
MACER: A Modular Framework
for Accelerated Compilation Error Repair

Darshak Chhatbar1 , Umair Z. Ahmed2 , and Purushottam Kar1(B)

1 Indian Institute of Technology Kanpur, Kanpur, India
{darshak,purushot}@cse.iitk.ac.in

2 National University of Singapore, Singapore, Singapore
umair@comp.nus.edu.sg

Abstract. Automated compilation error repair, the problem of suggest-
ing fixes to buggy programs that fail to compile, has pedagogical appli-
cations for novice programmers who find compiler error messages cryptic
and unhelpful. Existing works frequently involve black-box application
of generative models, e.g. sequence-to-sequence prediction (TRACER) or
reinforcement learning (RLAssist). Although convenient, this approach is
inefficient at targeting specific error types as well as increases training
costs. We present MACER, a novel technique for accelerated error repair
based on a modular segregation of the repair process into repair iden-
tification and repair application. MACER uses powerful yet inexpensive
learning techniques such as multi-label classifiers and rankers to first
identify the type of repair required and then apply the suggested repair.
Experiments indicate that this fine-grained approach offers not only
superior error correction, but also much faster training and prediction.
On a benchmark dataset of 4K buggy programs collected from actual
student submissions, MACER outperforms existing methods by 20% at
suggesting fixes for popular errors while being competitive or better at
other errors. MACER offers a training time speedup of 2× over TRACER
and 800× over RLAssist, and a test time speedup of 2 − 4× over both.

Keywords: Introductory programming · Compilation error · Program
repair · Multi-label learning · Structured prediction

1 Introduction

Programming environment feedback such as compiler error messages, although
formally correct, can be unhelpful in guiding novice programmers on correcting
their errors [14]. This can be due to 1) use of technical terms in error messages
which may be unfamiliar to beginners, or 2) the compiler being unable to com-
prehend the intent of the user. For example, for an integer variable i in the C pro-
gramming language, the statement 0 = i; results in an error that the “expres-
sion is not assignable”. Although the issue was merely the direction of assign-
ment, the error message introduces concepts of expressions and assignability
which may confuse a beginner (see Fig. 1 for examples). For beginners, navigating

c© Springer Nature Switzerland AG 2020
I. I. Bittencourt et al. (Eds.): AIED 2020, LNAI 12163, pp. 106–117, 2020.
https://doi.org/10.1007/978-3-030-52237-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52237-7_9&domain=pdf
http://orcid.org/0000-0002-6669-9059
http://orcid.org/0000-0002-2203-7301
http://orcid.org/0000-0003-2096-5267
https://doi.org/10.1007/978-3-030-52237-7_9

MACER: A Modular Framework for Accelerated Compilation Error Repair 107

1 void main(){

2 int i, n=5, s=0;

3 for(i=1, i<n, i++)

4 s = s+i*(i++)/2;

5 printf ("%d", s);

6 }

1 void main(){

2 int i, n=5, s=0;

3 for(i=1; i<n; i++)

4 s = s+i*(i++)/2;

5 printf ("%d", s);

6 }

1 void main(){

2 int i=0;

3 if(0 = i)

4 i++;

5 }

1 void main(){

2 int i=0;

3 if(0 == i)

4 i++;

5 }

Error Message E6: expected ’;’ in ’for’ statement specifier Error Message E10: expression is not assignable
Repair Class [E6 [,,] [;;]] (see Sec 2 for details) Repair Class [E10 [=] [==]] (see Sec 2 for details)

Fig. 1. Two examples of actual repairs by MACER.

such feedback often means seeking guidance from a human mentor which is not
scalable [5]. In this work we report MACER, a tool that automatically suggests
repairs to programs with compilation errors to reduce loads on human mentors.

Related Works. DeepFix [9] was one of the first methods to use deep learn-
ing (sequence-to-sequence models) to jointly locate and repair errors. TRACER [1]
reported better performance by segregating the repair pipeline into repair line
localization and repair prediction, and introduced the stringent Pred@k metric
that compares the predicted repair against the actual repair desired by student,
as opposed to the existing repair accuracy metric that simply counts reduction in
compilation errors. RLAssist [8] introduced the use of reinforcement learning to
eliminate the need for labeled training data but suffers from slow training times.
Sect. 4 offers explicit experimental comparisons of MACER to DeepFix, TRACER
and RLAssist. Apart from this, [10] used variational auto-encoders to introduce
diversity in the suggested repairs. [19] considered variable-misuse errors that
occur due to similar-looking identifier names. TEGCER [2] focused on repair
demonstration by showing examples of fixes made by other students rather than
repairing the error, which can be argued to have greater pedagogical utility.

