of achievement emotion likelihoods that
the BROMP detector provided for the same interval.

Data Filtering. We applied norm-based thresholding to the aggregated data to filter
out the instances that had a very low likelihood of detecting a basic or achievement
emotion. This was achieved by filtering out data points where the norm of emotion
likelihoods for basic or achievement emotions was below the first quartile, i.e. keeping
only those instances at which Normpp > Q1(Normp) and Normgs > Q1(Normy),

where Normp = ,/ZZ: \ L2 and Normy = / Zf: L3

The norm-filtered data contained 5152 of the original 9198 data points. This included
4607 instances where the dominant achievement emotion was confusion, 157 instances
of dominant engaged concentration, 360 instances of dominant frustration, 28 instances
of boredom, and 0 instances of delight. (The dominant achievement emotion at each
data-point was obtained as max(L,;)). Due to the lack of sufficient training instances
to model delight or boredom, data instances with dominant delight or boredom were
excluded from subsequent analyses. We re-sampled the three other labels to remove
class imbalance biases and then proceeded to build binary classifier models (with target
class prediction label = TRUE or FALSE for each classifier).

We note here that the distribution of data instances above is dependent on prediction
rates of the BROMP-trained affect detector models, and while these models predict
the classes with high AUC ROC, they are not representative of the exact frequency of
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each affective state occurring in the classroom. These detectors attempt to identify rare
situations — using re-sampling to succeed in this goal [22], and may be more biased
towards preferring false positives to false negatives, which may lead to over prediction
in certain situations. This limitation, likely caused by re-sampling, is addressed by using
more sophisticated re-sampling to address the imbalance created.

Specifically, classifier bias due to imbalanced target classes (i.e., a large difference
in the proportion of target class labels) in the training data for each binary classifier
was handled by (1) under-sampling majority-class cases using random sampling and
(2) synthetic oversampling minority-class cases using the SMOTE algorithm [8]. The
re-sampled data, containing 7 numeric features (implying likelihood of basic emotions)
and one nominal binary target class, was used to train classifier models.

Training Classifier Models. We used 10-fold stratified cross-validation to build binary
classifiers for predicting engaged concentration, frustration, and confusion. The classifier
models selected for this purpose included Random Forest (RF), Decision Tree (DT),
Neural Network (NN), Naive Bayes (NB), and Logistic Regression (LR). The Naive
Bayes and Logistic Regression models were selected to serve as baselines for establishing
model performance. While our model selection criteria considered both interpretability
and performance, since our intended research objective with this analysis was to interpret
how the basic emotion features predict achievement emotion classes, our selection of
classifier models was biased towards interpretable models like logistic regression and
decision trees over more complex and less interpretable models (cf., [9]). In practice,
complex models (viz., Neural Networks) did not produce very notable differences in
predictive accuracy for this data set (see Table 1), likely due to the relatively small sample
size. In the next section, we present our findings from five different classifier models
and study the best-performing interpretable model to determine relations between basic
and achievement emotions in learning.

5 Results and Discussion

5.1 Model Performance

Table 1 lists the performance metrics for five classifier models (Random Forest (RF),
Decision Tree (DT), Neural Network (NN), Naive Bayes (NB), and Logistic Regression
(LR)). NB and LR served as baselines for establishing model performance. AUC was
used as the primary performance metric, since it provides a better measure of model
performance than classification accuracy in a skewed dataset. From Table 1, Random
Forest outperformed other models for all three prediction classes.

5.2 Model Interpretation

Random forest was the highest performing algorithm, followed closely by the deci-
sion tree with forward pruning (Table 1). The high performance of random forest can
be attributed to averaging over multiple generated random trees, thereby achieving a
model with low bias and low variance. Despite its high predictive efficiency, interpret-
ing a random forest model is considerably difficult, especially compared to ‘glass-box’
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approaches like decision tree. In Table 1, we observe that the decision tree model (with
Gini-index for feature selection and forward pruning to prevent overfitting the feature
space) achieved the second-highest performance for all target classes. Since decision
trees provide better interpretability, we choose to study and interpret the decision tree
models for each predicted class in greater detail, given that the purpose of this research
is to relate the predicted achievement emotions to the basic emotion detectors.

