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Abstract. Adaptive math software supports students’ learning by targeting spe-
cific math knowledge components. However, widespread use of adaptive math
software in classrooms has not led to the expected changes in student achieve-
ment, particularly for racially minoritized students and students situated in poverty.
While research has shown the power of human mentors to support student learn-
ing and reduce opportunity gaps, mentoring support could be optimized by using
educational technology to identify the specific non-math factors that are disrupt-
ing students’ learning and direct mentors to appropriate resources related to those
factors. In this paper, we present an analysis of one non-math factor—reading com-
prehension—that has been shown to influence math learning. We predict math per-
formance using this non-math factor and show that it contributes novel explanatory
value in modeling students’ learning behaviors. Through this analysis, we argue
that educational technology could better address the learning needs of the whole
student by modeling non-math factors. We suggest future research should take this
learning analytics approach to identify the many different kinds of motivational
and non-math content challenges that arise when students are learning from adap-
tive math software. We envision analyses such as those presented in this paper
enabling greater individualization within adaptive math software that takes into
account not only math knowledge and progress but also non-math factors.

Keywords: Math education - Reading comprehension - Opportunity gap -
Cognitive tutor - Additive Factors Model - Gaming - Wheel spinning

1 Introduction

1.1 Opportunity Gaps in Mathematics Education

Math software can accelerate—and even double—the rate of student learning in math-
ematics by identifying the specific knowledge components students have not mastered
and delivering individualized instruction accordingly [1, 2]. These types of gains have
been replicated across topics and contexts [3—6], leading to increasingly widespread use
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in schools [7]. Based on such results and a sense of excitement around the possibili-
ties of individualized learning through technology, many school districts have invested
significant resources to bring educational technology into classrooms.

As schools adopt educational technology, however, many are not seeing the changes
in student achievement expected based on results from laboratory and controlled class-
room experiments. Despite the success of adaptive math software in supporting learning
outcomes, there is evidence that challenges in math learning go well beyond issues
with math [8, 9], particularly for racially minoritized students and students situated in
poverty. Racial and economic opportunity gaps prevent millions of American students
from realizing their potential, but researchers have struggled to identify effective solu-
tions to these longstanding problems [10-12]. Although some studies have found that
math software supports learning outcomes for all students [13], educational technology
is rarely designed to address existing inequities in access and opportunity, and high vari-
ation in students’ use of educational technology produces additional opportunity gaps.
This suggests an important gap in current research: although we have powerful adaptive
methods to teach students math, these programs are typically based solely on math per-
formance even though we know that students’ math knowledge is not the only factor in
understanding math outcomes.

1.2 AI Support for Personalized Mentoring

Recent research suggests that intensive, personalized mentoring may provide a fruitful
avenue for reducing racial and economic gaps in learning opportunities and outcomes.
In one study, fifth through seventh-grade students who participated in a two-year men-
toring program targeting attendance and engagement were absent less often and failed
fewer courses by the end of the program [14]. Another mentoring study that focused on
intensive instructional support significantly improved students’ math achievement test
scores and grades while reducing course failure rates [15]. Both studies took place in
Chicago Public Schools with predominantly racially minoritized students and students
situated in poverty. These effects are encouraging, but the large resources required for
such intensive mentoring are prohibitive to many districts.

Mentoring support could be optimized by using artificial intelligence (Al) to help
mentors and caregivers assess the specific non-math factors that are disrupting students’
learning and direct them to appropriate resources related to those factors. In other words,
we could use the same kind of Al that currently assesses and responds to math knowledge
to address the non-math factors influencing student learning. To provide this type of
individualized non-math support, we must build better models.

In this paper, we present an analysis of one non-math factor—reading comprehen-
sion—that has been shown to influence math learning [16-20]. Through this analysis, we
argue that educational technology could better address the learning needs of the whole
student by modeling non-math factors. We undertook this analysis in the context of
developing the Personalized Learning® (PL?) app, which is designed to supplement the
individualized cognitive tutoring provided in existing adaptive math software with the
motivational and learning support capabilities of human mentors [21]. Data generated
through students’ use of math software could provide evidence for differentiating moti-
vational and cognitive barriers to engagement and learning. Using this data, we aim to
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identify the many different kinds of motivational and non-math content challenges that
arise when students are learning from adaptive math software and to adapt the PL? app
to help mentors support students through those challenges. The app currently focuses
on data about students’ math performance in math software to guide mentors to appro-
priate resources, but analyses such as those presented in this paper could enable greater
individualization that takes into account not only math knowledge and progress but also
non-math factors.

