
Search-Based Transformation Synthesis
for 3-Valued Reversible Circuits

D. Michael Miller1(B) and Gerhard W. Dueck2

1 University of Victoria, Victoria, Canada
mmiller@uvic.ca

2 University of New Brunswick, Fredericton, Canada
gdueck@unb.ca

Abstract. A novel bounded search transformation-based synthesis app-
roach is presented that finds a reversible circuit implementation for
a given reversible function. Methods for simplifying the circuit post-
synthesis are presented. Quantum implementation constraints are also
considered. Experimental results for all 2-input 3-valued functions
show the effectiveness of the new approaches compared to earlier
transformation-based synthesis approaches. Other examples are given to
show both the effectiveness and limitations of the new approach which
point to a number of key areas for further research.

1 Introduction

An r-valued n-variable reversible logic function maps each of the rn input pat-
ters to a unique output pattern. Hence the function has n outputs. The synthesis
problem is to realize a reversible function by a cascade of basic reversible gates.
In this paper we present a novel bounded search method for this synthesis prob-
lem as well as systematic approaches to circuit simplification. Quantum circuit
implementation is considered with respect to a variety of practical constraints.

Reversible functions and circuits have the interesting property that if one
has a circuit for a function f , reversing the order of the gates and replacing each
by the gate implementing the inverse operation yields a circuit realizing f−1.
Consequently, one can synthesize a circuit for f and a second circuit for f−1 and
choose the better circuit as the basis to realize f .

Transformation-based synthesis was introduced in [4] for Boolean reversible
functions and extended to MVL functions in [3,5]. A study of the MVL reversible
logic synthesis including the transformation-based approach appears in [1]. The
method introduced here employs a bounded recursive search to more extensively
explore alternative circuits. It employs the basic pattern transform operation of
earlier transformation-based synthesis approaches. The bound is based on the
best circuit found to date.

Empirical results for 3-valued functions show the new search method pro-
duces significantly better circuits. Since the new method is a search, significantly
more CPU time is required but this is justified by the improvement in the syn-
thesized circuits. Limitations of the approach are discussed and issues for further
research are identified.
c© Springer Nature Switzerland AG 2020
I. Lanese and M. Rawski (Eds.): RC 2020, LNCS 12227, pp. 218–236, 2020.
https://doi.org/10.1007/978-3-030-52482-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52482-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-52482-1_13

Transformation Synthesis 219

2 Background

2.1 Reversible Functions, Gates and Circuits

Definition 1. An n-input, n-output, (written n × n) totally-specified r-valued
function is reversible if it maps each input assignment to a unique output assign-
ment. We use x0, x1, ..., xn−1 to denote the function inputs and x+

0 , x+
1 , ..., x+

n−1

to denote the corresponding outputs. A reversible function defines a permutation
of the input patterns. There are rn! r-valued, n × n reversible functions. ��

An r-valued n × n reversible function can be specified as a list F with rn

entries F0, F1, ..., Frn−1 where the n digit r-valued expansion of each Fi specifies
the output pattern corresponding to the input pattern which is the n digit r-
valued expansion of i. The specification list for the identity function has the ith

entry equal to i for all i.

Definition 2. For a given f with specification F , the distance between f and
the identity function is given by

�(f)=
rn−1∑

j=0

d(j, Fj) d(a, b)=
n−1∑

k=0

|ak − bk|

where ak and bk denote the kth digit in the r-valued expansion of a and b, respec-
tively. ��
Definition 3. A reversible gate has p inputs and p outputs and realizes a p × p
reversible function. ��

In this work, we employ 3-valued reversible gates given by the following
definition:

Definition 4. A 3-valued p × p controlled unary reversible gate passes p − 1
control lines through unchanged, and applies a specified unary operator to the
pth line, the target line, if the control lines assume particular specified values.
Otherwise the target line is passed through unaltered. The permitted unary oper-
ators are the five listed in Table 1. Note that a gate must have a single target
and the case of 0 controls (p = 1) is permitted in which case the gate is said to
be uncontrolled. ��
Definition 5. A reversible circuit realizing an n × n reversible function is a
cascade of reversible gates with no fanout or feedback [7]. The circuit has n
inputs and n outputs and is thus identified as n × n. ��

The synthesis problem considered here is how to realize a given reversible
function specification as a circuit using a basic set of reversible gates. The pre-
sentation focuses on 3-valued functions and circuits but the methods can be
readily extended to a higher radix.

We will use circuit diagrams where targets are boxes labeled by the appropri-
ate unary operation and controls are shown as circles containg the control value
for reversible circuits and as • for quantum circuits.

220 D. M. Miller and G. W. Dueck

Table 1. 3-valued unary operators

x C1[x] C2[x] N [x] D[x] E[x]

0 1 2 2 0 1

1 2 0 1 2 0

2 0 1 0 1 2

Consider the operators in Table 1. C1 and C2 are inverses of each other. D,
E and N are each self-inverse. The following readily verified identities are used
in the circuit simplification techniques discussed later in this paper.

