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Abstract. Aims to provide flexible, effective and personalized online learning
service, micro learning has gained wide attention in recent years as more people
turn to use fragment time to grasp fragmented knowledge. Widely available
online knowledge sharing is one of the most representative approaches to micro
learning, and it is well accepted by online learners. However, information
overload challenges such personalized online learning services. In this paper, we
propose a deep cross attention recommendation model to provide online users
with personalized resources based on users’ profile and historical online beha-
viours. This model benefits from the deep neural network, feature crossing, and
attention mechanism mutually. The experiment result showed that the proposed
model outperformed the state-of-the-art baselines.
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1 Introduction

As a novel online learning style, micro learning aims to utilize users’ fragmented spare
time by helping them to carry out effective personalized learning activities [1–3]. Such
online learning activities could be formal, informal, and non-formal [4], and online
knowledge sharing is one way of non-formal learning. Quora,1 Zhihu, 2and Stack-
overflow3 are the most representative and successful online knowledge platforms,
where users share knowledge by asking and answering questions. In the meantime, the
online platforms continuously recommend questions and topics to the users based on
their interests, background, and learning requirements.

As the key to the personalized online learning service, the recommendation strategy
determines what information will be finally delivered to the target user [5]. As for a
new online learning service in the big data era, conventional recommendation strate-
gies, such as collaborative filtering and content-based filtering [6], are no longer
suitable for catering the personalized learning requirements. A recommender system
always needs to handle and merge different types and format of information ranging
from the user’s profile to the resource’s profiles. Moreover, higher-order feature
interaction is crucial for good performance [7]. How to precisely weight different
features is also vital for a recommender system, as different features have various
importance levels for a personalized recommendation task [8].

In this paper, we propose a novel model, which combines several advantages from
different state-of-the-art recommender systems and offers them in a smooth one-stop
manner. The rest of this paper will be organized as follows. Section 2 discusses some
prior related work about recommender system used in micro learning. The proposed
model is introduced and explained in Sect. 3. The relevant experiment of this study is
discussed and analysed in Sect. 4. The conclusions are discussed in Sect. 5.

2 Related Work

The recommendation problem has been investigated for many years in different
domains. However, the recommendation task in online education always involves some
unique requirements or characteristics [9, 10]. In one prior study [11], the ant colony
optimization (ACO) algorithm was proposed to recommend personalized learning
paths to users based on the demographic information. The ontology-based method was
used to add extra user’s profile information and relieve the cold-start problem for micro
learning service [12, 13]. Another study [14] investigated the learning path recom-
mendation from micro learning service from an exploitation perspective. So far, there
are little efforts on deep learning solutions to this problem.

Feature interaction means features involved in a recommendation task tend to
influence each other with various combinations. Factorization machine (FM) [15] uses

1 https://www.quora.com/.
2 https://www.zhihu.com/.
3 https://stackoverflow.com/.
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embedding techniques to model the latent features in low dimensional space and
represents the pair-wise feature interactions by using the inner product. It also shows a
satisfactory performance when the dataset is in high sparsity, whereas SVMs fails [15].
However, due to the high computational complexity, in many cases, only 2-order
feature interactions are involved in the FM.

Deep learning has demonstrated its powerful strength in modelling non-linear
transformation in various AI tasks. Besides using deep neural for a recommendation
task in isolation (for example [16]), many researchers argue that combining the
advantages of deep neural networks (DNN) with classical methods such as linear model
or FM could better learn sophisticated feature interactions [17–19].

3 The Proposed Model

In this study, we aim to effectively combine these functionalities: mining and gener-
ating high-order feature interaction, distinguishing the importance difference of both
implicit and explicit features, and maintaining the original input information in a single
network. To this end, we proposed a new deep cross attention network (DCAN) model
for the recommendation task of the online knowledge sharing service. The input of the
model contains both user-side and question-side information, and the embedding layer
maps such information onto a low dimensional space. The embedding vectors are then
passed into the DNN network and crossing network separately for mining latent
information and high-order feature interactions. The processed results are combined
together, and an attention network is used to distinguish the importance differences of
different features. Finally, the output layer is used to make predictions with weighted
features.

4 Experiments and Analysis

4.1 Evaluation Metrics and Baselines

Evaluation Metrics. As a binary classification task, the first evaluation metric used is
Area Under Curve (AUC), which indicates how much a model is capable of distin-
guishing the two labels. Another metric used in our experiments is mean squared error
(MSE), which directly reflects the prediction error of the involved models. Moreover,
we also compared the binary cross entropy of the involved models.

Baselines. We compared our model with several state-of-the-art recommendation
models, ranging from DeepFM [17], AutoInt [7], DCN [20], AFM [21], and FM [15].
The characteristics of used baselines are introduced in the previous sections.
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4.2 Dataset

The dataset is collected from an online knowledge-sharing platform, which contains
around 1.8 million questions and users, and more than 4 million answers for the
questions. Nearly 10 million <question, user> pairs are involved in this dataset.

4.3 Experiment Results

Based on the experiment results from Table 1, we can clearly see FM and AFM have
lowest AUC values and highest MSE scores. These two models only involve low-order
feature interactions. While others involve high-order feature interactions. Hence, high-
order (complex) feature interactions are vital in the online learning resource recom-
mendation tasks.

According to Table 1, the AUC scores of our proposed model and AutoInt model
are the highest two. These two models refine the results of high-order feature inter-
action via the attention mechanism [22]. Such performance improvement demonstrates
that different features/feature combinations are not equally important for personalized
learning service, and attention mechanism can automatically distinguish the importance
differences of the latent features or the feature combinations generated by the prior
layers of the network.

5 Conclusions

In this study, we proposed a deep cross attention network (DCAN) for recommending
personalized online learning resources to online learners. The experiment results clearly
demonstrated that our model had potential in handling complex online learning rec-
ommendation problem. More specifically, according to the experiment results with
authentic online knowledge sharing data, the strengths of DCAN can be concluded into
two points: 1.this model can automatically mine and generate high-order feature
interactions in both explicit and implicit ways; 2. the proposed model can further
distinguish the importance differences of different features.

Table 1. Experiment results of different models

Model AUC MSE Binary cross entropy

FM 0.6934 0.1243 0.4060
DCN 0.7603 0.1134 0.3690
AFM 0.6881 0.1255 0.4094
AutoInt 0.7613 0.1130 0.3679
DeepFM 0.7404 0.1128 0.3671
Proposed model 0.7848 0.1071 0.3442
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