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Abstract. In this paper we present an initial analysis of synchronous,
collaborative programming in a robotics platform. Students worked in
dyads and triads to complete a week-long curriculum targeting the learn-
ing of cybersecurity and computational thinking concepts, and their
application using realistic robotics scenarios. We demonstrate how an
analysis of individual student activity data within a group can be extrap-
olated to understand the group’s collaborative problem-solving. We com-
pare our findings to past literature and discuss future implications of
collaborative programming research.
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1 Introduction

Collaborative problem-solving is an essential 21st century workforce skill. Collab-
orative learning and problem solving have proven to be especially useful in the
context of programming tasks [6]. Efforts to introduce collaborative program-
ming in K-12 classrooms have led to tools and curricula that support co-located
and remote programming tasks. However, limitations exist in the application of
these tools in today’s classrooms, including the inability to distinguish individ-
ual student programming actions in co-located peer-programming environments
and the inability of group members to communicate and discuss verbally when
they are physically separated [21].

Collaboration represents “a coordinated, synchronous activity that is a result
of a continuous attempt to construct and maintain a shared conception of a prob-
lem” [14, p. 70]. Research has examined collaborative discourse for improved
understanding of problem-solving [16,17] and regulatory [5,13] processes that
collaborative teams implement during a programming task. However, to our
c© Springer Nature Switzerland AG 2020
I. I. Bittencourt et al. (Eds.): AIED 2020, LNAI 12164, pp. 352–357, 2020.
https://doi.org/10.1007/978-3-030-52240-7_64

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52240-7_64&domain=pdf
https://doi.org/10.1007/978-3-030-52240-7_64


Evaluating Student Learning Through Log-Based Analysis 353

knowledge, limited research has examined individual log actions of co-located
students participating in a collaborative programming environment to solve
problems. In our research, we examine log data of collaborative groups work-
ing in a synchronous, block-based programming environment (BBPE), NetsBlox
[3], to answer (1) What can individual student log data tell us about the group’s
collaborative programming? and (2) How do these programming activities impact
student learning? We first provide a brief background on K-12 collaborative pro-
gramming. This is followed by our log-based analysis of individual students’ pro-
gramming activities, and their implications on collaborative program generation.
We conclude with a discussion and future implications of our research.

2 Background

Collaborative programming is an effective pedagogical approach for the learn-
ing computer science concepts and practices [6,11,18]. Research has demon-
strated significant benefits (i.e., learning gains) during pair programming (two,
co-located students sharing one computer) that targets inclusivity [10,18]. How-
ever, peer programming studies in K-12 have not considered designing for equal-
ity of control of the task [7] and conversational equity [15].

Recent efforts have led to the development of synchronous, collaborative pro-
gramming environments [2,3,21]. These environments allow students to be co-
located but working on separate machines, thus improving equality of control in
the programming task while still allowing face-to-face discussions. Initial anal-
ysis of these approaches have mainly targeted discourse analysis (e.g., [21]),
including comparing this approach to the more well-known pair programming.
Understandings of individual student actions, captured through log data, as part
of the collaborative programming task are under-researched.

3 Methods

Thirty-eight high school students participated in our intervention aimed at teach-
ing cybersecurity and computational thinking (CT) concepts using a robotic
environment as a teaching tool. Students were evaluated in cybersecurity and
CT, and the results were computed as average normalized change (ANC) [12]
from pre-test to post-test. An overview of the intervention and the BBPE used
are presented in [9]. The computed learning gains were statistically significant
in both cybersecurity and CT [20].

To analyze student work, we extracted relevant information from their activ-
ity logs and modeled the students’ actions as solution construction (SC) or solu-
tion assessment (SA) actions. SC actions were subdivided into (1) SC compu-
tational actions that include adding, connecting, disconnecting, or removing a
block, and (2) SC conceptual actions that refer to creating, modifying, or delet-
ing a custom block definition. SA actions were subdivided into (1) SA global
actions for starting a simulation simultaneously for all Sprites, (2) SA local
actions for starting a simulation only for the current Sprite, and (3) SA stop
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actions for stopping all scripts for all Sprites. In addition, change view actions
occur when a student changes the working view from one Sprite to another.
Since more complex programs tend to have multiple Sprites, this action pro-
vides important information about the context of model-building.