Our Contributions. In addition to locating lines that need repair, MACER
further segregates the repair pipeline by identifying what is the type of repair
needed on each line (the repair-class of that line), and where in that line to apply
that repair (the repair-profile of that line). Methods like TRACER and DeepFix
perform the last two operations in a single step using some heavy-duty generative
mechanism. MACER’s repair pipeline is end-to-end and entirely automated1 i.e.
steps such as creation of repair classes can be replicated for any programming
language for which static type inference is possible. In addition to this,

1. MACER is able to pay individual attention to each repair class to offer superior
error repair. MACER also introduces the use of highly scalable multi-label
learning techniques, such as hierarchical classification and re-ranking. To the
best of our knowledge, the use of these techniques is novel in this domain.

2. MACER accurately predicts the repair class (see Table 1). Thus, instructors
can manually rewrite helpful feedback (to accompany MACER’s suggested
repair) for popular repair classes which may offer greater pedagogical value.

1 The MACER tool-chain is available at https://github.com/purushottamkar/macer/.

https://github.com/purushottamkar/macer/

108 D. Chhatbar et al.

ErrorID Error Message Freq.

E1 Expected � after expression 4999
E2 Use of undeclared identifier � 4709
E3 Expected expression 3818
E6 Expected � in � statement specifier 720
E10 Expression is not assignable 538
E23 Expected ID after return statement 128
E57 Unknown type name � 23
E76 Non-object type � is not assignable 11
E98 variable has incomplete type ID 3
E148 Parameter named � is missing 1

ClassID [ErrorID [Del] [Ins]] Type Freq.

C1 [E1 [∅] [;]] Insert 3364
C2 [E2 [INVALID] [INT]] Replace 585
C12 [E6 [,] [;]] Replace 173
C22 [E23 [;] [∅]] Delete 89
C31 [E6 [,,] [;;]] Replace 62
C64 [E3 [)] [∅]] Delete 33
C99 [E45 [==] [=]] Replace 19
C115 [E3 [∅] [‘]] Insert 16
C145 [E24 [.] [->]] Replace 11
C190 [E6 [for] [while]] Replace 9

Fig. 2. (Left) Some of the 148 compiler errorIDs listed in decreasing order of frequency
in the train set. Some errorIDs are frequent whereas others are very rare. The symbol
� is a placeholder for program specific tokens such as identifiers, reserved keywords,
punctuation marks etc. E.g., an instance of E6 is shown in Fig. 1. An instance of E1
could be “Expected ; after expression”. (Right) Some of the 1016 repair classes used
by MACER listed in decreasing order of frequency in the train set. E.g., ClassID C145
concerns inappropriate use of the dot operator to access member fields of a (pointer
to a) structure and requires replacement with the arrow operator. ∅ indicates that no
token need be inserted/deleted for that class, e.g., no token need be inserted to perform
repair for C22 whereas no token need be deleted to perform repair for C115. Please see
the text in Sect. 2 for a description of the notation used in the second column.

2 MACER: Data Pre-processing

The training data for MACER is in the form of (source-target) program pairs
where the source program failed to compile and the target is the student-repaired
program. Similar to [1], we train only on pairs where the two programs differ in a
single line (although MACER is tested on programs where multiple lines require
repairs as well). The differing line in the source (resp. target) program is called
the source line (resp. target line) (e.g. line 3 in Fig. 1). With every such program
pair, we also receive the errorID and message generated by the Clang compiler
[13] when compiling the source program. Figure 2 lists a few errorIDs and error
messages. Some error types are extremely rare whereas others are very common.

Notation. We use angular brackets to represent n-grams e.g. the statement
a = b + c; contains unigrams 〈a〉, 〈=〉, 〈b〉, 〈+〉, 〈c〉, 〈;〉, and bigrams 〈a =〉,
〈= b〉, 〈b +〉, 〈+ c〉, 〈c ;〉, 〈; EOL〉. Including an end-of-line character EOL helps
MACER distinguish this location since several repairs (such as insertion of expres-
sion termination symbols) require edits at the end of the line.