Table 1. Performance metrics (average over classes) for classifier models predicting achievement
emotion (AE) classes (class label = TRUE or FALSE) from basic emotion features

AE Confusion Frustration Engaged concentration

Classifier | RF |DT NN NB |LR |RF |DT |[NN |[NB |LR |RF |DT |[NN NB |LR
AUC 0.7310.70 | 0.60 | 0.56 | 0.58 | 0.76 | 0.73 | 0.59 | 0.58 | 0.54 | 0.85 | 0.83 | 0.66 | 0.62 | 0.58
F1 0.64 | 0.64 | 0.53 | 0.45 | 0.45 | 0.69 | 0.68 | 0.56 | 0.56 | 0.50 | 0.78 | 0.76 | 0.61 | 0.58 | 0.57
Accuracy | 0.66 | 0.66 | 0.59 | 0.56 | 0.56 | 0.69 | 0.69 | 0.57 | 0.57 | 0.52 | 0.78 | 0.76 | 0.62 | 0.58 | 0.58

Figures 1 and 2 present the visualization of the decision tree models for predicting
confusion and frustration. (The figure for engaged concentration is not presented due
to space constraints in the paper.). In each figure, the color of a tree node indicates
the predicted class labels at that node (‘red” = TRUE, ‘blue’ = FALSE), the strength
of the colors indicates the predictive power of the model at that node, the width of the
edge indicates the proportion of instances classified along a branch with respect to total
instances in the training data. The root node at the top is both the most individually
predictive and most meaningful for interpretation.
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Fig. 1. Decision tree model to predict confusion from basic emotions

Figure 1 presents the decision tree model to predict confusion. From the first two
splits, we find that the two most informative features are anger and disgust. Figure 1
shows a stark contrast between the left and right halves of the tree, right from the first
split. We note how the right half of the tree, with higher values for anger and disgust, has
more ‘red’ nodes predictive of confusion = TRUE, with a recall value of 87% at the
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Fig. 2. Decision tree model to predict frustration from basic emotions

decision node Lapger > 0.6 & Lpjsguss > 0.06 at depth = 3. Moving further down to
depth = 4 gives more pronounced predictions of confusion = TRUE, where the decision
nodes LAnger > 0.6 &LDisgust > 0.06 & (Lsadness = 0.98] |LC0ntempt < 0.71) show
that higher likelihood of anger and disgust, together with high sadness or low contempt,
predict confusion with a recall value upwards of 98%. When we shift our focus to the
left half of the tree, we see that low anger and low disgust are mostly predictive of a lack
of confusion. The only low anger-low disgust situation that is predictive of confusion =
TRUE is when this lack of anger and disgust is present together with high likelihood of
sadness (Langer < 0.6 & Lpjsgust < 0.06 & Lsgdness > 0.95).

We interpret these findings based on the affect literature in learning. Confusion has
been linked to ‘cognitive disequilibrium triggered by contradictions, conflicts, ...” [13,
p. 10]. In an agent-based learning environment (like Betty’s Brain), this disequilibrium
could be socio-cognitive [13, p. 10], e.g., when the learner disagrees with agent feedback.
In this context, the close mapping of confusion to higher anger likelihood make more
sense, especially when we note ‘interference with one’s activity’ is a cognitive antecedent
event to anger [17]. The relation of confusion to disgust may be explained by Plutchik’s
circumplex model of emotions, which notes disgust as a complementary (contrasting)
state to trust/acceptance [32]. This again relates back to cognitive disequilibrium, in an
achievement scenario that may incorporate conflict due to lack of trust, perhaps in the
agent’s feedback or the quiz results in Betty’s Brain, or a student’s disappointment with
himself/herself. This suggests that investigating the socio-cognitive processes leading
to each basic or achievement emotion in Betty’s Brain can help shed more light on
finer-grained relations between the two types of emotions during complex learning tasks.

Figure 2 presents the decision tree for predicting frustration. While disgust appears
to be the most informative feature at the root node, higher predictive recall (cf., strength
of colors in the tree nodes in Fig. 2) is obtained at lower levels of the tree, where disgust
is combined with other states such as fear, sadness or contempt. For example, in the
right half of the tree (where Lpjseuss > 0.014), we find a 92.9% recall for frustration
= TRUE at the decision node Lpjsguss > 0.014 & Lpeqr < 1.4 % 1077 at depth = 3.
In the left half of the tree (Lpjsgusr < 0.014), we find higher recall (= 94.5%) for
confusion prediction when the low disgust likelihood is combined with high sadness
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and low contempt (refer to Fig. 2 at depth = 4 where Lpjsgusr < 0.014 & Lggdness >
4.9 % 107 & Leontempr < 0.002).

