)

Check for
updates

Generating Game Levels to Develop Computer
Science Competencies in Game-Based
Learning Environments

Kyungjin Parkl(lm), Bradford Mott!, Wookhee Min', Eric Wiebe!,
Kiristy Elizabeth Boyerz, and James Lester!

! North Carolina State University, Raleigh, NC 27606, USA
{kpark8, bwmott, wmin, wiebe, lester}@ncsu. edu
2 University of Florida, Gainesville, FL. 32601, USA
keboyer@uil. edu

Abstract. Game-based learning environments hold significant potential for
supporting K-12 computer science (CS) education by providing CS learning
experiences embedded within engaging virtual worlds. However, many game-
based learning environments do not adaptively support individual students based
on their specific knowledge and skills. Often, this is because creating game
levels is highly labor-intensive, which limits the number of levels created to
support student learning. Procedural content generation (PCG) is a promising
direction for addressing this challenge by dynamically creating game levels that
address specific student needs without requiring extensive development effort.
In this paper, we investigate a PCG framework driven by answer set pro-
gramming (ASP), a variant of logic programming that utilizes well-formed
logical rules to express constraints for valid game levels. We demonstrate how
variations in CS learning objectives and game-playing skills can be incorporated
into ASP-based rules to generate learner-adaptive levels in a middle-grades CS
game-based learning environment. Evaluations of the generated levels suggest
that the ASP-based level generator not only reliably generates desired CS
educational game levels but also synthesizes a large set of diverse game levels.
The findings suggest that the ASP-based PCG approach has considerable pro-
mise for creating highly engaging and adaptive game-based learning experiences
for K-12 CS education.

Keywords: K-12 computer science education + Game-based learning *
Procedural content generation + Answer set programming

1 Introduction

Recent years have seen growing interest in game-based learning environments [1-4],
which engage students in situated problem-solving challenges within rich virtual
worlds [5]. In parallel, there is a growing recognition that computer science (CS) is a
fundamental skill required by many career paths, which has intensified the need to
develop K-12 students’ CS competencies [6-9] and highlighted the potential of game-
based learning environments to support CS education [10-12]. However, the

© Springer Nature Switzerland AG 2020
L. I Bittencourt et al. (Eds.): AIED 2020, LNAI 12164, pp. 240-245, 2020.
https://doi.org/10.1007/978-3-030-52240-7_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52240-7_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52240-7_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52240-7_44&domain=pdf
https://doi.org/10.1007/978-3-030-52240-7_44

Generating Game Levels to Develop Computer Science Competencies 241

conventional approach of utilizing a linear sequence of game levels is fundamentally
non-adaptive and may not effectively address the needs of different students based on
their level of concept and skill mastery. This lack of adaptivity may result in unde-
sirable learning experiences (e.g., students adopting a trial-and-error approach without
mastering concepts because a game-based learning environment is too difficult).
Likewise, students have different levels of game-playing skills, which can affect their
learning experiences [13]. Thus, adaptively generating challenges tailored to individual
students’ knowledge and game-playing skill is crucial for supporting mastery learning
and engagement in game-based learning by addressing limitations with “one-size-fits-
all” approaches.

Procedural content generation (PCG) automatically generates game content using a
range of algorithms that require limited human intervention [14]. In contrast to problem
generation in intelligent tutoring systems, in which problems are generated using
templates [15, 16], PCG explores the generation of game objects and their layout that
collectively constitute a game level. However, level generation in game-based learning
environments is challenging for PCG because game levels must exercise the desired
learning objectives for individual students as well as target an appropriate level of
difficulty for students based on their game-playing skill.

This paper presents a novel approach to generating game levels for game-based
learning environments. Our work is the first to introduce a PCG framework that
dynamically generates game levels to develop individual students’ CS competencies
using answer set programming (ASP) [17]. We evaluate our framework with respect to
the diversity of generated game levels and the presence of the CS learning objectives as
well as the game-playing skill specified as input for each generated level in the context
of a game-based learning environment for middle school CS education.