C2[C2[x]] = C1[x] (1)
C1[C1[x] = C2[x] (2)

D[x] = E[C1[x]] = N [C2[x]] (3)
E[x] = D[C2[x]] = N [C1[x]] (4)
N [x] = D[C1[x]] = E[C2[x]] (5)

2.2 Quantum Circuits

Reversible circuits may be implemented in a variety of technologies. Here we are
interested in potential quantum circuit implementations [6–8,10]. The objective
is to map a reversible circuit composed of reversible gates as defined in Defini-
tion 4 to a circuit composed of gates directly implementable in a given quantum
technology.

Muthukrishnan and Stroud [6] introduced a family of elementary ternary
quantum gates (MS gates) widely used in the quantum MVL circuit literature
which for the ternary case can be defined as follows:

Definition 6. A Muthukrishnan and Stroud (MS) gate is a gate as defined in
Definition 4 with at most one control.

Muthukrishnan and Stroud considered ion trap technology for implementing
these gates and for the ternary case required that all control values be 2. Here,
we do not assume a particular underlying technology and consider a number of
possible scenarios. In particular, we consider situations where only a subset of the
MS gates are physically available since in some technologies certain MS gates are
readily implemented while others are more costly or may not be implementable.
In addition, we require that all controls in a quantum circuit have the same
global control value (cv). We will consider cases with cv = 1 or 2.

It is clear from equations (1) to (5) that a single cycle gate, C1 or C2, and
at least one of D, E or N , is sufficient as the other gates can be implemented
by suitable gate pairings. In this work, we distinguish between the gates that
are logically available during circuit synthesis and the gates that are physically
available for the quantum circuit with the assumption that all physically avail-
able gates are available for use during the synthesis process. We also assume that

Transformation Synthesis 221

both C1 and C2 are physically, and therefore logically, available as a cycle gate
is implemented as a rotation the difference between C1 and C2 being the direc-
tion of rotation. A technology that supports one type of cycle can reasonably be
expected to support the other.

Given a set of physically available MS gates, we next consider how to imple-
ment reversible gates with more than 1 control. A realization for 2 controls as
given in [2] is shown in Fig. 11. α can be any of C1, C2, D, E or N that are
physically available. h is a helper line which is initialized to 0. Given that, a gate
with three controls can be implemented as shown in Fig. 2. Two helper lines, h1

and h2 are required and must both be initialized to 0. Gates with more controls
can be implemented following a similar strategy.

x0

x1

h

x2

C1 C1

α

C2 C2

x0
+

x1
+

h+

x2
+

Fig. 1. Implementation for α[x2, x1 = 2, x0 = 2] with helper line h

x0

x1

x2

h1

h2

x3

C2

α

C2

=
C1 C1

C2

C2 C2 C1 C1

α

C2 C2 C1 C1

C2

C2 C2

x0
+

x1
+

x2
+

h1
+

h2
+

x3
+

Fig. 2. Implementation for α[x3, x2 = 2, x1 = 2, x0 = 2] with helper lines h1 and h2

The 2 control case requires 5 MS gates whereas the 3 control case requires
15. We have shown the circuits where the control values are 2. These are readily
changed to 1, but recall that we assume all controls in a quantum circuit have
the same global value. If a control line to a gate g is required to have a different
value, a simple solution is to place uncontrolled gates on that line before and
after gate g. This leads to the following definition of quantum cost.

Definition 7. A gate which applies α ∈ {C1, C2,D,E,N} with 0, 1, 2, 3 con-
trols has a base cost of 1, 1, 5, 15, respectively. In general, the base cost for a
k-control gate, k > 2, is 5 + 2×the cost of a gate with k − 1 controls. If the gate
type α is not physically available as a single MS gate a pair of gates is required
and the cost increases by 1. The cost increases by 2, for each control that does
not have the global control value.

Adding uncontrolled gates before and after each control not equal to the
global control value can obviously be very costly. A more efficient approach will
be introduced in Sect. 5.
1 The gate notation is type[target, controls].

222 D. M. Miller and G. W. Dueck

Table 2. Transition options

Transition Options Transition Options

0 → 1 C1 E 0 → 2 C2 N

1 → 0 C2 E 1 → 2 D

2 → 0 C1 N 2 → 1 D

3 Transformation-Based Synthesis

Transformation-based synthesis was introduced by the current authors and D.
Maslov in [4] for Boolean functions and in [3,5] for MVL, specifically 3-valued,
functions. The core operation, transform(a, b), is the identification of an
ordered list of reversible gates to map an n digit pattern a to an n digit pattern
b where a > b. The gates are chosen so they will not affect any pattern < b.
We here describe transform(a, b) for the 3-valued case. Note that we use ←
to denote assignment, break to indicate exiting the current loop and continue
to indicate going back to the top of the current loop.