From the above, frustration seems to closely map to two complex states: (1) a state
of high disgust + low fear, and (2) a state of low disgust + possibility of sadness + low
contempt. Affect dynamics models in learning [12] show two affect transition scenar-
ios leading to a state of frustration: (1) confusion — frustration, where disequilibrium
associated with confusion remains unresolved and leads to failure/blocked goals. Such
a transition into frustration may be related to the [high disgust + low fear] state noted
above, which is associated with low trust/acceptance and high annoyance (cf. [32], where
disgust is complementary to trust/acceptance & submissive states like fear are comple-
mentary to aggressive states like annoyance & anger). A prolonged non-acceptance of
agent feedback or quiz results due to conflict with expectations may translate into a
state of frustration for the learner. (Negative feedback from a tutor has been previously
established as possible antecedent of frustration [10]); (2) boredom — frustration, where
having to endure a learning session despite disengagement may translate into frustra-
tion. This state may be related to the [low disgust + sadness + low contempt] state we
find from the decision tree model, suggesting an affective state that is still negative in
valence, but with lower activation than the [high disgust + low fear] state.

Predicting Engaged Concentration from Basic Emotion Likelihoods. In the deci-
sion tree that predicts engaged concentration, joy is the most informative feature, and
a very high joy likelihood (Lj,y > 0.84) is associated with a prediction of engaged
concentration = FALSE with a recall of 72.7%. This implies that engaged concen-
tration was not the dominant emotion here; so the dominant emotion could be any of
the other achievement emotion states, including delight, an achievement emotion state
whose definition closely matches that of joy but which could not be modeled here due to
insufficient data instances. Indeed, engaged concentration is often seen as having neutral
activation whereas joy and delight are often seen as high activation [3].

The second most predictive feature for engaged concentration is sadness. A closer
analysis of the model shows that, when joy is low, a greater likelihood of sadness is
a stronger predictor of engagedconcentration = TRUE. However, a more acceptable
predictive recall is obtained at depth = 4, where a combination of low to medium joy, low
to medium sadness and a possibility of fear predict engagedconcentration = TRUE
with a recall value of 70.7%. This situation is obtained by the decision node Lj,y <
0.84 & Lsagness € (3.1 % 1076, 0.78) & Lrpar > 3.4 % 1073,

Engaged concentration being an affect state of neutral activation and mildly positive
valence [3] is not associated with high positive valence and high activation emotions
like joy or negative valence, low activation emotions like sadness. The association of
engaged concentration with lower joy and a possibility of fear may also be related to the
fact that engaged concentration associated with the high competence and high challenge
scenario of flow (cf. [3, 29]).

6 Conclusion and Future Scope

This research uses interpretable prediction models built from classroom data to suggest
links between fundamental basic emotions and complex achievement emotions during
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learning in a CBLE. To summarize, we found that the achievement emotion state of con-
fusion seems to map most closely to basic emotion states like [high anger + high disgust],
while frustration maps closely to states like [high disgust + low fear] or [low disgust
+ sadness + low contempt], and engaged concentration maps closely to low/moderate
levels of joy, sadness and a possibility of fear.

While data collection in a classroom setting suggests that our findings have the
potential to generalize across natural learning settings, the non-constrained setting adds
its own limitations, as discussed in Sect. 4.1 and in prior research on collecting affect
data in real classrooms [5].

Since our research objective was to map basic and achievement emotions, we could
use only the subset of our collected data, where both basic and achievement emotion
likelihoods were high. Moreover, our emotion logs were likelihood measures that were
not direct human-observed emotions but obtained from affect detector models trained
on codes obtained from human observations. While these detector models allow for
automated detection of affect at scale in a noisy classroom environment, they are likely
to be less reliable than human observations. We intend to further validate our findings by
replicating our methods with human-coded emotion labels in future classroom studies.
Furthermore, since our affect detectors were built off action sequences and performance
data in Betty’s Brain, it is hard to claim generality for these results.

Despite the data limitations, the research methods and findings reported in this work
have implications for shaping future research directions on affect modeling in AIED.
First, our approach using interpretable classifiers to model affect in learning accords with
prior work [9] that underlines the importance of interpretable ML in AIED. Secondly,
this paper presents a scalable and accessible way to identify achievement emotions
whose instructional implications have been studied extensively by prior work in the
field. Moreover, since commercial software packages for detecting basic emotions are
trained on much larger and more varied data than the affect detector models currently used
in education, understanding the relations between basic and achievement emotions can
help education researchers make use of these commercial software to detect achievement
emotions during learning in a computer-enabled classroom.

In future research, beyond addressing limitations noted earlier, we hope to collect
affect data from a wider variety of samples and investigate cross-cultural differences in
the presentation of affect [19, 21], including achievement emotions [2]. We also intend
to conduct further analyses into the cognitive-affective relationships in Betty’s Brain,
such as how students’ socio-cognitive states during agent interactions influence affect.
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