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Abstract. Design-loop adaptivity, which involves data-driven redesign of an
instructional system based on student learning data, has shown promise in
improving student learning. We present a general, systematic approach that
combines new and existing data mining and instructional design methods to
redesign intelligent tutors. Our approach is driven by the main goal of identi-
fying knowledge components that are demonstrably difficult for students to learn
and to optimize effective and efficient practice of them. We applied this
approach to redesigning an algebraic symbolization tutor. Our classroom study
with 76 high school freshmen shows that, compared to the original tutor, the
redesigned tutor led to higher learning efficiency on more difficult skills, higher
learning gain on unscaffolded whole tasks, and more robust transfer to less
practiced tasks. Our work provides general guidance for performing design-loop
adaptations for continuous improvement of intelligent tutors.
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1 The Need for a General Data-Driven Redesign Approach

Design-loop adaptivity [1] uses student learning data to drive instructional decision
making for design and iterative improvement of a course or system. It is part of a
broader set of endeavors of data-driven instruction and learning designs for continuous
improvement in classrooms and schools [2–5]. This paper focuses on the context of
intelligent tutoring systems (ITSs), a widely adopted and proven technology, where
empirical research on data-driven redesign and optimization is still lacking. Numerous
data mining methods have been demonstrated to improve prediction accuracy using
data from fielded ITSs [6–8], but most stop at better predictions without demonstrating
whether and how these methods can improve student learning. One reason for a
shortage of such “close the loop” experiments may be that there is no good general
guidance for how to convert data-mining outcomes into better tutor design. Prior close-
the-loop studies [9–11] were often driven by a limited set of methods or narrow
redesign features. This paper demonstrates a general, systematic approach that com-
bines new and existing data mining and instructional design methods to redesign ITSs.
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We applied this approach to redesign an algebraic symbolization tutor, and provide
empirical evidence of its effectiveness through a classroom study comparing the
redesigned tutor to the original tutor.

2 Method: How to Use Data to Improve Intelligent Tutors

Our approach focuses on the continuous improvement of ITSs by mining tutor log data
collected from previous iterations. It starts with knowledge component (KC) refine-
ment, followed by content and task selection revisions aiming at more effective and
efficient practice of KCs. Our process (Table 1) is generalizable to other domains and
other ITSs grounded in a KC approach [12] to instructional design.

Table 1. A general multi-method approach to data-driven redesign of ITSs.

Goals Methods

1 Refine the knowledge component (KC) model
Identify difficulty factors to split KCs Difficulty Factor Effect Analysis
Compare hypothesized KC models AFM prediction and inspection [13]
2 Redesign content
Estimate opportunities to mastery, under- and over-
practice for each KC in the refined model

Probability-Propagation Practice
Estimation

Create focused tasks for difficult KCs with better
scaffolding and reduce over-practicing easier KCs

Focused Practice Task Design (with
dynamic, composition scaffolding)

Add feedback messages to frequent errors Error analysis [14, 15]
3 Optimize individualized learning
Optimize student model parameters Data-tuning BKT parameters [16]
Optimize task selection based on a student model Task selection simulation [17]

We applied this process to redesigning the Algebraic Expressions unit in Mathtutor
[18], a free online tutor based on prior instructional design research [19] (Fig. 1). We
utilized prior log data from 356 students with 50,279 student steps. We describe our
new methods below, and refer readers to prior work for existing methods.

Difficulty Factor Effect Analysis. A difficulty factor (DF) refers to a property that
makes some tasks more difficult than other comparable tasks. We first identified a
broad set of potential DFs by coding task features hypothesized to impact difficulty
(e.g., requiring parentheses or not). Then we ran a regression for each targeted KC to
examine the main and interaction effects of potential DFs on performance, controlling
for student proficiencies and learning from prior opportunities. These regressions might
be viewed as an efficient simplification of LFA [20]. A KC was split by a set of DFs
when there was an interaction or by a DF when there was a main effect.

