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Abstract. Despite recognising the importance of transparency and under-
standing of predictive models, little effort has been made to investigate the errors
made by these models. In this paper, we address this gap by interviewing 12
students whose results and predictions of submitting their assignment differed.
Following our previous quantitative analysis of 25,000+ students, we conducted
online interviews with two groups of students: those predicted to submit their
assignment, yet they did not (False Negative) and those predicted not to submit,
yet they did (False Positive). Interviews revealed that, in False Negatives, the
non-submission of assignments was explained by personal, financial and prac-
tical reasons. Overall, the factors explaining the different outcomes were not
related to any of the student data currently captured by the predictive model.
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1 Introduction

Identifying correctly at-risk students has emerged into one of the most prevalent topics
in Learning Analytics (LA) and education in general [1]. The identification of at-risk
students using Predictive Learning Analytics (PLAs) and followed by a subsequent
intervention targeting flagged students (e.g., phone call) could tackle this problem.
Many published papers focused on achieving the highest prediction performance, often
comparing several learning algorithms. Machine learning models are more likely to
exhibit some sort of error hence, the need to understand and explain these errors. In a
cross-disciplinary field such as LA, not having the best model could still help under-
stand or even improve student learning. Kitto et al. [2] argued that having imperfect
models does not necessarily mean that these should not be deployed. As the LA field is
maturing, it becomes essential to understand how models are behaving and how errors
occur [3, 4].

Only few studies have examined errors up to now. This paper aims to explain errors
in predictions through 12 in-depth interviews with undergraduate online students
wrongly predicted as being/not being at risk of failing their next assignment. We treated
False Positive (FP) and False Negative (FN) errors separately. Following [5], we refer
to FP as students predicted as being at-risk but succeeded, and FN as students that
failed despite predicted to succeed. We build on the work of Calvert et al. [6] that
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investigated within a single online course why some FP students passed despite pre-
dictions showing the opposite and our early quantitative results from [7].

2 Methodology

To analyse the predictive model errors, we used a mixed-methods approach (See
Fig. 1). We focused on first year STEM courses and predictions for the first assignment
only (A1), when dropout is more likely to happen [8, 9]. The predictions were
enhanced by additional data: course context (e.g. the length of the course) and future
data from the weeks following the predictions, unknown during the prediction’s gen-
eration. Predictions for each course were put together in one matrix and only predic-
tions with confidence ≧0.85 were selected. A Decision Tree was constructed to
distinguish between (1) FP and True Positive (TP) and (2) FN and True Negative (TN).

After getting a favourable opinion from the university’s Ethical Committee, we
conducted 12 semi-structured interviews with students lasting 20 to 40 min. The
interview schedule was developed by two of the authors, piloted with one student, and
the analysis followed inter-rater reliability principles. Students were not new to the
university, assuming that they would have devised strategies on how to successfully
complete their assignment without accessing the Virtual Learning Environment (VLE).
Gift vouchers were offered. We grouped participants to (a) students predicted to submit
yet they did not submit (FN; N = 7) and (b) students predicted not to submit yet they
submitted (FP; N = 5). Following other published work [10], we analysed students as
individual case studies creating a distinct profile picture for each student. The following
themes emerged from the thematic analysis [11]: motivations for taking the module,
studying patterns, reasons for not submitting the assignment, factors that helped or
hindered submission, tutor contact, student contact, recommendations for other stu-
dents so that they submit and proposed module changes. We then plotted this

Fig. 1. The schema of the methodology - quantitative analysis followed by interviews.
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information on a table and identified similarities and differences within and between the
two cohorts of students1.

3 Results

3.1 Quantitative Analysis

Considering the predictions two weeks before the deadline of A1, we analysed 38,073
predictions in 17 courses in 62 presentations between 2017–2019, having 29,247
students (383 FP, 1,507 FN, 2,671 TP and 33,512 TN). The ROC AUC over all
predictions was 0.8897. For confident Not Submit predictions, the decision tree clas-
sified correctly 50.91% of the FP errors with 75.29% precision (195 students). The
strongest attribute was the number of clicks one week before the deadline of the first
assignment (confidence 0.82). For the confident Submit predictions, the model dis-
tinguished 18.73% of the FN errors with precision 68.73% (1,036 students). The
strongest attribute related to a dramatic decrease in students’ activity in the last week
before assignment 1 (A1) in courses with high activity (confidence 0.83). Both types of
errors were associated with a change of student activity after the predictions were
generated, and it is worth further examination.