2 ASP-Based Level Generation in ENGAGE

ENGAGE is a game-based learning environment for middle school CS education, the
curriculum of which is guided by the K-12 CS Framework [18]. In ENGAGE, students
play the role of a protagonist who is sent to an undersea research station, where a rogue
villain has severed communication with the facility. In this work, we focus on gen-
erating levels for a specific type of challenge shown in Fig. 1a which requires students
in the game to connect their wrist computer with a quadcopter device using a pairing

Pairing
Point

Starting Quadecpter

Point

Fig. 1. (a) In-game 3D view of the level, (b) top-down view, and (c) 2D tile-based representation.

242 K. Park et al.

point, and program the quadcopter to navigate across a water-filled area while avoiding
obstacles. Figure 1b shows a top-down view of the room, which serves as the basis of
all the generated levels in this work.

Generated levels incorporate four key learning concepts, Loop, Conditional,
Sequence (i.e., requiring minimum of two controls in an unnested structure), and
Nested Control (i.e., requiring at least one nested control structure), based on the core
computer science concepts delineated in the K-12 CS Framework [18], and three game-
playing skills (Low, Medium, High) based on the required number of jumps and the
width of the path the student’s in-game avatar must navigate. To visualize the gener-
ated levels, we use a 2D tile-based level representation, as depicted in Fig. lc.

Answer set programming (ASP) is a declarative programming paradigm, which has
its roots in logic programming. In ASP-based PCG, a set of basic requirements and
constraints needed for content generation is represented in logical terms (i.e., rules and
ground facts) [19]. Then a solver (e.g., Clingo [20]) produces all configurations of
content (e.g., game levels) that satisfy the specified constraints. ASP utilizes two
constructs: 1) Choice Rules to enable non-determinism in choosing ground facts, and 2)
Integrity Constraints which explicitly define what must not be true in the logical world.
Table 1 shows the specific constraints for the four CS learning objectives as well as the
three different rulesets for the game-playing skill variations we are considering in
ENGAGE.

Table 1. Level category-specific Choice Rules and Integrity Constraints.

Category Choice Rules Integrity Constraints
Loop The number of repetitive parts There exists only one path that goes
through the repetitive pattern
Conditional | Position of the conditional tile There exists only one path that
passes through the conditional tile
Sequence Conditional tile exists either at the There exists only one path that
start of the loop or at the end of loop | requires a sequence programming
Nested Conditional tile exists anywhere There exists only one path that
control within a repetitive pattern requires nested control
programming
Game skills | Positions where a jump is required The character can jump up to one
Lower the number of connected tile
ground tiles towards High level The character can move diagonally
The character cannot jump
diagonally

3 Evaluation

Quantitative Evaluation. We measure the diversity among 100 levels created by the
ASP-based level generator using the Clingo [20] solver for each of the 12 categories
(four learning concepts combined with three game-playing skills) using a coordinate-

Generating Game Levels to Develop Computer Science Competencies 243

based distance metric presented in previous works [21, 22]. The average diversity
values of the ASP-generated levels within each category are shown in Table 2. A di-
versity of O indicates that every matched pair of tile types between two levels is
identical, while 1 indicates there are no tile types in common across the levels. The
average diversity score across all 12 categories is 0.290, which indicates that 29% of
tiles (i.e., 113 tiles out of 392 tiles) different between any pair of randomly chosen
levels on average. This demonstrates that our model generates levels different to a
certain degree consistently. While most categories achieved high diversity scores, Low
game-playing skill levels across all CS concepts show comparatively lower scores
because fewer variations are available within the walkable ground area in these levels.

Table 2. Diversity of 100 levels generated for each of the 12 categories

Loop Conditional Sequence Nested Control Avg.
Low |Med. |High |Low |Med. |High |Low |Med. |High |Low |Med. | High
0.132]0.327|0.299 | 0.234 | 0.244 | 0.369 | 0.135 | 0.248 | 0.307 | 0.135 | 0.248 | 0.307 | 0.290

