
A HEURISTIC FOR EFFICIENT REDUCTION IN HIDDEN LAYER
COMBINATIONS FOR FEEDFORWARD NEURAL NETWORKS

W. H. Khoong∗

Department of Statistics and Applied Probability
National University of Singapore
khoongweihao@u.nus.edu

September 27 2019

ABSTRACT

In this paper, we describe the hyperparameter search problem in the field of machine learning and
present a heuristic approach in an attempt to tackle it. In most learning algorithms, a set of hyperpa-
rameters must be determined before training commences. The choice of hyperparameters can affect
the final model’s performance significantly, but yet determining a good choice of hyperparameters
is in most cases complex and consumes large amount of computing resources. In this paper, we
show the differences between an exhaustive search of hyperparameters and a heuristic search, and
show that there is a significant reduction in time taken to obtain the resulting model with marginal
differences in evaluation metrics when compared to the benchmark case.

Keywords Heuristic · Combinatorics · Neural Networks · Hyperparameter Optimization

1 Preliminaries

Much research has been done in the field of hyperparameter optimization [1, 2, 3], with approaches such as grid search,
random search, Bayesian optimization, gradient-based optimization, etc. Grid search and manual search are the most
widely used strategies for hyperparameter optimization [3]. These approaches leave much room for reproducibility and
are impractical when there are a large number of hyperparameters. For example, gird search suffers from the curse of
dimensionality when the number of hyperparameters grow very large, and manual tuning of hyperprameters require
considerable expertise which often leads to poor reproducibility, especially with a large number ofhyperparameters [4].
Thus, the idea of automating hyperparameter search is increasingly being researched upon, and these automated
approaches have already been shown to outperform manual search by numerous researchers across several problems [3].

A multilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN) which can be viewed as a
logistic regression classifier, where the inputs are transformed using a learnt non-linear transformation and stored in an
input layer. Every element which holds an input is called a "neuron". A MLP typically consists of at least three layers
of nodes: an input layer, a hidden layer and an output layer. With the exception of the input layer, each node in the layer
is a neuron that utilizes a nonlinear activation function. In training the MLP, backpropagation, a supervised learning
technique is used. In our experiments, we only have test cases consisting of one to three hidden layers, each consisting
of up to 10 neurons. The reasons for this number are that our objective is to illustrate the effects of the heuristic using a
small toy-example that does not take too long to run in the test cases. Moreover, we found that for the datasets used, the
best results from our experiments with grid search and a limit of 10 neurons in each layer involed way less than 10
neurons for each layer.

∗Proceedings of the 2020 Computing Conference.

ar
X

iv
:1

90
9.

12
22

6v
3

 [
cs

.L
G

]
 1

1
Ja

n
20

20

A Heuristic For Efficient Reduction In Hidden Layer Combinations For Feedforward Neural Networks

2 Related Work

There are related work involving search heuristics with similar methods of search, such as the comparison of the error
metrics at each iteration of the algorithm. To the best of our knowledge, there has yet to be similar work which invloves
the result of a grid search as input to the search algorithm, especially in the area of neural architecture search.

Similar work was done for time series forecasting [5], where the authors employed a local search algorithm to estimate
the parameters for the non-linear autoregressive integrated moving average (NARMA) model. In the paper, the
algorithm’s improvement method progressively searches for a new value in a small neighborhood of the underlying
solution until all the parameter vector’s elements have been analyzed. The error metric of interest was the mean square
error (MSE), where a new direction of search was created when the new vector produces a smaller MSE. Another
work [6] which utilized a similar improvement method presented a hybrid global search algorithm for feedforward
neural networks supervised learning, which combnies a global search heuristic on a sequence of points and a simplex
local search.

3 Experiment Setting and Datasets

3.1 Programs Employed

We made use of Scikit-Learn [7], a free software machine learning library for the Python programming language.
Python 3.6.4 was used in formulating and running of the algorithms, plotting of results and for data preprocessing.

3.2 Resources Utilized

All experiments were conducted in the university’s High Performance Computing2 (HPC) machines, where we dedicated
12 CPU cores, 5GB of RAM in the job script. All jobs were submitted via SSH through the atlas8 host, which has the
specifications: HP Xeon two sockets 12-Core 64-bit Linux cluster, CentOS 6. We utilized Snakemake [8], a workflow
management tool to conduct our experiments.

3.3 Data

We perform the experiments on two datasets - Boston house-prices and the MNIST handwritten digit dataset [9].
The Boston house-prices dataset3 is available from Scikit-Learn’s sklearn.datasets package, and . This package
contains a few small standard datasets that do not require downloads of any file(s) from an external website. The
MNIST dataset can be downloaded from http://yann.lecun.com/exdb/mnist/ .