1.3 Reading Comprehension and Math Performance

We focus on reading because comprehending math text requires more than numerical
fluency. Although reading a math story problem is different from reading a work of
fiction, reading comprehension plays an important role in comprehending math texts
[16]. Students’ technical reading skills (i.e., word recognition and decoding, adaptive
reading method, speed) predict their skills solving math word problems [17]. The role
of reading comprehension in understanding math texts without symbols is similar to
its role in understanding non-math texts, but math texts with symbols appear to require
more specialized reading skills [18] and present more challenges than non-math texts
[19]. This suggests the importance of both generalized reading skills and content-specific
math reading skills for understanding symbolic math story problems.

Reading comprehension may have a cumulative effect in constraining math learning.
A study that used third-graders’ reading comprehension scores to predict math problem
solving, math conceptual knowledge, and math computation skills through eighth grade
showed that reading comprehension predicted the rate of growth across all three math
components, even when controlling for third-grade math achievement [20]. These results
suggest that failure to support students’ reading comprehension can impact the trajectory
of their math learning, but the role of reading comprehension in learning from math
software is still an open question. In the current study, we aim to further examine the
hypothesized role reading comprehension may have in constraining math learning.

1.4 Current Study

Our data were gathered through a popular educational technology platform used in
classrooms around the United States that serves as a good example of an evidence-
based, adaptive math software. Although we use reading comprehension in this adaptive
math software as a test case, the ultimate goal is that our approach could be used to
identify a range of non-math factors across many educational technologies. We explore
the following research questions:

RQ1: Does a measure of reading comprehension extracted from math software relate
to math performance in the software? We hypothesize that reading comprehension,
as measured by performance in a non-math software tutorial, will be correlated with
performance in the math modules of the same software. We predict that our measure of
reading comprehension will not be correlated with non-performance behaviors, such as
math hint use, because we hypothesize that we are not measuring an underlying, general
behavior in the math software.
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RQ2: Does the reading performance measure constrain growth from math learn-
ing opportunities? We will assess students’ learning by modeling growth from each
additional practice opportunity, and we hypothesize that our measure of reading
comprehension will be associated with less growth.

RQ3: Is the reading performance measure distinct from established measures of student
behaviors in math software? To determine whether the reading performance measure is
simply capturing other student behaviors, we will assess the relation between our measure
of reading comprehension and wheel spinning and gaming. Wheel spinning occurs when
a student fails to demonstrate mastery of a skill after a long time, typically indicating
that they do not have the skills or support to advance [22]. Gaming occurs when students
attempt to take advantage of the design of the software to get the correct answer without
thinking carefully or learning, such as exploiting hints or clicking through multiple-
choice answers until they find the correct response, and it typically involves making a
large number of mistakes in a short amount of time [23]. If reading comprehension is
highly correlated with these other measures, it may suggest that our measure of reading
comprehension is simply detecting wheel spinning or gaming behaviors, since both can
be associated with poor performance and learning. We hypothesize that our measure
may be moderately correlated with gaming, as poor reading comprehension could lead
to attempts to solve the problems without carefully reading them, but that it will not be
strongly correlated with either, suggesting it is also detecting something unique.

2 Methods

2.1 Participants and Design

We analyzed two datasets: a smaller dataset with more detailed step-level data from the
math software (Dataset 1) and a larger dataset with less detailed, problem-level data
from the same software (Dataset 2). Dataset 1 contained data from 67 students from
seven schools, including one public school and six charter schools in an urban area in
the United States. Within the participating schools, more than 80% of students identified
as racially minoritized and 80% qualified for free or reduced lunch. Students were in
6th, 7th, 8th, or 10th grade. Dataset 2 contained data from 197,139 students enrolled
in middle school math across multiple schools across the United States. All students in
both datasets used the same adaptive math software.