1: procedure transform(a, b)
2: list ← φ
3: for i=0, 1, ..., n − 1 do
4: if ai=bi then
5: continue
6: end if
7: create a new gate G with target xi

8: use ai → bi to get the type for G using Table 2
9: there may be a choice in which case both are recorded

10: c ← a and then set ci ← 0
11: for j=0, 1, ..., n − 1 do
12: if setting cj to 0 results in c < b then
13: break
14: else
15: cj ← 0
16: end if
17: end for
18: the nonzero digits in c identify the controls for G
19: append G to the end of list
20: ai ← bi
21: end for
22: return list
23: end procedure

transform generates a gate for each i such that ai �= bi. The gates generated
use only control values 1 and 2. 0 controls are generated by an optimization
discussed in Sect. 5. The for j loop in 11–17 reduces the number of controls for

Transformation Synthesis 223

the gate while ensuring the gate will not affect any pattern < b. transform is
readily extended to other radices by revising the options in Table 2.

As noted, transform can generate a choice of gate depending on the tran-
sition required and also of course which gates are available to be used in a
particular synthesis. Our approach to resolving a choice is to choose the one
that when applied moves the function closest to the identity. Note that D gates
are specified as single choices in the table for transitions 1 → 2 and 2 → 1. C1

and C2 cannot be used alone for those two cases as they would always affect an
entry earlier in the specification.

The basic bidirectional transformation-based synthesis approach [5] is shown
as method1. transform is as just described. inverse computes the specifica-
tion of the inverse of a reversible function which by definition must always exist.
Applying a gate to a function specification F means to apply the gate to update
each of the entries in F .

1: procedure method1(F)
2: set gate lists Cin ← Cout ← φ
3: FI ← inverse(F)
4: for i=0, 1, ..., rn − 2 do
5: if Fi �= i then
6: Tout ←transform(Fi, i)
7: apply the gates in Tout to update F
8: Tin ←transform(FIi, i)
9: apply the gates in Tin to update FI

10: if |Tout| < |Tin| or
11: |Tout|=|Tin| and �F < �FI then
12: append the gates in Tout to the end of Cout

13: FI ← inverse(F)
14: else
15: append the gates in Tin to the end of Cin

16: F ← inverse(FI)
17: end if
18: end if
19: end for
20: reverse the order of the gates in Cout

21: replace each gate in Cout by its inverse
22: form the circuit by appending Cout to the end of Cin

23: return circuit
24: end procedure

The operation of method1 is straightforward. The basic idea is to find a
circuit that will map F to the identity. The inverse circuit will of course map
the identity to the desired F . For each i starting at 0, the method determines
the output-side gates that will map the ith output side entry to i. Separately, it
finds the input-side gates that will map the appropriate input pattern to match
the output pattern i. The latter is expressed in terms of FI, the inverse of F , so
that lines 6–7 and 8–9 are similar and can be implemented with common code

224 D. M. Miller and G. W. Dueck

which is more efficient that treating the output and input sides of F separately.
Recall, that transform is such that the gates chosen will not alter an entry
Fj , j < i. Also note that entry i = rn − 1 need not be considered since as the
last entry aligning all previous entries to the identity means it is also mapped
to the identity.

For each i, the method chooses to use the output-side or input-side trans-
formation based on the number of gates required and if those factors are the
same based on which choice leads to a specification closest to the identity using
the � operator. In the event of a tie, the output-side transform is used. A more
fulsome description of this algorithm can be found in [5].

method1 uses either all input or all output gates for each iteration as it
only considers two possibilities. An extension to this approach, developed in [9]
for the 2-valued case, is to for each i, consider all j, i ≤ j ≤ rn − 1 and for
each apply transform(Fj , i) to find output-side gates and transform(FIj , i)
to find input-side gates. From the results for each j, the one is chosen that
requires the fewest gates (input plus output) and if there is a tie the lowest j
resulting in an F closest to the identity is used. We call this approach method2.
A full description can be found in [9]. The bounded search transformation-based
synthesis method introduced in the next section is derived from this approach.

4 Bounded Search Transformation-Based Synthesis

method3 is the new bounded search approach introduced in this paper. The
basic idea is to search through the options to transform each entry of F in order
0, 1, ..., rn − 1 in a recursive manner. A bounded search is performed where the
bound is based on the best circuit found to that point in the search. Any search
path where the circuit to that point has a higher cost than the best circuit found
so far is abandoned.

A key question is how to set the initial bound. One could use a cost of ∞
but that can lead to excessive searching. The approach we adopt is to apply
method1 to find an initial circuit and to use it as the initial best circuit which
is retained in a global called BestCircuit. The invocation of method1 to set
the initial bound is made prior to calling method3 to initiate the search. In the
initial call to method3 a value of 0 should be provided for parameter k and an
empty list for parameter circuit.

cost is a function that computes the cost of a circuit which can be selected
to be either (a) the number of gates in the circuit, or (b) the sum of the quantum
costs of the gates in the circuit as specified in Definition 7.

simplify is a procedure that applies the post-synthesis simplifications pro-
cess described in Sect. 5.

Function map used in method3 orders the alternatives to be considered in
a special way. If j = k it returns k. If j = k + 1, it returns the value p such that
Fp = k. Those two cases are considered first since the first one only requires
output side gates and the second only requires input side gates. Those cases
quite often have the cheapest incremental costs. For j > k +1 in order, function
map returns the other choices from k to Rn − 1 in ascending order.