Feature Encoding. Source lines contain user-defined literals and identifiers
that are diverse yet uninformative for error repair. Thus, we perform abstrac-
tion by replacing literals and identifiers with an abstract LLVM token type [13],
while retaining keywords and symbols, e.g. the raw/concrete statement int abc
= 0; is converted to the abstract statement int VARIABLE INT = LITERAL INT
;. An exception is string literals where format-specifiers (e.g. %d and %s) are
retained since these are often a source of error themselves. Such abstraction is

MACER: A Modular Framework for Accelerated Compilation Error Repair 109

common in literature [1,2]. The token INVALID is used for unrecognized identi-
fiers. This gave us a vocabulary of 161 uni and 1930 bigrams (trigrams did not
offer significant improvements). A source line is represented as a 2239 (148 + 161
+ 1930) dimensional vector storing one-hot encodings of the compiler errorID
(see Fig. 2), and uni and bigram feature encodings of the abstracted source line.
Note that the feature encoding step does not use the target line in any way.

Repair Class Creation. The repair class of a source line encodes what
repair to apply to that line. The Clang compiler offers 148 distinct errorIDs in our
training dataset. However, diverse repair strategies may be required to handle all
instances of a single errorID. E.g., errorID E6 can either signal missing semicolons
‘;’ within the for loop statement specifier (as in Fig. 1), or missing semicolon
at the end of a do-while block, or missing colons ‘:’ in a switch case block.
To address this, similar to TEGCER [2], we expand the 148 compiler errorIDs
into 1016 repair classes. These repair classes are generated automatically from
training data and do not require any manual supervision. For each training
example, the diff of the abstracted source and target lines reveals the set of tokens
that must be inserted/deleted to/from the abstracted source line to obtain the
abstracted target line. The repair class of this example is then simply a tuple
enumerating the compiler error ID followed by the tokens to be inserted/deleted
(in order of their occurrence in the source line from left to right).

[ErrID [TOK−
1 TOK−

2 ...][TOK+1 TOK+2 ...]]

We identified 1016 such classes (see Fig. 2). Repair classes requiring no insertions
(resp. no deletions) are called Delete (resp. Insert) classes and others are called
Replace classes. Repair classes, like error IDs, exhibit a heavy tail distribution
with a few popular repair classes having hundreds of training examples whereas
most repair classes having single digit training examples (see Fig. 2).

Repair Profile Creation. The repair profile of a source line encodes where
in that line to apply the repair encoded in its repair class. For every erroneous
program, the diff between its abstracted source and target lines tells us which
bigrams in the abstracted source line require edits (insert/delete/replace). The
repair profile for a training example is given as a one-hot representation of the
set of bigrams i.e. r ∈ {0, 1}1930 which require modification. We note that the
repair profile is a sparse fixed-dimensional binary vector (that does not depend
on the number of tokens in the source line) and ignores repetition information.
Thus, even if a bigram requires multiple edit operations, or appears several times
in the source line and only one of those occurrences requires an edit, we record
a 1 in the repair profile corresponding to that bigram. This was done in order to
simplify prediction of the repair profile for erroneous programs at testing time.

Working Dataset. After the above pre-processing steps, we have with us,
corresponding to every training source-target example pair, a class-label yi ∈
[1016] telling us the repair class for that source line, a feature representation
xi ∈ {0, 1}2239 that tells us the errorID along with the uni/bigram representation
of the source line, and a sparse Boolean vector ri ∈ {0, 1}1930 that tells us the
repair profile. Altogether, this constitutes a dataset of the form

{
(xi, yi, ri)

}n

i=1
.

110 D. Chhatbar et al.

E6
1

0
0
0
1
0
1
1

1
0

Unigram
Features

Bigram
Features

Compiler ErrorID

0
0
1

0
0

Source Program (buggy)

Repair Line Extraction

Code Abstraction

Repair Profile Creation

Feature Vector

Repair Profile TRAIN

Train OVA multi
label classifiers Train Tree and

Prototype Rerankers

Fig. 3. The training pipeline for MACER, illustrated using the example used in Fig. 1.
L INT and V INT are shorthand for LITERAL INT and VARIABLE INT.