2.2 Materials and Procedure

Anonymized data were collected from students’ math software use. Our analysis focused
on two module types in the software. The first was an introductory module focused on
orienting students to the software through brief instructional text and questions about
the text. Performance on the tutorial questions was selected as a measure of reading
comprehension because it contained no math content; instead, students read about the
math software and answered comprehension questions. For example, one page of the
tutorial contained the following: “An Explore Tool is an interactive model that lets
you explore math ideas on your own. These tools let you see different ways to model
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your mathematical thinking.” After reading the full text, students saw a list of questions
including the following: “I can learn by playing with an Explore Tool, which is a(n)

that can help me model mathematical thinking,” with “interactive model” available as
one of five multiple-choice answers. There were 24 tutorial questions, and most students
completed all of them.

Performance on all other modules was used as a measure of math comprehension.
Questions targeted a variety of math concepts depending on students’ grade level and
instructors’ choices of assignments. Content across modules was typically presented in
the form of math story problems. The number of math problems completed varied by
student depending on a number of factors including time spent in the math software and
problem type.

3 Results

3.1 Student Performance in Math and Reading Content

First, we examined Dataset 1 students’ performance on the math content and reading
(non-math tutorial) content separately, looking at the number of problems completed,
accuracy, and hint use. This initial inspection of the data allowed us to determine whether
both sources of data (Math and Reading Content) provided adequate individual variation
to allow for investigation of the RQs in the following sections.

All data focused on students’ first attempt on a problem. On math problems, students
completed an average of 218.9 problems with an average accuracy rate of .54 and an
average of 36.4 hints requests on their first attempts (Fig. la—c, Fig. 2a). On the reading
problems, only four students completed fewer than the full 24 items available. Students
had an average accuracy rate of .67 and used an average of only 1.27 hint requests on
their first attempts (Fig. 1d—f, Fig. 2c). Two-tailed, paired-sample #-tests indicated that
students had significantly higher accuracy rates, 1(66) = 4.38, p < .001, and significantly
lower hint use, #(66) = 5.55, p < .001, when they were completing the reading content
compared to the math content. Overall, these analyses suggest students’ behavior in
both reading and math portions of the tutor is sufficiently varied, and that the reading
content is sufficiently different from the math content as demonstrated by differences in
accuracy and hint behavior.

3.2 Is Reading Performance Related to Math Performance?

First, we assessed whether reading assistance scores predicted math assistance scores
(RQI). Assistance scores represent the level of support a student required to complete
a learning opportunity. If the student completed the step correctly the first time, the
assistance score would be 0; every hint or incorrect answer until the correct response
added one assistance point to the score. Thus, higher scores mean greater assistance to
complete the step, whereas lower scores mean lower assistance levels and potentially
correct responses on the first try. A linear regression showed that assistance scores on the
reading content explained 10% of the variance in assistance scores on the math content, 2
= .51, #(65) = 2.74, p = .008 (Fig. 2a). We also examined the relation between reading
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Fig. 1. Histograms for the number of math (a) and reading (d) problems completed, overall math
(b) and reading (e) accuracy, and math (c) and reading (f) hints requests in Dataset 1.
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Fig. 2. Correlation between reading assistance score and (a) math assistance score, (b) number
of math problems completed in Dataset 1, and (c) math hint use.

assistance and progress, as measured by the number of math problems completed. A
linear regression showed that reading assistance explained 6% of the variance in the
number of math problems completed, r? = 548, 1(65) = 2.04, p = .046 (Fig. 2b).
Finally, to test whether reading assistance would fail to predict something that we did
not hypothesize to be dependent on reading comprehension, we assessed the relation
between reading assistance and math hint requests. Reading assistance did not explain
a significant level of variance in average number of math hint requests on first attempt,
2 = 51, #(65) = —0.34, p = .74 (Fig. 2¢).

To further understand how performance in the reading tutorial module relates to
or constrains later performance during math learning (RQ2), we investigated how well
students learned math from each added math practice opportunity using regression mod-
els. We investigated student learning using the Additive Factors Model (AFM), which
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extends item-response theory to include a growth or learning term. In short, AFM pre-
dicts, for each assessment opportunity, the probability of correctly answering a problem
given the student’s baseline easiness and the number of opportunities with each knowl-
edge component. We compared a baseline of AFM with a version of AFM (AFM-R)
that included an added parameter to take into account the student’s performance in the
reading tutorial section of the tutor. In essence, this model took into account not only
students’ a priori easiness with knowledge components but also a priori easiness with
reading materials.