Transformation Synthesis 225

1: procedure method3(F, k, circuit)
2: if k=rn − 1 then
3: simplify(circuit)
4: if cost(circuit) <cost(BestCircuit) then
5: BestCircuit ← circuit
6: end if
7: return
8: end if
9: for j=k, k + 1, ..., rn − 1 do

10: i ← map(j, k)
11: copy F into FC
12: Tout ←transform(Fi, k)
13: apply the gates in Tout to update FC
14: Tin ←transform(i, k)
15: if |Tin| + |Tout| + |circuit| ≥ |BestCircuit| then
16: return
17: end if
18: FIC ← inverse(FC)
19: apply the gates in Tin to update FIC
20: FC ← inverse(FIC)
21: append gates in Tout reversed and inverted
22: to the end of circuit
23: prepend gates in Tin to the front of circuit
24: method3(FC, k + 1, circuit)
25: remove gates in Tin and Tout from circuit
26: end for
27: return
28: end procedure

Lines 2–8 in method3 is the terminal case for the recursive search. The
current circuit is compared to the best circuit found so far and replaces it if it
is cheaper. Lines 15–17 implement the bound on the search by comparing the
number of gates in the circuit being built to the number of gates in the best
circuit found so far. This bound is used as it has been found to better bound the
search in terms of computational time than using the quantum cost. Line 24 is
the recursive call to move to the next entry in F and line 25 removes the gates
generated for one alternative before iterating to consider the next.

5 Post-synthesis Circuit Simplification

Suggestions for circuit simplification were made in [5] with a hand-worked exam-
ple. Here we present two procedures for circuit simplification of 3-valued circuits.
The first, reduce, accepts an ordered list of gates G = G0G1...Gngates−1 and
returns a modified list of gates. The following four definitions are employed.

Definition 8. Two gates are inverses of each other if they have the same target,
the same control variables and control values and either they are both D, E or
N gates, or one is a C1 gate and the other is a C2 gate. ��

226 D. M. Miller and G. W. Dueck

Definition 9. Two Ck gates are mergeable if they have the same target, the
same control variables and control values. The merge into a single gate has the
given target, control variables and control values and is of type C3−k. ��
Definition 10. Two gates Gi and Gj are control reducible if they are of the
same type, have the same target and controls and matching control values except
for one control xk. The gates can be modified by removing xk from Gi and setting
the control value for xk for Gj to 3 − s where s is the sum of the original xk

control values for the two gates. If the gates are C gates, Gj is replaced by its
inverse. ��

The commonly used rule [4] for whether two adjacent gates Gi and Gi+1 can
be interchanged is to check that the target for Gi is not a control for Gi+1 and
the target for Gi+1 is not a control for Gi. Here we introduce a more flexible
definition which permits more optimization possibilities.

Definition 11. Two adjacent gates Gi and Gi+1 can be interchanged unless:

1. The two gates have the same target but the gates are not both of the same
type (C, D, E or N);

2. If Gi has type t ∈ {C,D,E,N}, the target of Gi is a control for Gi+1 with
control value v and t = C, or t = D,E,N and v �= 0, 2, 1 respectively; or

3. If Gi+1 has type t ∈ {C,D,E,N}, the target of Gi+1 is a control for Gi with
control value v and t = C or t = D,E,N and v �= 0, 2, 1 respectively. ��
(1) in the above definition states two gates cannot be interchanged if they

have the same target but potentially conflicting gate operations. (2) and (3)
state two gates cannot be interchanged if the target for one gate is a control for
the second gate and the target operation could affect the corresponding control
value. This allows more gate movement than the simple blocking rule [4].

reduce, Fig. 3, implements our gate simplification strategy. It should be
noted that the procedure looks for two gates Gi and Gj that could be moved to
be adjacent but does not actually move them. Lines 8–9, 18–19 and 30–31 follow
the removal or modification of Gi and start the reduction search over to look for
simplifications that may have been previously blocked.

Our second simplification procedure, insert C, Fig. 4, accepts G, an ordered
list of gates and a global control value cv = 1 or 2, and inserts uncontrolled C1

and C2 gates so that all control values in the circuit will be cv. Effort is made
to reduce the number of gates inserted, i.e. it does not insert a gate before and
after every control that differs from the global value.

Post-synthesis circuit simplification used in this work involves four steps:

1. apply reduce to the circuit produced by the chosen synthesis method;
2. if the target is a quantum circuit, apply insert C to add the required uncon-

trolled C gates to map all gate control values to the desired value;
3. perform any logical gate substitutions for D, E or N gates depending on

which types of gate substitution have been specified for the current synthesis.
4. if step 2 and/or step 3 has been applied, apply reduce a second time to

identify any possible reductions arising from steps 2 and 3.

Transformation Synthesis 227

Fig. 3. Gate reduction procedure

Step 3 requires some explanation. If a D, E or N gates is logically available,
i.e. available during synthesis, but not physically available for the final circuit,
it must be substituted by other gates. Step 3 is a logical substitution where the
gate is replaced during the simplification process at which point the substituted
gates become candidates for reduction. The alternative is to do a physical gate
substitution in the final quantum circuit as suggested in Definition 7.

