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Abstract. Driven by the fast advancements of deep learning techniques,
deep neural network has been recently adopted to design knowledge trac-
ing (KT) models for achieving better prediction performance. However,
the lack of interpretability of these models has painfully impeded their
practical applications, as their outputs and working mechanisms suffer
from the intransparent decision process and complex inner structures. We
thus propose to adopt the post-hoc method to tackle the interpretability
issue for deep learning based knowledge tracing (DLKT) models. Specif-
ically, we focus on applying the layer-wise relevance propagation (LRP)
method to interpret RNN-based DLKT model by backpropagating the
relevance from the model’s output layer to its input layer. The experi-
ment results show the feasibility using the LRP method for interpreting
the DLKT model’s predictions, and partially validate the computed rel-
evance scores. We believe it can be a solid step towards fully interpreting
the DLKT models and promote their practical applications.
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1 Introduction

The rapid development of ITS and MOOC platforms greatly facilitates building
KT models by collecting a large size of learner’s learning and exercise data in
a rapid and inexpensive way. Yet, the collected massive and consecutive exer-
cise questions are usually associated with multiple concepts, and the traditional
KT models cannot well handle the questions without explicit labels and capture
the relationships among a large size of concepts (e.g., 100 or more concepts).
Accordingly, deep learning models are recently introduced into the KT domain
because of their powerful representation capability [12]. Given the sequential and
temporal characteristics of learner’s exercise data, the recurrent neural network
(RNN) [14] is frequently adopted for building the deep learning based knowl-
edge tracing (DLKT) models. Since it is difficult to directly measure the actual
knowledge state of a learner, the existing DLKT models often adopt an alterna-
tive solution that minimizes the difference between the predicted and the real
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responses on exercise questions. Hence, the major output of DLKT models are
the predicted performance on next questions. As a popular implementation vari-
ants of RNN, the long short-term memory (LSTM) unit [11] and GRU [7] are
widely used in the DLKT models, and have achieved comparable or even better
prediction performance in comparison to the traditional KT models [6,12].

Similar as the deep learning models operating as a “black-box” in many other
domains [10], the existing DLKT models also suffer from the interpretability
issue, which has painfully impeded the practical applications of DLKT mod-
els in the education domain. The main reason is that it is principally hard to
map a deep learning model’s abstract decision (e.g. predicting correct on next
question) into the target domain that end-users could easily make sense of (e.g.,
enabling the ITS designers or users to understand why predicting correct on
next question). In this work, we attempt to tackle the above issue by intro-
ducing the proper interpreting method for the DLKT models. In particular, we
adopt a post-hoc interpreting method as the tool to understand and explain the
RNN-based DLKT models, and the experiment results validate its feasibility.

2 Related Work

As indicated earlier, deep learning models are recently introduced into the KT
domain, as they have enough capacity to automatically learn the inherent rela-
tionships and do not require explicit labels on the concept level. Deep knowl-
edge tracing (DKT) [12] that utilizes LSTM can be regarded as the pioneer work,
while some limitations have been reported [15]. Subsequently, other DLKT mod-
els [5,6,17,18] are proposed to improve KT performance.

The interpretability can be categorized into ante-hoc and post-hoc inter-
pretabilities. Among different methods for post-hoc interpretability, the LRP
method [3] can be regarded as a typical one, where the share of model output
received by each neuron is properly redistributed by its predecessors to achieve
the relevance conservation, and the injection of negative relevance is controlled by
its hyperparameters. LRP method is applicable and empirically scales to general
deep learning models. It has been adopted for image classification [1], machine
translation [8] and text analysis [2]. In the education domain, researchers have
started interpreting KT models [16], but most studies target on the traditional
simple-structured Bayesian network-based ones [4,13]. In this work, we mainly
focus on explaining the DLKT models by using the LRP interpretability method.