Overall, AFM-R provided a better fit to the data than the baseline AFM X% (1)
= 19.61, p < .001; see Table 1), suggesting that reading assistance has an impact on
math learning. Moreover, consistent with the previous finding, requiring more assistance
during the reading portion of the tutor was related to worse math learning, 8 = —2.55,
z=4.82,p < .001.

Table 1. Model comparison for AFM vs. AFM-R.

Model |DF|AIC |BIC |logLik
AFM |6 |31191 31240 | —15590
AFM-R |7 |31174|31231 | —15580

3.3 Is Reading Accuracy Related to Other Negative Student Behaviors While
Learning Math?

Having established that performance in the pre-math reading activities was related to
subsequent math performance and learning, we turn our attention to whether reading per-
formance is related to other unproductive student behaviors, specifically wheel spinning
and gaming (RQ3). We predicted that poor reading ability might be related to gaming
behavior (specifically many errors in a short period of time), but not to wheel spinning
(specifically indicators of effort without progress). Students with poor reading compre-
hension may advance in the tutor without trying, making them likely to display gaming
behaviors but not wheel spinning.

For this analysis, we used existing models of wheel spinning [22] and gaming [24,
25] to determine for each knowledge component whether each student’s behavior could
be classified as wheel spinning or gaming. We calculated a proportion of wheel spinning
and gaming events out of all knowledge components for each student and related that
proportion to performance in the reading portion of the tutor. As predicted, we saw that
worse reading performance was related to more gaming events, > = .45, p < .001, but
not related to wheel spinning behavior, r> = .05, p = .69 (see Fig. 3).

3.4 Does This Relation Scale and Generalize?

To test the generalizability of our results, we investigated whether the relation between
reading and math performance that we observed in the small dataset generalized and
scaled to a larger sample.
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Fig. 3. Correlation between reading assistance score and (a) the proportion of gaming events and
(b) the proportion of math wheel spinning events in Dataset 1.

Using Dataset 2, we extracted the same measures of reading and math performance
used for our Dataset 1 analyses. Overall, our findings generalized to a larger dataset (see
Fig. 4). Students with higher assistance scores during the reading section performed
worse (higher assistance scores) in the subsequent math section, r? = 0.39, 1(197136)
= 186.35, p < .001 (Fig. 4a), and completed fewer problems, r2=-0.07, 1(197136) =
—30.433, p < .001 (Fig. 4b). However, contrary to what we saw in the small Dataset 1,
we found that students who required greater assistance during the reading portion also
requested more hints during the math portion, r> = 0.27, #(197136) = 127.03, p < .001
(Fig. 4c).
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4 Discussion and Conclusion

4.1 Overview

Educational technology offers opportunities for students to engage in adaptive learning
but does not always lead to positive learning gains. When the technology does not
consider the whole student, ignoring key factors that influence learning, it often falls
short of helping students reach their optimal potential. Racially minoritized students and
students situated in poverty are especially susceptible to being left behind. Technologies
must do better to go beyond math content and address the other factors that influence
performance. In this study, we provide a first look at using a non-math module within
a prominent educational technology to identify an important factor that may negatively
impact math learning: reading comprehension. In doing so, our goal was to determine if a
measure of reading comprehension within a math software predicted math performance
in the same software, restricted growth from learning opportunities, and differed from
other measures of student behaviors.

Overall, our results regarding reading comprehension and math learning were similar
to those found in previous literature: reading accuracy has an impact on math perfor-
mance [16-20]. Our study expands on this literature, however, by demonstrating that a
module within an adaptive educational technology platform can be used to identify stu-
dents who may need assistance during reading, which, if provided, could support future
math learning. Typical software of this nature falls short in identifying potential issues
beyond content understanding. Our results show the importance of integrating novel
modules that target other non-content aspects of math learning. Moreover, we were able
to show that lower reading performance was related to more gaming behavior, but not
to wheel spinning behavior. This suggests that students may attempt to take advantage
of the system (e.g., exploiting multiple-choice responses) due to difficulties in reading.
Finally, we were able to scale up and generalize our findings related to performance from
our original dataset (n = 67) to a much larger dataset (n = 197,139). Unfortunately, we
did not have detailed (i.e., transaction-level) data for the larger dataset; therefore, we
could not attempt to generalize the gaming and wheel spinning findings.