228 D. M. Miller and G. W. Dueck

Fig. 4. Insertion of uncontrolled C gates

6 Experimental Results

We have implemented the above techniques in C using the gcc compiler with
optimization level -O3. Experiments were run on a computer with an Intel i5
650 CPU @ 3.20 GHz and 3 GB of RAM.

Transformation Synthesis 229

Our first experiment generated reversible circuits for the 9! = 362, 880 2-
variable 3-valued reversible functions. Table 3 shows the results for methods 1, 2
and 3 with and without applying reduce. Since the target is reversible circuits,
insert C is not applied and gate count is used for circuit cost.

To make the results comparable to [5], D gates are used as individual gates,
i.e. without substitution, and E gates are not used. In each case, results are
shown for synthesizing the function alone and synthesizing the function and its
inverse and choosing the better circuit. The table shows the average gate count
and total CPU time in seconds for each scenario. The CPU time, here and for the
other experiments, includes the time required to verify the circuits. The table
shows that method2 provides quite small improvement over method1.

method3 yields substantial improvement but at a high increase in compu-
tational cost. For each method3 scenario, the table shows the average number
of circuits examined per function which is a good indicator of where the compu-
tational cost comes from. For example, for the gate reduction using f and f−1

scenario, a total of 21,798,180 circuits were generated in finding solutions for the
362,880 functions an average of 60.07.

As an aside, noted by one of the referees, the method1 search considering
f and f−1 with no gate reduction took 5.31 CPU sec. whereas the same search
in 2004 [3] took several CPU minutes on a then modern desktop computer. An
interesting illustration of the tremendously increased computing power that is
now available.

Table 3. 2-variable 3-valued functions: average gate count

Method No gate reduction

f f and f−1

Avg. CPU Avg. Circ. Avg. CPU Avg. Circ.

Gates Sec. per Func. Gates Sec. per Func.

1 7.160 2.51 6.957 5.31

2 7.078 12.67 6.860 25.28

3 6.125 86.42 21.727 6.083 171.63 43.450

impr. 3 vs 1 14.46% 12.56%

Method Gate reduction

f f and f−1

Avg. CPU Avg. Circ. Avg. CPU Avg. Circ.

Gates Sec. per Func. Gates Sec. per Func.

1 7.077 2.67 6.855 5.51

2 6.989 12.73 6.753 25.65

3 5.983 103.45 30.030 5.919 209.25 60.070

impr. 3 vs 1 15.46% 13.65%

230 D. M. Miller and G. W. Dueck

Our second experiment again considers all 2-variable 3-valued functions. The
results are shown in Table 4. Each row of the table represents a particular sce-
nario regarding the use of D, E and N gates and choice for the global control
value cv. Recall that C1 and C2 are assumed to be physically, and therefore
logically, available in all the scenarios. In every case, the best circuit found
by considering f and f−1 is used. The table is ordered by ascending cost for
method3 with cv = 2 which most often yields the best results.

Column Synth. identifies which of D, E and N are available during the syn-
thesis process. As noted above, D must always be available. Column Sub. iden-
tifies what gate substitutions are performed. A 1 denotes logical substitution
during the synthesis process i.e. gate substitution during the circuit simplifi-
cation step. A 2 denotes physical substitution in the final circuit. Results are
shown for the three methods with cv, the circuit wide control value, equal 1 and
2. Each trial for method1 required 5–6 CPU sec. For method2 and method3
the CPU usage per trial is around 35–40 s and 3–3.5 min, respectively.

As before, method3 shows very significant improvement over the other meth-
ods at a rather high computational cost. It is interesting that, as one would tend
to expect, the best performance (shown in bold) for all methods, except for
method3 with cv = 2, is for the scenario where D, E and N are available dur-
ing synthesis with no logical or physical substitution, i.e. all three gate types are
available with lowest cost. For the case of method3 with cv = 2, the best result
is when only D and N are available for synthesis and direct implementation.
This is reflective of the fact our methods are heuristic and even the search based
method relies on heuristic choices as to which gates are best to use at each step
of the synthesis.

In all cases for method1 and method2 a cv value of 2 leads to lower average
quantum cost than does a cv value of 1. For method3, there are some exceptions
(shown in italics). In those cases the differences are rather small. This effect arises
from the fundamental property that the transformation-based synthesis methods
process the specification in a fixed order and tend to produce more gate control
values of 2 than 1. Consequently, fewer uncontrolled C gates need to be inserted
to map all control values in the circuit to 2 than to 1.

The results also strongly suggest that logical substitution for D, E and N is
more effective than physical substitution. This is because for logical substitution,
the substituted gates are considered during the circuit simplification process.

To further illustrate the effectiveness of the circuit reductions performed
by procedure reduce, consider the best result in Table 4 – the scenario using
method3 with D and N gates with no gate substitution, cv = 2, and considering
f and f−1. If one turns off reductions but leaves insertion of uncontrolled C gates
on, the average quantum cost rises from 7.837 to 8.771 an increase of 11.9%.