3 MACER: Training and Prediction

MACER segregates the error repair process (at test time) into six distinct steps

1. Repair Lines: Locate which line(s) are erroneous and require repair.
2. Feature Encoding: A 2239-dimensional feature vector for each such line.
3. Repair Class Prediction: Use the feature vector to predict which of the

1016 repair classes is applicable i.e. which type of repair is required.
4. Repair Localization: Use the feature vector to predict locations within the

source line where repairs should be applied.
5. Repair Application: Apply repairs at the predicted locations.
6. Repair Concretization: Undo code abstraction and compile.

MACER departs notably from previous works in segregating the repair process
into these steps. Apart from faster training and prediction, this allows MACER
to learn a customized repair location and repair application strategy for every
repair class, e.g. if it is known that the repair requires the insertion of a semi-
colon, then the possible repair locations are narrowed down significantly.

Repair Lines. In addition to the compiler reported error line numbers,
MACER samples 2 additional lines, one above and one below, as candidate repair
lines. The same technique was used by TRACER [1], and achieves a repair line
localization recall of around 90% on our training dataset.

Repair Class Prediction. Given the large number of repair classes, MACER
uses a probabilistic hierarchical classification trees [12,17] for fast and accurate
prediction. Given a source line feature vector x ∈ {0, 1}2239, they assign a likeli-
hood score streec (x) for each repair class c ∈ [1016] that is used to rank the classes.
The tree used by MACER (see Fig. 4) uses a feed-forward network with 2 hidden
layers with 128 nodes each at the root node and linear one-vs-rest classifier at
other nodes, all trained on cross entropy loss. However, given the large number

MACER: A Modular Framework for Accelerated Compilation Error Repair 111

ROOT

NON-
REPLACEREPLACE

C1 C413…

INSERT

C414 C640…

DELETE

C641 C942…

MISC

C943 C1016…

Feature Vector ∈ 0,1 2239

Re-Ranking 0
0
1⋮
0
0

OVA multi label
classifier for C31

PREDICT

Repair Application

Concretize

C31

Fig. 4. (Left) The prediction hierarchy used by MACER to predict the repair class.
(Right) The repair pipeline for MACER, illustrated using the example used in Fig. 1. A
situation is depicted where a wrong repair class gets highest score from the classification
tree, but reranking corrects the error. Table 1 shows that this is indeed common.

Table 1. Performance benefits of reranking. Here, Top@k reports the fraction of test
examples on which the correct errorID/repair tokens were predicted within top k loca-
tions of the ranking. MAP refers to mean-averaged precision. Reranking significantly
boosts MACER’s performance. MAP error indicates that reranking ensures that the
correct errorID/repair tokens were almost always predicted within the first two ranks.

Top@1 Top@3 Top@5 MAP

Reranking Off (use streec (x) to rank repair classes) 0.66 0.83 0.87 0.40
Reranking On (use 0.8 · streec (x) + 0.2 · sprotc (x) instead) 0.67 0.88 0.90 0.50

of extremely rare repair classes (Fig. 2 shows that only ≈150 of the 1016 repair
classes have more than 10 training examples), there is room for improvement.

Repair Class Reranking. To improve classification performance on rare
repair classes, MACER uses prototype classifiers [11,16]. Prototypes vectors are
obtained for each repair class c ∈ [1016] (with say nc training examples) by clus-
tering training examples associated with that class into kc =

⌈
nc

25

⌉
clusters with

centroids x̃1
c , . . . , x̃

kc
c . For a source line x ∈ {0, 1}2239, the prototypes are used to

assign a new score to each repair class sprotc (x) := maxk∈[kc] exp
(
− 1

2

∥
∥x − x̃k

c

∥
∥2

2

)
.

This score is combined with the earlier (hierarchical classification tree) score as
sc(x) = 0.8 · streec (x) + 0.2 · sprotc (x) and sc(x) is used to rank the repair classes.
Table 1 outlines how the reranking step significantly boosts MACER’s ability to
accurately predict the relevant compiler errorID and the repair class.

Repair Localization. MACER predicts the repair profile vector by solving
a multi-label learning problem with 1930 “labels” corresponding to the bigrams
in our vocabulary. MACER trains a separate “one-vs-rest” (OVR) classifier [4]
per repair class that allows it to adapt to needs of different repair classes. Only
those OVR classifiers that correspond to bigrams actually present in the source
line are invoked. This offers good localization with a Hamming loss of just 1.43.