3 Interpreting RNN-Based KT Model

3.1 RNN-Based DLKT Model

A number of DLKT models, such as DKT [12], adopt LSTM or similar archi-
tectures (e.g., GRU) to accomplish the KT task. As a typical RNN architec-
ture, the model maps an input sequence vectors {x0, ...,xt−1,xt, ...} to an out-
put sequence vectors {y0, ...,yt−1,yt, ...}, where xt represents the interaction
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between learners and exercises, and yt refers to the predicted probability vec-
tors on mastering the concepts. The standard LSTM unit is usually implemented
in the DLKT models as follows:

ft = σ (Wfhht−1 + Wfxxt + bf) (1)
it = σ (Wihht−1 + Wixxt + bi) (2)

˜Ct = tanh (Wchht−1 + Wcxxt + bc) (3)

Ct = ft � Ct−1 + it � ˜Ct (4)
ot = σ (Wohht−1 + Woxxt + bo) (5)

ht = ot � tanh (Ct) . (6)

After getting the LSTM output ht, the DLKT models usually further adopt
an additional layer to output the final predicted results yt as below:

yt = σ (Wyhht + by) (7)

From the above implementations, we see that the RNN-based DLKT models
usually consist of two types of connections: weighted linear connection , i.e.,
Eq. (1), (2), (3), (5), (7), and multiplicative connection , i.e., Eq. (4) and (6).
The two types would be interpreted by LRP in different ways.

3.2 Interpreting DLKT Models Using LRP Method

Considering the RNN-based DLKT model given in Eq. (1) to (7) and the LRP
method, interpreting can be accomplished by computing the relevance as below:

Rht =
Wyhht

Wyhht + by + ε ∗ sign(Wyhht + by)
∗ Rd

yt
(8)

RCt
= Rht

(9)

RftCt−1 =
ftCt−1

Ct + ε ∗ sign(Ct)
∗ RCt

(10)

RCt−1 = RftCt−1 (11)

RitC̃t
=

itC̃t

Ct + ε ∗ sign(Ct)
∗ RCt

(12)

RC̃t
= RitC̃t

(13)

where Rd
yt

is the value of the dth dimension of the prediction output yt, and the
item ε ∗ sign() is a stabilizer. Finally, the calculated relevance value Rxt

for the
input xt can be derived as

Rxt
=

Wcxxt

Wchht−1 + Wcxxt + bc + ε ∗ sign(Wchht−1 + Wcxxt + bc)
∗ RC̃t

Note that the above process is applicable to computing the relevance of the
model inputs (e.g., xt−1), while computing RCt−1 might be slightly different.
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4 Evaluation

We choose the public educational dataset ASSISTment 2009–2010 [9], and the
dataset used for training the DLKT model consists of 325,637 answering records
on 26,688 questions associated with 110 concepts from 4,151 students. The built
DLKT model adopts the LSTM unit with the hidden dimensionality of 256.
During the training process, the mini-batch size and the dropout are set to 20
and 0.5 respectively. Considering KT as a classification problem and the exercise
results as binary variables, namely 1 representing correct and 0 representing
incorrect answers, the overall prediction accuracy achieves 0.75.
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Fig. 1. Histogram of the consistent rate on both positive and negative prediction groups

We conduct the experiment to understand the relationship between the LRP
interpreting results and the model prediction results. Specifically, we choose
48,673 exercise sequences with a length of 15, i.e., each sequence consisting
of 15 individual questions, as the test dataset for the interpreting tasks. For
each sequence, we take its first 14 questions as the input to the built DLKT
model, and the last one to validate the model’s prediction on the 15th ques-
tion. As the result, the DKLT model correctly predicts the last question for
34,311 sequences, where the positive and negative results are 25,005 and 9,306
respectively. Based on the correctly predicted sequences, we adopt the LRP
method to calculate the relevance values of the first 14 questions, and then inves-
tigate whether the sign of relevance values is consistent with the correctness of
learner’s answer. Specifically, we define consistent question among the previous
exercise questions as “either the correctly-answered questions with a positive
relevance value” or “the falsely-answered questions with a negative relevance
value”. Accordingly, we compute the percentage of such consistent questions in
each sequence, and name it as consistent rate. Intuitively, a high consistent rate
reflects that most correctly-answered questions have a positive contribution and
most falsely-answered questions have a negative contribution to the predicted
mastery probability on the given concept. Figure 1 shows the histogram of the
consistent rate on both groups of positive prediction (i.e., the mastery proba-
bility above 50%) and negative prediction (i.e., the mastery probability below
50%). Clearly, we see that the majority of the exercise sequences achieve 90%
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(or above) consistent rate, which partially validates the question-level feasibility
of using LRP method to interpret DLKT model’s prediction results.

5 Conclusion

We have introduced a post-hoc interpretability method into KT domain, which is
applicable to general RNN-based DLKT models. We demonstrated the promise
of this approach via using its LRP method to explain DLKT models. We con-
ducted the preliminary experiments to validate the proposed method.
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