Qualitative Evaluation. Two domain experts evaluated each level with respect to the
presence of the CS learning objectives as well as the game-playing skill required for the
level. The evaluators rated each level with game-playing skill (Low: 1, Medium: 2,
High: 3) and one binary value for each of the four CS concepts, where 1 indicates the
desired concept is present in the level, while 0 is not. The values reported in Table 3 are
the averages of the two evaluators’ ratings for 100 generated levels. Results for
presence of CS concepts suggest that Sequence, Loop, and Conditional exhibit com-
plete agreements between the human raters, while comparably less agreement occurs
for the Nested Control. This phenomenon can be explained because some levels have a
conditional barrier at the front or end of a path with a repetitive pattern that does not
necessarily require use of nested blocks (e.g., it can be solved with a loop followed by a
conditional block). Also, we found that there is a small degree of disagreement between
Medium and High game-playing skill levels, while Low skill levels were consistently
viewed as Low.

Table 3. Average human-evaluated presence of CS concepts and game-playing skills (GS).

ASP | Loop Conditional Sequence Nested Control

Low |Med. |High |Low |Med. |High |Low |Med. High |Low |Med. |High
[ONI) (©) [ORI) ©)) o 1@ (©)) [ONI) (©))
CS |1 1 1 1 1 1 1 1 1 0.55]0.8 0.65
GS |[1.05 |255 [285 |12 2.1 265 |1 2.4 2.95 1 195 |2.75

244 K. Park et al.

4 Conclusion

Game-based learning environments show significant promise for creating engaging
learning experiences for students. However, manually crafting a large number of game
levels, which is typically required to adaptively support students’ mastery learning, is
labor-intensive. In this work, we presented an ASP-based PCG framework that auto-
matically synthesizes game levels, and we investigated its generation capabilities for a
middle-grade CS game-based learning environment. Evaluation results suggest that the
ASP-based level generation framework creates diverse levels, while dynamically
synthesizing levels that capture both the learning and game-playing skill-focused
specifications. Together, our framework shows significant potential for offering adap-
tive CS learning experiences with enhanced replayability. In the future, it will be
important to investigate robust student modeling techniques to inform the decision-
making of the PCG framework to provide student competency-adaptive levels and
effectiveness of personalized levels in terms of developing students’ CS competencies.

Acknowledgements. This research was supported by the National Science Foundation under
Grant DRL-1640141. Any opinions, findings, and conclusions expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

1. Clark, D.B., Tanner-Smith, E.E., Killingsworth, S.S.: Digital games, design, and learning: a
systematic review and meta-analysis. Rev. Educ. Res. 86(1), 79-122 (2016)

2. Easterday, M.W., Aleven, V., Scheines, R., Carver, S.M.: Using tutors to improve
educational games. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS
(LNAI), vol. 6738, pp. 63-71. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21869-9_11

3. Nguyen, H., Harpstead, E., Wang, Y., McLaren, Bruce M.: Student agency and game-based
learning: a study comparing low and high agency. In: Penstein Rosé, C., Martinez-
Maldonado, R., Hoppe, H.U., Luckin, R., Mavrikis, M., Porayska-Pomsta, K., McLaren, B.,
du Boulay, B. (eds.) AIED 2018. LNCS (LNAI), vol. 10947, pp. 338-351. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93843-1_25

4. Jackson, G.T., Dempsey, K.B., McNamara, D.S.: Short and long term benefits of enjoyment
and learning within a serious game. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.)
AIED 2011. LNCS (LNAI), vol. 6738, pp. 139-146. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21869-9_20

5. Spires, H.A., Rowe, J.P., Mott, B.W., Lester, J.C.: Problem solving and game-based
learning: effects of middle grade students’ hypothesis testing strategies on learning
outcomes. J. Educ. Comput. Res. 44(4), 453-472 (2011)

6. Grover, S., Basu, S., Schank, P.: What we can learn about student learning from open-ended
programming projects in middle school computer science. In: Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, pp. 999-1004. ACM (2018)

7. Nouri, J., Zhang, L., Mannila, L., Norén, E.: Development of computational thinking, digital
competence and 21st century skills when learning programming in K-9. Educ. Inq. 11(1), 1-
17 (2020)

https://doi.org/10.1007/978-3-642-21869-9_11
https://doi.org/10.1007/978-3-642-21869-9_11
https://doi.org/10.1007/978-3-319-93843-1_25
https://doi.org/10.1007/978-3-642-21869-9_20
https://doi.org/10.1007/978-3-642-21869-9_20