Our third experiment considers a 3-valued full adder which is an irreversible
function with three inputs, here identified as x0, x1, x2 and two outputs sum and
carry. To make it reversible, requires an additional input and two additional
outputs. As noted in [3], experience with a reversible binary full adder is helpful
and leads to the following specification which behaves as a full adder when

Transformation Synthesis 231

x3 = 0.

x+
0 = sum[x0, x1, x2) x+

1 =x1 ⊕ x2 x+
2 = x2 x+

3 = carry[x0, x1, x2) ⊕ x3 (6)

Figure 5 shows the reversible adder circuit found using method1 forward
synthesis with circuit reduction but no gate substitutions. This circuit has 17

Table 4. 2 variable 3-valued functions: average quantum cost

Synth. Sub. method1 method2 method3

D E N CV = 2 CV = 1 CV = 2 CV = 1 CV = 2 CV = 1

D N 9.950 11.667 9.896 11.279 7.837 8.488

D E N 9.701 10.884 9.623 10.553 7.963 8.048

D 10.193 11.995 10.143 11.617 8.057 8.684

D E 10.001 11.301 9.917 10.935 8.163 8.154

D N 1 10.416 12.224 10.355 11.823 8.275 8.934

D E N 1 10.386 11.713 10.307 11.404 8.327 8.730

D E N 1 10.244 11.409 10.157 11.063 8.477 8.345

D N 2 10.614 12.328 10.546 11.923 8.486 9.082

D E N 2 10.543 11.772 10.464 11.459 8.502 8.800

D E N 2 10.338 11.513 10.245 11.164 8.545 8.507

D E 1 10.653 11.988 10.591 11.674 8.566 8.786

D E 2 10.762 12.109 10.697 11.783 8.722 8.978

D E N 1 11.489 12.215 11.345 11.876 8.799 8.670

D E N 1 1 10.898 12.212 10.813 11.892 8.859 9.085

D E N 2 11.627 12.769 11.479 12.346 8.879 8.809

D N 1 12.208 13.355 12.086 12.975 8.887 9.237

D E N 2 1 11.003 12.326 10.916 11.996 8.977 9.251

D E N 1 2 11.075 12.289 10.982 11.968 9.045 9.185

D N 2 12.484 14.180 12.37 13.723 9.130 9.643

D E N 2 2 11.181 12.403 11.086 12.072 9.175 9.357

D E 1 12.077 13.132 11.892 12.701 9.197 8.979

D E N 1 1 12.211 13.072 12.071 12.755 9.285 9.475

D E N 2 1 12.350 13.626 12.204 13.227 9.386 9.640

D E 2 12.316 13.575 12.13 13.083 9.406 9.189

D E N 1 1 12.040 12.992 11.886 12.598 9.443 9.135

D E N 1 2 12.365 13.129 12.225 12.807 9.478 9.548

D E N 1 2 12.133 13.093 11.973 12.697 9.518 9.305

D E N 2 1 12.179 13.304 12.023 12.867 9.519 9.219

D E N 2 2 12.507 13.685 12.362 13.282 9.586 9.718

D E N 2 2 12.274 13.408 12.112 12.968 9.597 9.393

232 D. M. Miller and G. W. Dueck

gates. D and E gates were allowed. method2 finds the same circuit. Figure 6
shows the reversible adder circuit found using method3 forward synthesis. This
circuit has 10 gates.

x0

x1

x2

x3 C1

2

1

C1

2

2

D

2

1

1

D

2

1

C2

2

2

2

C1

2

2

C1

2

1

2

C1

1

2

C1

2

2

C2

2

C1

2

1

E

2

1

1

E

2

1

C1

1

C1

1

2

C2

2

C1

1

x0
+

x1
+

x2
+

x3
+

Fig. 5. method1 forward synthesis: 17 gate reversible adder circuit

x0

x1

x2

x3 C1

2

C2

0

2

C2

2

C1

2

1

C1

1

C1

2

C2

0

2

C2

2

C1

2

1

C1

1

x0
+

x1
+

x2
+

x3
+

Fig. 6. method3 forward synthesis: 10 gate reversible adder circuit

x0

x1

x2

x3

C2

C2

C2 N

C1

C2 N C1

C1

C1

C2

C2

C2 C1

C1

C1

C1

C2

x0
+

x1
+

x2
+

x3
+

Fig. 7. method3 forward synthesis with simplification: 18 gate full adder quantum
circuit, cost 26, cv = 2

Table 5 shows our full experimental results for the full adder. Uncontrolled
C gates were inserted for a global control of 2 and logical substitution of D
and E gates was employed. The top half of the table shows the results for the
reversible full adder and the bottom half shows the results for the inverse func-
tion. Here the new search method (method3) significantly outperforms the basic
transformation-based synthesis methods. Note that method3 is quite quick for
the full adder but takes significantly longer for the inverse case.

It is interesting to contrast the results in the top half of Table 5 to the discus-
sion in [5] where an initial 16 gate solution was hand optimized to a circuit with
23 gates with a quantum cost of 96. that circuit contains four 3-control C gates
which are quite expensive in terms of elementary quantum operations. In partic-
ular, method3 forward synthesis followed by circuit simplification as described
in Sect. 5 produces the circuit in Fig. 7 which has 18 gates and a quantum cost
of 26. There are only two 2-control gates (shown in bold) in this circuit, the rest
having 1 or 0 controls.