3.4 Notations and Test Cases

We perform our experiments on feedforward neural networks with one, two and three layers, with Scikit-Learn’s
MLPRegressor and MLPClassifier from the sklearn.neural_network4 package. The MLPRegressor is used
for predicting housing prices for the Boston dataset and the MLPClassifier is used for classification with the MNIST
dataset. The models optimize the squared-loss using the Limited-memory Broyden–Fletcher–Goldfarb–Shanno algo-
rithm [10] (LBFGS), an optimizer in the family of quasi-Newton methods. The hyperparameter values were all fixed
except for the number of neurons at each hidden layer, denoted by hidden_layer_sizes, which is dependent on the
current input at each iteration of the algorithm. The other (fixed) hyperparameters are: activation(relu), solver
(lbfgs), alpha (0.0001), batch_size (auto), learning_rate (constant), learning_rate_init (0.001),
max_iter (500) and random_state (69). All other hyperparameters not stated here are using their default val-
ues. Further information about the hyperparameters can be found in the sklearn.neural_network documentation.
Our maximum number of neurons in any hidden layer is set at 10, as preliminary experiments show that the best
stratified 5-fold cross-validation score is obtained when the number of neurons at any hidden layer is under 10.

Define α to be the minimum fraction in improvement required for each iteration of the algorithm. We also define
H(i), i = 0, 1, . . . to be the set of hidden-layer combination(s) at iteration i. H(0) is the starting set of hidden-
layer combinations used as input, with |H(0)| = 1. Let N be the number of hidden layers and H(j)

model to be the

2See https://nusit.nus.edu.sg/services/hpc/about-hpc/ for more details about the HPC.
3See https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html for the docu-

mentation.
4See https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neural_network for further

documentation.

2

http://yann.lecun.com/exdb/mnist/
https://nusit.nus.edu.sg/services/hpc/about-hpc/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neural_network

A Heuristic For Efficient Reduction In Hidden Layer Combinations For Feedforward Neural Networks

set containing the best hidden layer combination obtained from fitting with GridSearchCV5 from Scikit-Learn’s
sklearn.model_selection package. For example, if H(0) = {(3, 4, 3)}, it means that there are 3 neurons in the
first and third hidden layer and 4 neurons in the second layer. We also define Hprev as the set contianing all previously
fitted hidden layer combinations. Hbest is then the set containing the best combination at any iteration of the algorithm,
i.e. |Hbest| ≤ 1. Scikit-Learn’s sklearn.preprocessing.StandardScaler6 was also used to standardize features
by removing the mean and scaling to unit variance.

We also denote the Root Mean Square Error (RMSE) from fitting the model with validation on the test dataset, at the
end of the current iteration and from the previous iteration as RMSEmodel,RMSEcurr and RMSEprev respectively.
In our experiments, α ∈ {0.01, 0.05, 0.10}. We also set the initial upper-bound threshold K on the RMSE to be an
arbitrarily large, for the purpose of passing the first iteration of the loop. Next, we define Combinations(·) as a function
that returns the set of all possible hidden layers Lhls without duplicates.

4 Methods Employed

4.1 Method 1 - Benchmark

In this method, all possible hidden-layer sizes (with repetition allowed) are used as hyperparameter. Let Lhls denote the
set of all possible hidden layers. Then for example, if there are 2 hidden layers and each layer can have between 1 to 3
neurons, then Lhls = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 3), (3, 2), (3, 1)}.

4.2 Method 2 - Heuristic

In this method, a heuristic is used to iteratively explore the hidden-layer combinations, subject to the condition that
the abosolute change in RMSE is greater or equal to α and that RMSEcurr > RMSEprev. To be precise, the algorithm
optimizes within a fixed numberof hidden layers. In our experiments, we obtain the input H(0) by performing a grid
search on an initialization of hidden-layer combinations of the form: L0 = {(1, 1, . . . , 1), . . . , (10, 10, . . . , 10)} and

the ‘best’ hidden-layer combination {(i, i, . . . , i)}, i ∈ {1, . . . , 10} will be assigned as H(0). Let n(input)
max to be the

maximum number of neurons across all hidden layers in L0. In the above example, n(input)
max = 10. The sequence of

steps of the heuristic and its pseudocode are as follows:

1. Initialize a set of hidden-layer combinations of the form: L0 = {(1, 1, . . . , 1), . . . , (i, i, . . . , i), . . .}, i ≥ 1.
Also set an arbitrary large value for RMSEprev and RMSEcurr.

2. Perform a grid search with L0 to obtain H(0), which corresponds to the set that contains the combination with
the lowest test set RMSE from grid search with stratified K-fold cross-validaton.