112 D. Chhatbar et al.

Repair Application. Having obtained the nature and location of the repairs
from the above steps, MACER uses frugal but effective techniques to apply the
repairs. Due to lack of space, we postpone details to the full version. Let B denote
the ordered set of all bigrams (and their locations, ordered from left to right) in
the source line which the predicted repair profile considers edit-worthy.

1. Insertion Repairs: In most cases of insertion repair, all tokens need to be
inserted at the same location, e.g., for(i=0;i<5) → for(i=0;i<5;i++) with
repair class [E6 [∅] [; VARIABLE INT ++]]. MACER concatenates all tokens
marked for insertion and tries inserting this ensemble into all bigrams in B.

2. Deletion Repairs: Tokens marked for deletion in the predicted repair class
are deleted at the first bigram in the set B that has that token.

3. Replace Repairs: The repair class specifies a list of pairs of tokens (TOK−,
TOK+) where TOK− needs to be replaced with TOK+. Similar to deletion repairs,
MACER attempts this edit at the first bigram that contains TOK−.

4. Miscellaneous Repairs: for unstructured repair classes where insertions and
deletions are both required but an unequal number of tokens are inserted and
deleted, MACER first ignores insertion tokens and performs edits as if this were
a deletion repair class instance and then performs all insertions. This approach
leaves room for improvement but nevertheless performs relatively well.

Repair Concretization. To make the repaired program compilable,
abstract LLVM tokens such as LITERAL_INT are replaced with concrete program
tokens such as literals and identifiers. Each abstract token is replaced with the
most recently used concrete variable/literal of the same type, that already exists
in the current scope. The process, although approximate, nevertheless recovers
the correct replacement in 90+% of the instances in our datasets. Each candi-
date repair line reported by the repair line localizer is replaced with MACER’s
repair prediction, if it reduces the number of compilation errors in the program.

4 Experiments

We compared MACER’s performance against previous works, as well as per-
formed ablation studies to study the relative contribution of its components. All
MACER implementations2 were done using standard machine learning libraries
such as sklearn [15] and keras [6]. Experiments were performed on a system
with Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz × 8 CPU having 32 GB RAM.

Datasets. We report results on 3 different datasets, all curated from CS-1
course offerings at IIT-Kanpur (a large public university) with 400+ students
attempting 40+ programming assignments. The datasets were recorded using
Prutor [7], an online IDE. The DeepFix dataset3 contains 6,971 programs that
fail to compile, each with max 400 tokens [9]. The single-line (17,669 train +
4,578 test) and multi-line (17,451 test programs) datasets4 contain program pairs
where error-repair is required, respectively, on a single line or multiple lines [1].
2 The MACER tool-chain is available at https://github.com/purushottamkar/macer/.
3 https://www.cse.iitk.ac.in/users/karkare/prutor/prutor-deepfix-09-12-2017.zip.
4 https://github.com/umairzahmed/tracer.

https://github.com/purushottamkar/macer/
https://www.cse.iitk.ac.in/users/karkare/prutor/prutor-deepfix-09-12-2017.zip
https://github.com/umairzahmed/tracer

MACER: A Modular Framework for Accelerated Compilation Error Repair 113

Metrics. We report i) repair accuracy, the fraction of test programs that
were successfully repaired by a tool, and ii) Pred@k, the fraction of programs
where at least one of the top k abstract repair suggestions exactly matched the
student’s own abstract repair. This is a metric introduced in [1] motivated by
the fact that the goal of program repair, especially in pedagogical settings, is
not to merely generate any program that compiles (see below).

The Importance of Pred@k. We consider a naive method Kali’ that sim-
ply deletes all lines where the compiler reported an error. This is inspired by
Kali [18], an erstwhile state-of-art semantic-repair tool that repaired programs
by functionality deletion alone. Kali’ gets 48% repair accuracy on the DeepFix
dataset whereas DeepFix [9], TRACER [1] and MACER get respectively 27%, 44%
and 56% (Table 3). Although Kali’ seems to offer better repair accuracy than
TRACER, its Pred@1 accuracy on the single-line dataset is just 4%, compared
to 59.6% and 59.7% by TRACER and MACER respectively (Table 2). This shows
the weakness of the repair accuracy metric and the need for the Pred@k metric.