Transformation Synthesis 233

Table 5. Ternary full adder

Method No E Gates E Gates

Gates Cost CPU Gates Cost CPU

Forward synthesis

1 30 106 0.047 37 157 0.047

2 30 106 0.062 37 157 0.078

3 18 26 0.438 18 26 0.703

impr. 3 vs. 1 75.5% 83.4%

Reverse synthesis

1 44 180 0.063 59 289 0.078

2 44 180 0.094 59 289 0.125

3 18 34 379.8 18 34 593.7

impr. 3 vs. 1 81.1% 88.2%

Next we consider a 5-variable function with inputs x4, x3, ..., x0 which acts as
a controlled counter. The 4-digit 3-valued number represented by x3, x2, x1, x0 is
incremented by the value of x4 and that result is taken modulo 34. In specifying
F for this problem x4 is treated as the most significant variable and x0 as the
least significant. The results are shown in Table 6. Note that the same circuits
are found regardless of whether E gates are used. The synthesis scenario and
circuit simplification used are as described for the adder.

The results are significantly better for method3 compared to the other meth-
ods but once again at a high computation cost. The 11 gate quantum cost 29
circuit is shown in Fig. 8.

x0

x1

x2

x3

x4

C2

C2 N

C1

C1

C1

C2 N C1

C1

C2

x0
+

x1
+

x2
+

x3
+

x4
+

Fig. 8. method3 Forward synthesis: 11 gate quantum counter circuit, cost 29, cv = 2

The previous two examples, the adder and counter, are arithmetic functions.
It is constructive to consider a different type of example. We consider a reversible
function with four inputs x3, x2, x1, x0 which rotates the order of x2, x1, x0 based
on the value of x3. Specifically, the output is x3, x2, x1, x0 if x3 = 0, x3, x1, x0, x2

if x3 = 1, and x3, x0, x2, x1 if x3 = 2.
Applying method1 using N , D and E gates with D and E gate logical

substitution and the simplification procedure outlined above yields a reversible
circuit with 76 gates and a quantum cost of 358. Applying the same approach
to the inverse function yields a circuit with 75 gates and quantum cost 358.

234 D. M. Miller and G. W. Dueck

Table 6. Controlled counter

Method No E Gates E Gates

Gates Cost CPU Gates Cost CPU

Forward synthesis

1 15 137 0.03 15 137 0.05

2 15 137 0.11 15 137 0.13

3 11 29 182.17 11 29 290.64

impr. 3 vs. 1 78.8% 78.8%

Reverse synthesis

1 17 137 0.03 17 137 0.03

2 17 137 0.11 17 137 0.13

3 11 29 210.96 11 29 272.52

impr. 3 vs. 1 78.8% 78.8%

The same results are found if method2 is used. About 0.125 CPU seconds is
required for each synthesis.

Applying method3 directly to this function is problematic. Unlike the pre-
vious examples, the search takes a truly inordinate amount of time. We have
implemented two changes to method3 to make it a bit more reasonable for this
problem: (1) A check is inserted between lines 8 and 9 to test if Fk = k and if
it does to accept that 0 gate case without exploring all other alternatives i.e.
j = k + 1...rn − 1. (2) The search is aborted if a preset circuit cost is reached.

Applying the modified method3 with a cost limit of 170 to the inverse of the
rotation function a circuit was found with 50 gates and quantum cost 170 – a bit
less than half the cost found using method1. The search took 3.8 CPU hours
and considered 1,551 circuits. The question is whether this is a good result.

Consider a gate swap[xi, xj] that interchanges the values of the two inputs
and assume that controls can be applied to such a gate. This is a generalization
of the well-known binary Fredkin gate [7]. Given such a gate, the input rotation
function as described above can be realized as shown in (7) which can be simpli-
fied by applying control reduction to the first and third swaps, which is possible
because swaps two and three can be reordered, yielding the circuit in (8).

swap[x0, x2, x3 = 1] swap[x1, x2, x3=1] swap[x0, x2, x3 = 2] swap[x0, x1, x3=2] (7)
swap[x0, x2] swap[x0, x2, x3 = 0] swap[x1, x2, x3 = 1] swap[x0, x1, x3 = 2] (8)

Using method3 with quantum cost as the cost metric and without post-synthesis
simplification yields the circuit in Fig. 9(a) for the uncontrolled swap of xi and
xj . Substituting this circuit for each of the swaps in (8) with x3 control added
appropriately we find the circuit in Fig. 9(b) where the lines separate the swap
gate implementations. Note that the inverse circuit has been used for the third
swap so that the two D gates in red are brought together. This is possible since
the swap operation is self-inverse.