3. Generate the current iteration’s set of hidden-layer combinations without duplicates, with:

(a). nmin as the minimum number of neurons in any hidden-layer combination in the previous iteration’s set
of hidden-layer combinations, deducting the current iteration’s index. If nmin < 1, set it to 1.

(b). nmax as the maximum number of neurons in any hidden-layer combination in the current iteration’s set

of hidden-layer combinations, with an increment of 1. If nmax > n
(input)
max , set nmax as n(input)

max .

4. If the set of hidden-layer combinations for the current iteration is empty, the algorithm terminates. Otherwise,
obtain the best hidden-layer combination of the set, and set it as the current iteration’s best combination.
Update the iteration’s set of hidden-layer combinations to the set of previously fitted hidden-layer combinations
and the current iteration’s best combination as the overall best hidden-layer combination.

5. Repeat steps 3 and 4. If the algorithm terminates in as a consequence of step 4, return the last found best
hidden-layer combination.

5See documentation at https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html.

6Further documentation can be found at https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.StandardScaler.html.

3

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

A Heuristic For Efficient Reduction In Hidden Layer Combinations For Feedforward Neural Networks

Algorithm 1: Heuristic

Input :α,H(0), n
(input)
max , N,K,Combinations(·)

Output :RMSEcurr, Hbest
1 Hprev ← {}
2 Hbest ← {}
3 RMSEprev ← K

4 RMSEcurr ← K2

5 i← 0

6 ∆ =

∣∣∣∣RMSEcurr−RMSEprev
RMSEprev

∣∣∣∣
7 while ∆ ≥ α and RMSEcurr > RMSEprev do
8 RMSEprev ← RMSEcurr
9 if i = 0 then

10 H(i+1) ← H(0)

11 end if
12 else
13 nmin ← min(H(i))− i
14 if nmin < 1 then
15 nmin ← 1
16 end if
17 nmax ← max(H(i)) + 1

18 if nmax > n
(input)
max then

19 nmax ← n
(input)
max

20 end if
21 H(i+1) ← Combinations(nmin, nmax, N)
22 end if
23 if length(H(i+1)) = 0 then
24 Break
25 end if
26 model← fit(H(i+1))

27 Hcurr,best ← H
(i+1)

model
28 Hprev ← Hprev ∪H(i+1) \H(i+1) ∩Hprev
29 if length(Hbest) = 0 then
30 Hbest ← Hbest ∪Hcurr,best
31 end if
32 else
33 Hbest ← {}
34 Hbest ← Hbest ∪Hcurr,best
35 end if
36 if i = 0 then
37 RMSEprev ← 1

2RMSEmodel
38 end if
39 RMSEcurr ← RMSEmodel
40 i← i+ 1
41 end while
42 Return RMSEcurr, Hbest

5 Experiment Results

For each dataset, we illustrate the results of Method 1 (Benchmark) and Method 2 (Heuristic) for each α side-by-side,
then show the overall results in a table. The time elapsed for Method 2 is the time taken to perform the grid search to

4

A Heuristic For Efficient Reduction In Hidden Layer Combinations For Feedforward Neural Networks

obtain the initial input and to obtain the result from the algorithm with the initial input from the grid search’s result. For
Method 1, it is the time taken to perform a grid search on all possible combinations of neurons to obtain the best result.

5.1 Boston Dataset

5.1.1 Method 1

(a) Score (b) Test RMSE (c) Time Elapsed

Figure 1: Method 1 Results

5.1.2 Method 2

(a) Score (b) Test RMSE (c) Time Elapsed

Figure 2: Method 2 Results, α = 0.01

(a) Score (b) Test RMSE (c) Time Elapsed

Figure 3: Method 2 Results, α = 0.05

5

A Heuristic For Efficient Reduction In Hidden Layer Combinations For Feedforward Neural Networks

(a) Score (b) Test RMSE (c) Time Elapsed

Figure 4: Method 2 Results, α = 0.10

5.1.3 Summary of Results

1 2 3
Median Score 0.83 0.85 0.86

Median RMSE 3.76 3.68 3.63
Median Time Elapsed (s) 2.92 12.63 56.00

Table 1: Summary of Results for Method 1

1 2 3
Median Score 0.83 0.83 0.84

Median RMSE 3.65 3.50 3.70
Median Time Elapsed (s) 2.95 7.19 7.22

Table 2: Summary of Results for Method 2, α = 0.01

1 2 3
Median Score 0.83 0.84 0.83

Median RMSE 3.50 3.56 3.57
Median Time Elapsed (s) 2.84 5.07 7.03

Table 3: Summary of Results for Method 2, α = 0.05

1 2 3
Median Score 0.83 0.83 0.83

Median RMSE 3.62 3.49 3.71
Median Time Elapsed (s) 3.04 5.32 6.69

Table 4: Summary of Results for Method 2, α = 0.10

6

A Heuristic For Efficient Reduction In Hidden Layer Combinations For Feedforward Neural Networks