Results. Of the total 7 min train time (see Table 3), MACER took less than
5 s to create repair classes and repair profiles from the raw dataset. The rest of
the training time was taken up more or less evenly by repair class prediction
training (tree ranking + reranking) and repair profile prediction training.

Comparisons with Other Methods. The values for Pred@k (resp. Rep@k)
were obtained by considering the top k repairs suggested by a method and declar-
ing success if any one of them matched the student repair (resp. removed compila-
tion errors). For Pred@k computations, all methods were given the true repair line
and did not have to perform repair line localization. For Rep@k computations, all
methods had to localize then repair. Tables 2 and 3 compare MACER with com-
petitor methods. MACER offers superior repair performance at much lesser train-
ing and prediction costs. Figure 6 shows that MACER outperforms TRACER by ≈
20% on popular classes while being competitive or better on others.

Ablation studies with MACER. To better understand the strengths and
limitations of MACER, we report on further experiments. Figure 6 shows that
MACER is effective at utilizing even small amounts of training data and that its
prediction accuracy drops below 50% only on repair classes which have less than
30 examples in the training set. Figure 5 offers examples of actual repairs by
MACER. Although it performs favorably on repair classes seen during training,
it often fails on zero-shot repair classes which were never seen during training.
Table 4 presents an explicit ablation study analyzing the differential contribu-
tions of MACER’s individual components on the single-line dataset. Re-ranking
gives 10–12% boost to both Pred@k and repair accuracy. Predicting the repair
class (resp. profile) correctly accounts for 5–12% (resp. 6%) of the performance.
MACER loses a mere 6% accuracy on account of improper repair application. For
all figures and tables, details are provided in the captions due to lack of space.

114 D. Chhatbar et al.

Table 2. TRACER vs MACER on
single, multi-line datasets. Although
comparable on single line, MACER
outperforms TRACER by 14% on
multi-line dataset. P@k,R@k are
shorthand for Pred@k,Rep@k resp.

Dataset Single Multi

Metric P@1 P@5 R@5 R@5

TRACER 0.596 0.683 0.792 0.437
MACER 0.597 0.691 0.805 0.577

Table 3. All methods on the DeepFix dataset.
Values take from ∗[9] and †[8]. MACER offers the
highest repair accuracy with a margin of 12.5%
over the next best method, a prediction time that
is at least 2× faster, and a train time 2× faster
than TRACER and 800× faster than RLAssist.

DeepFix RLAssist TRACER MACER

Repair Acc 0.27∗ 0.267† 0.439 0.566

Test Time <1s† <1s† 1.66 s 0.45 s
Train Time - 4 Days 14 min 7 min

Source-line Target-line MACER’s Top Prediction Pred? Repair? Zero-shot?
1 scanf("%c",&a[i] ; scanf("%c",&a[i]); scanf("%c",&a[i]); Yes Yes No
2 for (i =0;i<n;i++) for(int i=0;i<n;i++) for (int i =0;i<n;i++) Yes Yes No
3 if(x==y)printf("Y"); break; if(x==y)printf("Y"); if(x==y)printf("Y") ; Yes Yes No
4 for(i=0; i=<N ;i++) for(i=0;i<=N;i++) for(i=0; i<N ;i++) No Yes No
5 if ((a[j]==’ ’) if(a[j]==’ ’) if((a[j]==’ ’)) No Yes No
6 int n; n=q; int n; int n; n=0; No Yes Yes
7 c=sqrt(a^2+b^2); c=sqrt(a*a+b*b); c=sqrt(a^2+b^2); No No Yes

Fig. 5. Some examples of repairs by MACER on test examples. Pred? = Yes if MACER’s
top suggestion exactly matched the student’s abstracted fix. Rep? = Yes if MACER’s
top suggestion removed all compilation errors. ZS? = Yes for “zero-shot” test examples
i.e. the corresponding repair class was absent in training data. MACER offers exactly
the student’s repair for the first three examples. Note that the second example involves
an undeclared identifier. For the next three examples, although MACER does not offer
exactly the student repair, it nevertheless offers sane fixes that eliminate all compilation
errors. The last two are zero-shot examples – MACER handles one of them.