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

Generating Game Levels to Develop Computer Science Competencies 245

. Rich, K.M., Strickland, C., Binkowski, T.A., Moran, C., Franklin, D.: K-8 learning

trajectories derived from research literature: Sequence, repetition, conditionals. In:
Proceedings of the 2017 ACM Conference on International Computing Education Research,
pp. 182-190. ACM (2017)

. Weintrop, D., Hansen, A., Harlow, D., Franklin, D.: Bringing computer science into

elementary school classrooms. Am. Educ. Res. Assoc. (2018). https://www.terpconnect.
umd.edu/ ~ weintrop/papers/Weintrop_et_al_ AERA_2018.pdf

Hicks, A., Dong, Y., Zhi, R., Cateté, V., Barnes, T.: BOTS: selecting next-steps from player
traces in a puzzle game. In: Proceedings of the Second International Workshop on Graph-
Based Educational Data Mining (2015)

Bauer, A., Butler, E., Popovi¢, Z.: Dragon architect: Open design problems for guided
learning in a creative computational thinking sandbox game. In: Proceedings of the 12th
International Conference on the Foundations of Digital Games, pp. 1-6. ACM (2017)
Min, W., Frankosky, M.H., Mott, B.W., Wiebe, E.N., Boyer, K.E., Lester, J.C.: Inducing
stealth assessors from game interaction data. In: André, E., Baker, R., Hu, X., Rodrigo, M.
M.T., du Boulay, B. (eds.) AIED 2017. LNCS (LNAI), vol. 10331, pp. 212-223. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-61425-0_18

Rowe, J.P., Shores, L.R., Mott, B.W., Lester, J.C.: Integrating learning, problem solving,
and engagement in narrative-centered learning environments. Int. J. Artif. Intell. Educ. 21(1-
2), 115-133 (2011)

Togelius, J., Kastbjerg, E., Schedl, D., Yannakakis, G.N.: What is procedural content
generation? Mario on the borderline. In: Proceedings of the 2nd International Workshop on
Procedural Content Generation in Games. ACM (2011)

Singh, R., Gulwani, S., Rajamani, S.: Automatically generating algebra problems. In:
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

Gierl, M.J., Lai, H., Turner, S.R.: Using automatic item generation to create multiple-choice
test items. Med. Educ. 46(8), 757-765 (2012)

Smith, A.M., Mateas, M.: Answer set programming for procedural content generation: a
design space approach. IEEE Trans. Comput. Intell. Al Games 3(3), 187-200 (2011)
K-12 Computer Science Framework (2016). https://k12cs.org/

Sterling, L., Shapiro, E.Y.: The Art of Prolog: Advanced Programming Techniques. MIT
press, Cambridge (1994)

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary
report. arXiv preprint arXiv:1405.3694 (2014)

Park, K., Mott, B.W., Min, W., Boyer, K.E., Wiebe, E.N., Lester, J.C.: Generating
educational game levels with multistep deep convolutional generative adversarial networks.
In: Proceedings of the 2019 IEEE Conference on Games (CoG), pp. 345-352. IEEE (2019)
Liapis, A., Yannakakis, G.N., Togelius, J.: Enhancements to constrained novelty search:
two-population novelty search for generating game content. In: Proceedings of the 15th
Annual Conference on Genetic and Evolutionary Computation, pp. 343-350. ACM (2013)

https://www.terpconnect.umd.edu/~weintrop/papers/Weintrop_et_al_AERA_2018.pdf
https://www.terpconnect.umd.edu/~weintrop/papers/Weintrop_et_al_AERA_2018.pdf
https://doi.org/10.1007/978-3-319-61425-0_18
https://k12cs.org/
http://arxiv.org/abs/1405.3694

	Generating Game Levels to Develop Computer Science Competencies in Game-Based Learning Environments
	Abstract
	1 Introduction
	2 ASP-Based Level Generation in Engage
	3 Evaluation
	4 Conclusion
	Acknowledgements
	References