We aggregated these results across the four days of group work during the
intervention, using the Gini coefficient [4] as a means of comparing the distri-
bution of actions by different students within a particular group. Spearman’s
ρ [19] was then used to compare results. As a smaller Gini coefficient result indi-
cates more equality in action distribution, a descending approach was used for
ranking results. All other categories were treated in the usual ascending manner.
The Benjamini-Hochberg (B-H) procedure [1] (Q = 0.25) was used for group and
individual results separately to control for false positives.

To be considered a group, each member had to contribute at least one action
to at least one group project, completed the pre-post-test, and worked together
for at least three of the four collaborative days. This process resulted in twelve
groups (n = 12) with sufficient data to analyze—six dyads and six triads.

For computing the number of actions by each group member, we first
excluded any projects that at least one group member did not contribute to.
Then, groups were evaluated based on their Gini coefficient, the average number
of group actions taken per group member per day (Group Actions), the average
ANC of all group members (Average ANC), and the average number of each cat-
egory of actions taken per group member per day (for example, Group SA local
Actions). In total, eleven tests of significance were conducted.

We also analyzed students at the individual level, to observe if holding partic-
ular self-appointed responsibilities within a group improved their own conceptual
knowledge as a result. We started with the thirty students making up the groups
from the previous analysis. One was disqualified due to perfect scores on the pre-
post-tests (resulting in no observable ANC), leaving twenty-nine (n = 29) for
final analysis. The students were evaluated on pre-post growth in terms of ANC,
actions they took as individuals while working on group projects (Individual
actions), and the percentage of actions taken by an individual relative to their
group (Individual Share of Actions). These measures were further divided into
the six categories of actions provided above, resulting in fourteen tests of signif-
icance.

4 Results

We begin with a breakdown of the actions performed by students that fell under
the previously detailed criteria for inclusion: (1) SA local = 16,185 actions;
(2) SC computational = 27,377 actions; (3) change view = 2,490 actions; (4)
SA global = 2,221 actions; (5) SC conceptual = 782 actions; and (6) SA stop =
918 actions. The majority of group actions taken were a combination of SA local
and SC computational (75+% for every group), as well as 75+% for all but one
individual student (60+% for that student).

The results for groups as a whole appear in Table 1. The lone significant result
(p < 0.05) was the relationship between the Gini coefficient and the number of
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actions taken by a group divided by the number of group members and the
number of days that group worked together (ρ = 0.61, p = 0.04). However, B-
H analysis indicated that this was a false positive. All other results had weak
correlations, indicating that no group categories had a significant impact on the
ANC of students in those groups.

Table 1. Most significant correlation coefficients of group-based results

Variable 1 Variable 2 Spearman’s ρ p-value

Gini coefficient Group actions 0.61 0.04

SA global Average ANC −0.34 0.29

Gini coefficient Average ANC 0.21 0.50

Group actions Average ANC 0.19 0.56

Finally, we analyze results for individual students (though still within the
context of their group work), seen in Table 2. The primary result of significance
(p < 0.01) compared the average normalized change for each student to the per-
centage of actions that fall within the SC computational category (ρ = 0.47, p =
0.009). Post hoc B-H procedure confirmed the validity of this result, though it
rejected the apparently significant (p < 0.05) result corresponding to a student’s
quantity of SC computational actions per day (ρ = 0.38, p = 0.04). Other results
presented here were only weakly positively correlated and were not statistically
significant.

Table 2. Most significant correlation coefficients of individual-based results

Variable 1 Variable 2 Spearman’s ρ p-value

ANC Share of SC computational actions 0.47 0.009

ANC Individual SC computational actions 0.38 0.04

ANC Overall share of actions 0.31 0.10

ANC Individual SA global actions 0.30 0.11

ANC Overall actions 0.28 0.14

5 Conclusions and Future Work

Our findings indicate that students who heavily participated in model build-
ing (SC computational actions) experienced some pre-post-test gains. This will
inform future work as we seek to more systematically evaluate log actions while
incorporating both more advanced techniques such as differential sequence min-
ing [8,22] and additional data sources for more accurate action counts. We also
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seek to combine this log-based approach with discourse analysis [16,21] to create
a comprehensive framework for analyzing students during synchronous, collab-
orative programming tasks - particularly during solution construction.
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