5 Conclusion

We presented MACER, a novel technique that offers superior repair accuracy and
increased training and prediction speed by finely segregating error repair into
efficiently solvable ranking and labeling problems. Targeting rare error classes
and “zero-shot” cases (Fig. 5) is an important area of future improvement. A
recent large scale user-study [3] demonstrated that students who received auto-
mated repair feedback from TRACER [1] resolved their compilation errors faster
on average, as opposed to human tutored students; with the performance gain
increasing with error complexity. We plan to conduct a similar systematic user
study in the future, to better understand the correlation between our improved
Pred@k metric scores and error-resolution efficiency of students.

Acknowledgments. The authors thank the reviewers for helpful comments and are
grateful to Pawan Kumar for support with benchmarking experiments. P. K. thanks
Microsoft Research India and Tower Research for research grants.

MACER: A Modular Framework for Accelerated Compilation Error Repair 115

Fig. 6. (Left-Top and Left-Bottom) MACER vs TRACER on the 60 most frequent
(head) and top 60–120 (torso) repair classes. To avoid clutter, only 30 classes from each
category are shown. MACER outperforms TRACER by around 20% in terms of Pred@k
on head classes and is competitive or better on torso classes. (Right-Top and Right-
Bottom) Prediction (exact match) accuracy for MACER on the 391 repair classes that
had at least 3 training points. On a majority of these classes 221/391 = 56%, MACER
offers greater than 90% Pred@k. On a much bigger majority 287/391 = 73%, MACER
offers more than 50% prediction accuracy. MACER’s prediction accuracy drops below
50% only on classes which have less than around 30 points. This indicates that MACER
is effective at utilizing even small amounts of training data.

Table 4. An ablation study on the differential contributions of MACER’s components.
ZS stands for “zero-shot”. For the “ZS included” column, all test points were considered
while the “ZS excluded” column took only those test points whose repair class was seen
at least once in the training data. RR stands for reranking. RCP stands for Repair Class
Prediction, RLP stands for Repair Location Prediction. RCP = P (resp. RLP = P)
implies that we used the repair class (resp. repair location) predicted by MACER. RCP
= G (resp. RLP = G) implies that we used the true (G for gold) repair class (resp. true
repair profile vector). The difference in the first two rows shows that reranking gives 10–
12% boost to both Pred@k and repair accuracy. Predicting the repair class (resp. profile)
correctly accounts for 5–12% (resp. 6%) of the performance. The final row shows that
MACER loses 6–8% performance owing to improper repair application/concretization.
In the last two rows, Pred@1 is higher than Rep@1 (1–2% cases) owing to concretization
failures – even though the predicted repair matched the student’s repair in abstracted
form, the program failed to compile after abstraction was removed.

ZS included ZS excluded

RR RCP RLP Pred@1 Rep@1 Pred@1 Rep@1

OFF P P 0.492 0.599 0.631 0.706

ON P P 0.597 0.703 0.757 0.825

ON G P – – 0.885 0.877

ON G G – – 0.943 0.926

116 D. Chhatbar et al.

References

1. Ahmed, U.Z., Kumar, P., Karkare, A., Kar, P., Gulwani, S.: Compilation error
repair: for the student programs, from the student programs. In: Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
Education and Training (ICSE-SEET), pp. 78–87 (2018). https://doi.org/10.1145/
3183377.3183383

2. Ahmed, U.Z., Sindhgatta, R., Srivastava, N., Karkare, A.: Targeted example gen-
eration for compilation errors. In: 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 327–338. IEEE (2019). https://
doi.org/10.1109/ASE.2019.00039

3. Ahmed, U.Z., Srivastava, N., Sindhgatta, R., Karkare, A.: Characterizing the peda-
gogical benefits of adaptive feedback for compilation errors by novice programmers.
In: 42nd International Conference on Software Engineering: Software Engineering
Education and Training (ICSE-SEET) (2020, to appear)

4. Babbar, R., Schölkopf, B.: DiSMEC - distributed sparse machines for extreme
multi-label classification. In: 10th ACM International Conference on Web Search
and Data Mining (WSDM), pp. 721–729 (2017). https://doi.org/10.1145/3018661.
3018741