Probability-Propagation Practice Estimation. We estimated the number of oppor-
tunities needed for mastery by fitting parameters of a student model (e.g., BKT [21]) to
the data and used the parameters to estimate knowledge for each step. We then com-
pared the estimates to actual opportunities to get the over- or under-practice. Instead of
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simulating many sequences by propagating simulated outcomes [22], we simulate one
sequence by propagating the probability of succeeding, and use it as weights to update
knowledge (i.e., P(L)new = P(C)P(L|C)new + P(W)P(L|W)new). The extrapolation of a
KC-student sequence stops when P(L)new� .95, or the extrapolated opportunities reach
a threshold (e.g., 20). Our offline experiments showed that our method reached similar
estimations as the method in [22] with higher efficiency.

Focused Practice Task Design. We created new focused problems for hard KCs
which eliminate interface steps of easier KCs (Fig. 2). These problems aim to reduce
under-practicing hard KCs and over-practicing easier KCs, which were prevalent in the
original tutor according to our practice estimation. We introduced composition scaf-
folding (inspired by prior work [14, 23, 24]) to break down problems (Fig. 2a), because
our method estimated that many opportunities (� 58) would be needed to master each
difficult KC (two-operator KCs) in the original tutor.

Fig. 1. A table task in the original tutor (with cells filled in correctly and the toolbar excluded).

a) 

b)

Fig. 2. Focused tasks target a KC that data reveals is particularly hard. a) A focused whole task
practices this KC in more realistic problems that require mental steps of easier KCs along with
the hard KC. If students fail on the whole task, dynamic composition scaffolding isolates the
individual KCs (step 1–3) including the hard one (step 3). b) A focused part task practices the
hard KC in isolation without the busy work (mental and interface steps) of the easier KCs.
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3 Experiment

We conducted a classroom study to investigate whether the data-driven redesigned
tutor (treatment condition) yields better learning than the original tutor (control con-
dition). We ran the study in two high school freshman Algebra I classes during three
40-min periods for one week in 2019. Students were randomly assigned to conditions
within each class, with 38 students per condition. We used linear mixed models to
examine learning gains and two-sample t-tests to examine practice time (Fig. 3).

Overall, both conditions produced significant learning gains (ps < .01). Students in
the treatment condition spent 13% less practice time than students in the control
condition (p < .1), with no difference in gains (p = .94). In particular, on more difficult
skills, two-operator skills, they spent 19% less time (p < .05) with no difference in
gains (p = .78). Treatment students had significant gains on algebraic modeling
(AM) in both unscaffolded whole tasks (Fig. 2a without scaffolding steps) and table
tasks (Fig. 1) (ps < .05) even with little practice on table tasks. Control students had a
significant gain on AM table tasks (p < .001) with no difference from treatment stu-
dents (p = .14), and no improvement on unscaffolded whole tasks (p = .58) with the
gain different from that of treatment students (p < .05). These results suggest that
treatment students acquired more robust, transferable learning. Control students had
marginally higher gains on arithmetic solving (AS) (p = .096); the treatment condition
was designed to shift practice away from these (easier) skills to the harder AM skills.

4 Discussion and Conclusion

We demonstrate a general multi-method approach to design-loop adaptivity and pro-
vide empirical evidence of its effectiveness. The results are encouraging, although they
are not as pronounced as anticipated. Students spent much less time on the tutor than
planned, but our theoretical predictions were based on longer time. Thus, a more
stringent test of our approach requires a future longer span study. After all, design-loop
adaptivity is intended as an iterative process. Our work provides general guidance for

Fig. 3. Redesigned tutor showed advantages in targeted algebraic modeling (AM) skills in terms
of learning gains on unscaffolded whole tasks and learning efficiency on table tasks.
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how to convert data-mining outcomes into better tutor design, an important need in
AIED/EDM research and practice. Our work may also help define and enhance data-
driven learning engineering processes.1
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