5.2 MNIST Dataset

5.2.1 Method 1

(a) Score (b) Test RMSE (c) Time Elapsed

Figure 5: Method 1 Results

5.2.2 Method 2

(a) Score (b) Test RMSE (c) Time Elapsed

Figure 6: Method 2 Results, α = 0.01

(a) Score (b) Test RMSE (c) Time Elapsed

Figure 7: Method 2 Results, α = 0.05

7

A Heuristic For Efficient Reduction In Hidden Layer Combinations For Feedforward Neural Networks

(a) Score (b) Test RMSE (c) Time Elapsed

Figure 8: Method 2 Results, α = 0.10

5.2.3 Summary of Results

1 2 3
Median Score 0.92 0.93 0.93

Median RMSE 1.08 1.05 1.09
Median Time Elapsed (s) 1014.20 9498.86 36336.83

Table 5: Summary of Results for Method 1

1 2 3
Median Score 0.92 0.92 0.93

Median RMSE 1.08 1.08 1.09
Median Time Elapsed (s) 1011.10 2763.15 2556.78

Table 6: Summary of Results for Method 2, α = 0.01

1 2 3
Median Score 0.92 0.92 0.93

Median RMSE 1.08 1.08 1.09
Median Time Elapsed (s) 1019.95 2764.92 2539.61

Table 7: Summary of Results for Method 2, α = 0.05

1 2 3
Median Score 0.92 0.92 0.93

Median RMSE 1.08 1.08 1.09
Median Time Elapsed (s) 1016.91 2786.68 2553.89

Table 8: Summary of Results for Method 2, α = 0.10

6 Conclusion and Future Work

The main takeaway from the results obtained is the significant reduction in median time taken to run a test case with an
almost equally-high median score and equally-low RMSE when compared to the benchmark case, when the heuristic is
used in Method 2. To the best of our knowledge, such a heuristic with the result of a grid search as input has not been
properly documented and experimented with, though it is highly possible that it has been formulated and implemented
by others given its simple yet seemingly naive nature.

The heuristic can be generalized and applied to other hyperparameters in a similar fashion, and other models may be
used as well. We use the MLPRegressor and MLPClassifier models in Scikit-Learn as we find that they help to
illustrate the underlying idea of the algorithm the clearest. Due to time constraints we are not able to run for other
models and alphas, but we strongly encourage others to explore with other models and variants of the heuristic.

8

A Heuristic For Efficient Reduction In Hidden Layer Combinations For Feedforward Neural Networks

References

[1] Marc Claesen and Bart De Moor. Hyperparameter search in machine learning. CoRR, abs/1502.02127, 2015.
[2] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter.

Efficient and robust automated machine learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 2962–2970. Curran Associates,
Inc., 2015.

[3] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J. Mach. Learn. Res.,
13(1):281–305, February 2012.

[4] Marc Claesen, Jaak Simm, Dusan Popovic, Yves Moreau, and Bart De Moor. Easy hyperparameter search using
optunity. CoRR, abs/1412.1114, 2014.

[5] Carlos Gomes da Silva. Time series forecasting with a non-linear model and the scatter search meta-heuristic.
Information Sciences, 178(16):3288 – 3299, 2008. Including Special Issue: Recent advances in granular
computing.

[6] Ivan Jordanov and Antoniya Georgieva. Neural network learning with global heuristic search. Neural Networks,
IEEE Transactions on, 18:937 – 942, 06 2007.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[8] Johannes Köster and Sven Rahmann. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics,
28(19):2520–2522, 08 2012.

[9] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.
[10] R. Fletcher. Practical Methods of Optimization; (2Nd Ed.). Wiley-Interscience, New York, NY, USA, 1987.

9

	1 Preliminaries
	2 Related Work
	3 Experiment Setting and Datasets
	3.1 Programs Employed
	3.2 Resources Utilized
	3.3 Data
	3.4 Notations and Test Cases

	4 Methods Employed
	4.1 Method 1 - Benchmark
	4.2 Method 2 - Heuristic

	5 Experiment Results
	5.1 Boston Dataset
	5.1.1 Method 1
	5.1.2 Method 2
	5.1.3 Summary of Results

	5.2 MNIST Dataset
	5.2.1 Method 1
	5.2.2 Method 2
	5.2.3 Summary of Results

	6 Conclusion and Future Work