Transformation Synthesis 235

Applying the circuit simplification procedures from Sect. 5 yields the circuit
in Fig. 9(c). That circuit has 50 gates and quantum cost 122 which is a reduction
of 28.2% from the 170 found by applying method3 directly to the rotation
function specification.

xi

xj

C1

2 C1

1

C2

2 C1

2

C2

1 C2

2 D xi
+

xj
+

(a) method3 no simplification: uncontrolled swap of xi and xj

x0

x1

x2

x3

C1

2 C1

1

C2

2 C1

2

C2

1 C2

2 D C1

2

0

C1

1

0

C2

2

0

C1

2

0

C2

1

0

C2

2

0

D

0

D

1

C1

2

1

C1

1

1

C2

2

1

C1

2

1

C2

1

1

C2

2

1

C1

2

2

C1

1

2

C2

2

2

C1

2

2

C2

1

2

C2

2

2

D

2

x0
+

x1
+

x2
+

x3
+

(b) reversible rotation circuit by substituting swap circuit in (a) into eqn. 8

x0

x1

x2

x3

C1

C2

C1

C1

C2

C2

C1

C1

C2

C2

C2

C2

N C1 C1

C1

C2

C2

C1

C1

C2

C2

C2

C1

N

C2 N

C1

C1 C1

C1

C2

C2

C1

C1

C2

C2

C2

C2

C1

C1

C2

C2

C1

C1

C2

C2

C2

C2

N x0
+

x1
+

x2
+

x3
+

(c) 50 gate quantum rotation circuit found by simplification of the circuit in (b),
quantum cost 122, cv = 2

Fig. 9. Rotation circuit derived from 4 swap gate circuit

7 Conclusions and Future Work

This paper has presented a novel bounded search transformation-based synthesis
method as well as circuit simplification and quantum mapping procedures. The
discussion of the rotation function example shows the limitation of the search
based approach on its own but also the potential to use it within a broader
approach using alternative gates and decomposition techniques. It is an issue
for further study why method3 takes so much longer for the rotation function
compared to the adder and counter.

Our implementation accepts and handles F , the specification of a reversible
function, in tabular form. Other researchers [9] have explored alternative more
compact representations in the Boolean case. It would be interesting to consider
how those approaches might be used in our search based synthesis approach.

236 D. M. Miller and G. W. Dueck

The search based approach has been described in terms of r-valued func-
tions, but our implementation concentrates on 3-valued functions. The proce-
dure transform and the circuit simplification techniques need to be extended
if MVL functions with r > 3 are to be considered.

We have considered various circuit simplification techniques but not the opti-
mization of the final quantum circuit after substitution of the realizations of gates
with more than one control. That is an interesting area for further research.

Lastly, we have developed the new methods for the MVL case. It would be
interesting to adapt them to the Boolean case, which is simpler, and see how
they compare to other Boolean reversible circuit synthesis approaches.

Acknowledgement. The authors gratefully acknowledge the comments and sugges-
tions by the reviewers, particularly the suggestion that we better clarify issues regarding
quantum circuits which has led to inclusion of much broader experimental results.

References

1. Barbieri, C., Moraga, C.: A complexity analysis of the cycles-based synthesis of
ternary reversible circuits. In: 13th International Workshop on Boolean Problems
(2018)

2. Kole, A., Rani, P.M.N., Datta, K., Sengupta, I., Drechsler, R.: Exact synthesis
of ternary reversible functions using ternary toffoli gates. In: Proceedings of the
International Symposium on Multiple-Valued Logic, pp. 179–184 (2017)

3. Miller, D.M., Dueck, G.W., Maslov, D.: A synthesis method for MVL reversible
logic. In: Proceedings of the International Symposium on Multiple-Valued Logic,
pp. 74–80 (2004)

4. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation-based algorithm for
reversible logic synthesis. In: Proceedings of the IEEE/ACM Design Automation
Conference (DAC), pp. 318–323 (2003)

5. Miller, D.M., Maslov, D., Dueck, G.: Synthesis of quantum multiple-valued circuits.
J. Multiple-Valued Logic Soft Comput. 12(5–6), 431–450 (2006)

6. Muthukrishnan, A., Stroud, C.R.: Multivalued logic gates for quantum computa-
tion. Phys. Rev. A 62, 052309 (2000)

7. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, Cambridge (2000)

8. Resch, S., Karpuzcu, U.R.: Quantum computing: An overview across the system
stack. arXiv:1905.07240v3 [quant-ph] (2019)

9. Soeken, M., Dueck, G.W., Rahman, M.M., Miller, D.M.: An extension of
transformation-based reversible and quantum circuit synthesis. In: Proceedings
of the International Symposium on Circuits and Systems, pp. 2290–2293 (2016)

10. Töormä, P.: Realizations of quantum computing using optical manipulations of
atoms. Nat. Comput. 1, 199–209 (2002)

http://arxiv.org/abs/1905.07240v3

	Search-Based Transformation Synthesis for 3-Valued Reversible Circuits
	1 Introduction
	2 Background
	2.1 Reversible Functions, Gates and Circuits
	2.2 Quantum Circuits

	3 Transformation-Based Synthesis
	4 Bounded Search Transformation-Based Synthesis
	5 Post-synthesis Circuit Simplification
	6 Experimental Results
	7 Conclusions and Future Work
	References