3.2 Qualitative Analysis

Participants (see Table 1) were older than those invited to take part in the study, more
successful in their previous courses, female repeating the same course.

FN - Predicted to Submit but did Not Submit: Participants were motivated to study
either because they were driven by completing a qualification/degree or out of interest.
Their studying patterns were rather random, with no strict schedule. The reasons
explaining non-submission were related to family matters/issues (i.e. caring responsi-
bilities), practical issues (i.e. no internet connection at the time of submission) or they
were restricted to submit because of student financial issues. FN_2 who took the course
out of interest, found it pointless to submit her assignment as it only weighted 7% of
the final grade and it was too easy for her. On the contrary, FN_5 found it difficult to

Table 1. Invited and interviewed participants – demographic information.

Age
(avg)

Disabled
(%)

Female
(%)

Previous
Pass (%)

Repeat
Course (%)

Totals

Invited 38 22 42 64 26 131
Interviewed 45 25 57 70 33 12

1 The table can be found here: https://docs.google.com/spreadsheets/d/1MwT-luUSl96XYIGhjz24p
Xdwbmkn-nLHae9n8gLXiDk.
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submit because of her lack of digital skills and absence of detailed guidance. Further,
student contact with tutors was minimal and related to requesting an extension to
submitting the assignment. FN_11 mentioned that although she contacted her tutor via
email, the tutor never replied. Two interviewees reported that their tutor support was
helpful with the tutor proactively getting in touch and communicating with them.
Interacting with other students was not common for four interviewees. FP_3 reported
though that she helped other students and FN_4 used Facebook Groups and forums to
communicate socially.

FN students made suggestions for future students to follow the online study
guidance and plan ahead for submitting assignments on time. FN_2 who had prior
knowledge suggested that assignments should have optional questions for the needs of
more advanced students. Two participants would like to have online tutorials with a
tutor to guide the assignment submission. FN_5 suggested that the course should be
more accessible by adding detailed guidelines on technical aspects for submission.
Most participants took the course for the first time apart from one interviewee.

FP - predicted Not to Submit but Submitted: All participants were motivated to take
their course in order to get a qualification/degree. Their studying patterns varied mostly
studying in the evenings. The reasons they managed to submit related to the fact that
this was not the first time they were taking the course. Two of them took the course for
the second time. FP_3 was determined to submit as it was their third time taking the
course. Two interviewees took the course for the first time. FP_7 on the other hand, did
not prepare for the assignment, yet answered the assignment questions as they had
some prior knowledge. The other two interviewees submitted after watching videos,
consulting books, or with help from external networks.

Contact with tutors was minimal. FP_7 only contacted their tutor for an extension.
No interactions with other students were reported. In terms of recommendations, FP_3
suggested that asking for support from their tutor is important although they did not
initiate that. FP_8 and FP_9 suggested looking at the VLE material in a timely manner
and prepare early on. They proposed more contact with teachers and suggested that
audio recordings would be a good addition. Interestingly, the interviewee who was
taking the course for the third time, mentioned that assignments should be given more
weight towards the final grade. FP_7 suggested that students with prior knowledge or
expertise on a topic should be allowed to skip an assignment.

4 Conclusions

None of the predictive errors could be fully explained by only looking at the course
data. Errors were explained by factors not currently captured by the university data sets,
including personal, technical and financial issues students faced before submission. The
factors reported are rather hard to capture automatically and in a timely manner to
support students with difficulties. Hence, the role of teachers becomes critical; pastoral
and proactive care could identify and resolve such issues on time and enable students to
succeed. Existing studies already showcased the significance of teachers’ monitoring
and intervening with students at risk for better learning outcomes [12]. A university-
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wide policy accompanied by relevant teachers’ training as to when and how teachers
should get in touch with their students would ensure that academic connection and
social presence are established [13, 14]. Given that we do not gather data from external
systems, errors might be hard to prevent in the future. Yet, we could add error
explanations especially for students submitting their assignment (e.g. taking the course
for a second time).
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