5. Camp, T., Zweben, S.H., Walker, E.L., Barker, L.J.: Booming enrollments: good
times? In: Proceedings of the 46th ACM Technical Symposium on Computer
Science Education (SIGCSE), pp. 80–81. ACM (2015). https://doi.org/10.1145/
2676723.2677333

6. Chollet, F., et al.: Keras: the python deep learning library (2015). https://keras.io
7. Das, R., Ahmed, U.Z., Karkare, A., Gulwani, S.: Prutor: a system for tutoring CS1

and collecting student programs for analysis (2016). arXiv:1608.03828 [cs.CY]
8. Gupta, R., Kanade, A., Shevade, S.: Deep reinforcement learning for syntactic error

repair in student programs. In: 33rd AAAI Conference on Artificial Intelligence
(AAAI), pp. 930–937 (2019). https://doi.org/10.1609/aaai.v33i01.3301930

9. Gupta, R., Pal, S., Kanade, A., Shevade, S.: DeepFix: fixing common C lan-
guage errors by deep learning. In: 31st AAAI Conference on Artificial Intelligence
(AAAI), pp. 1345–1351 (2017)

10. Hajipour, H., Bhattacharyya, A., Fritz, M.: SampleFix: learning to correct pro-
grams by sampling diverse fixes (2019). arXiv:1906.10502v1 [cs.SE]

11. Jain, H., Prabhu, Y., Varma, M.: Extreme multi-label loss functions for recom-
mendation, tagging, ranking & other missing label applications. In: 22nd ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 935–
944 (2016). https://doi.org/10.1145/2939672.2939756

12. Jasinska, K., Dembczyński, K., Busa-Fekete, R., Pfannschmidt, K., Klerx, T.,
Hüllermeier, E.: Extreme F-measure maximization using sparse probability esti-
mates. In: 33rd International Conference on Machine Learning (ICML), pp. 1435–
1444 (2016)

13. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and Runtime Optimization, p.
75. IEEE Computer Society (2004)

14. McCauley, R., et al.: Debugging: a review of the literature from an educational
perspective. Comput. Sci. Educ. 18(2), 67–92 (2008). https://doi.org/10.1080/
08993400802114581

https://doi.org/10.1145/3183377.3183383
https://doi.org/10.1145/3183377.3183383
https://doi.org/10.1109/ASE.2019.00039
https://doi.org/10.1109/ASE.2019.00039
https://doi.org/10.1145/3018661.3018741
https://doi.org/10.1145/3018661.3018741
https://doi.org/10.1145/2676723.2677333
https://doi.org/10.1145/2676723.2677333
https://keras.io
http://arxiv.org/abs/1608.03828
https://doi.org/10.1609/aaai.v33i01.3301930
http://arxiv.org/abs/1906.10502v1
https://doi.org/10.1145/2939672.2939756
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1080/08993400802114581

MACER: A Modular Framework for Accelerated Compilation Error Repair 117

15. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12(85), 2825–2830 (2011)

16. Prabhu, Y., et al.: Extreme multi-label learning with label features for warm-start
tagging, ranking & recommendation. In: 11th ACM International Conference on
Web Search and Data Mining (WSDM), pp. 441–449 (2018). https://doi.org/10.
1145/3159652.3159660

17. Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., Varma, M.: Parabel: partitioned
label trees for extreme classification with application to dynamic search advertising.
In: 27th International World Wide Web Conference (WWW), pp. 993–1002 (2018).
https://doi.org/10.1145/3178876.3185998

18. Qi, Z., Long, F., Achour, S., Rinard, M.C.: An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In: International
Symposium on Software Testing and Analysis, pp. 24–36. ACM (2015). https://
doi.org/10.1145/2771783.2771791

19. Vasic, M., Kanade, A., Maniatis, P., Bieber, D., Singh, R.: Neural program repair
by jointly learning to localize and repair. In: 7th International Conference on Learn-
ing Representations (ICLR) (2019)

https://doi.org/10.1145/3159652.3159660
https://doi.org/10.1145/3159652.3159660
https://doi.org/10.1145/3178876.3185998
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1145/2771783.2771791

	MACER: A Modular Framework for Accelerated Compilation Error Repair
	1 Introduction
	2 MACER: Data Pre-processing
	3 MACER: Training and Prediction
	4 Experiments
	5 Conclusion
	References