4.2 Contributions

This study contributes to our understanding of how students learn math using educational
technology. First, our findings demonstrate a new and potentially fruitful avenue for
measuring and responding to non-math factors in student learning. While we focused on
a text-heavy, non-math module to measure reading comprehension, we believe a similar
approach could detect other non-math factors in student data captured by educational
technology. Second, these results contribute to the theoretical understanding of how
non-math factors influence math learning. Our findings expand on prior research to
demonstrate that poor reading comprehension relates to fewer problems solved, less
learning from each new learning opportunity, and more gaming behaviors in online
math learning. Third, we have highlighted the benefit of adding a non-math, introductory
module to existing math content lessons to help identify potential issues with reading
comprehension. Doing so introduces a powerful resource to detect possible reading
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comprehension issues, which in turn could help designers and developers build and refine
tutoring systems that better consider the whole student. Finally, our study helps create
a way for tutors, mentors, and teachers (i.e., practitioners) to identify students whose
literacy needs may negatively affect their math performance. This practical application
addresses a need that is often overlooked in math learning. Moreover, a technological
solution to identifying these students frees up the time and resources of busy practitioners
who may need assistance in identifying these students on their own.

This is a first step toward supporting practitioners as they help students learn math by
addressing the needs of the whole student. Programs like PL? can create support features
(e.g., resources, remediation) for students based on their needs [21]. Supporting reading
comprehension as well as students’ motivational and social needs could positively affect
educational factors such as attendance [26], enrollment in future math courses [27],
and performance on college admissions tests [28], which could in turn help address
opportunity gaps for marginalized populations of students.

4.3 Limitations

We argue that the results from the non-math (i.e., reading) module can be attributed
to reading comprehension due to the nature of the content. One limitation and idea
for future research is the unknown effect of motivated attention on learning math-free
content. Future researchers could measure the students’ attention during these sections
(e.g., through eye-tracking) to determine how attention factors into the results. Given that
there were no available student performance data outside the math software, we could
not validate our measures of reading and math performance with other measures; future
work would benefit from comparing these within-software measures to other reading
comprehension assessments and measure of math knowledge and growth. Due to the
lack of transaction data in the larger dataset, we were unable to generalize our findings
on gaming and wheel spinning. Nevertheless, we were still able to scale up our findings
related to reading and performance. Future research could examine more comprehensive
datasets as well as other educational technology software to assess the scalability and
generalizability of these measures and results.

4.4 Next Steps

Future research should focus on adding modules into new and existing tutor systems
and using them as detectors for students who may need help with reading comprehen-
sion. Once students have been identified, researchers and practitioners need to develop
support to address issues with reading comprehension. Researchers could then test the
effectiveness of the support and develop formulas for both detecting and improving
reading comprehension in adaptive math software, similar to the way such technolo-
gies currently detect and support math knowledge. Similarly, research can focus on the
specific pieces of word problems (e.g., length, individual word difficulty) that are most
detrimental to student performance. Using this information, designers and developers
can provide more support when students encounter these problems or structure modules
to reduce these issues (e.g., reduce wordiness). Researchers could also experiment with
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the effectiveness of flagging students based on their performance and hint use in the non-
math modules to determine if awareness of additional literacy needs can improve later
math performance. Finally, more research should take this learning analytics approach to
identify additional detectors to address the needs of the whole student. There are many
other important learning factors that can affect math performance (e.g., utility value,
technological literacy), and building detectors for these factors increases the likelihood
of addressing challenges and improving math learning.

4.5 Conclusion

In this study, we were able to connect reading comprehension to math learning, measuring
both constructs within an adaptive math software. This type of analysis will improve
our understanding of how math learning interacts with non-math factors and individual
differences among students. Building a better theory of how math and non-math factors
predict learning will help to clarify the best forms of support for student learning and
provide a roadmap for developing tutoring systems that consider the whole student when
creating adaptation.
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