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Abstract. Hermes is a domain-specific language for writing light-weight
encryption algorithms: It is reversible, so it is not necessary to write sepa-
rate encryption and decryption procedures, and it avoids several types of
side-channel attacks, both by ensuring no secret values are left in memory
and by ensuring that operations on secret data spend time independent
of the value of this data, thus preventing timing-based attacks. We show
a complete formal specification of Hermes, argue absence of timing-based
attacks (under reasonable assumptions), and compare implementations
of well-known light-weight encryption algorithms in Hermes and C.

1 Introduction

Recent work [12] have investigated using the reversible language Janus [5,19] for
writing encryption algorithms. Janus is a structured imperative language where
all statements are reversible. A requirement for reversibility is that no informa-
tion is ever discarded: No variable is destructively overwritten in such a way
that the original value is lost. Instead, it must be updated in a reversible man-
ner or swapped with another variable. Since encryption is by nature reversible,
it seems natural to write these in a reversible programming language. Addi-
tionally, reversible languages requires that all intermediate variables are cleared
to 0 before they are discarded, which ensures that no information that could
potentially be used for side-channel attacks is left in memory. But non-cleared
variables is not the only side-channel attack used against encryption: If the time
used to encrypt data can depend on the values of the data and the encryption
key, attackers can gain (some) information about the data or the key simply by
measuring the time used for encryption. Janus has control structures the tim-
ing of which depend on the values of variables, so it does not protect against
timing-based attacks.

So we propose a new reversible language, Hermes, specifically designed to
address these concerns. Although somewhat inspired by Janus, Hermes has some
significant differences, as we shall see below. An early version of the Hermes
language was presented in [7]. Experiments using this language have indicated a
need for a type system that separates secret and public data. In the early version,
the (informally specified) type system distinguishes constants, loop variables,
and all else, with constants and loop variables being considered non-secret and
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all else being secret. This early language is, however, too restrictive in many
cases and too permissive in other cases:

– Loop bounds and array sizes were constants, so algorithms with variable-size
keys or data would have to have a procedure for each size.

– Loop counters could in the early version of Hermes only be updated by con-
stant values, which may also be too restrictive.

– Procedure parameters are not distinguished by secrecy, so loop counters could
not be passed as parameters. By classifying parameters as public or secret,
loop counters can now be passed as public parameters.

– Any value was allowed as index to an array, but since timing can depend on
the index value (due to caching), this is a potential side channel. By limiting
array indices to public values, this can be avoided.

So we propose a new version of Hermes that uses public and secret types, with
strong restrictions on operations on secret values. Constants and loop counters
are public, all other variables are by default secret, but can be declared public.
The type system not only tracks flow of information similar to binding-time
analysis [3], trust analysis [8], and information flow analysis [11] but also imposes
restrictions to ensure reversibility and (under reasonable assumptions) avoid
timing-based side-channel attacks.

Program → Procedure+

Procedure → id ( Args ) Stat

Args → Type id | Type id[] | Args , Args

Type → secret IntType | public IntType

Stat → ;
| Lval update Exp ;
| Lval <->Lval | if ( Exp ) Lval <->Lval
| for ( id =Exp ; Exp ) Stat
| call id ( Lvals); | uncall id ( Lvals);
| { Decls1 Stat∗}

Exp → Lval | numConst | size id
| Exp binOp Exp | unOp Exp

Lval → id | id [ Exp ]

Lvals → Lval | Lval , Lvals

V arSpec → id | id [ Exp ]

Decls →
| Type V arSpec ; Decls
| const id = numConst ; Decls

Fig. 1. Core syntax of Hermes
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2 Hermes Syntax

The core syntax of Hermes is shown in Fig. 1. The grammar uses tokens specified
in boldface. These are described below.

id denotes identifiers. An identifier starts with a letter and can contain letters,
digits, and underscores.

numConst denotes decimal or hexadecimal integers using C-style notation.
IntType denotes names of integer types. These can be u8, u16, u32, and u64,

representing unsigned integers of 8, 16, 32 or 64 bits.
unOp denotes an unary operator on numbers. This can be bitwise negation ( ~).
binOp denotes an unary operator on numbers. This can be one of +, -, *, /, %, &,

|, ^ , ==, !=, <, >, <=, >=, <<, and >>. All arithmetic is modulo 264. Comparison
operators return 264−1 (all ones) when the comparison is true and 0 when
the comparison is false. Note that this is different from their behaviour in
C, where they return 1 and 0, respectively. &, |, and ^ are bitwise logical
operators.

update denotes an update operator. This can be one of +=, -=, ^ =, <<=, and
>>=. The first three operators have the same meaning as in C. <<= is a left
rotate. The rotation amount is modulo the size of the L-value being rotated,
so if, for example, x is an 8-bit variable, x <<= 13; will rotate x left by 5 bits.
>>= is a right rotate using similar rules. Note that the meaning of <<= and
>>= differ from their meaning in C, where they represent shift-updates.

3 The Type System of Hermes

Values in Hermes are all 64 bit unsigned integers, and they can be secret or
public. Scalar and array variables additionally impose a number size (8, 16, 32
or 64 bits). A constant just has the type constant, which is implicitly a 64-bit
number. So we have:

V alType → secret | public
V arType → constant | V alTypeSize | V alTypeSize[]
Size → 8 | 16 | 32 | 64

We use t with optional subscript to denote a value type, τ with optional subscript
to denote a variable type, and z with optional subscript to denote a size. So tz

denotes the special case of variable types where the variable is a scalar non-
constant. We define a partial order � as the reflexive extension of public �

secret and a least upper bound operator � induced by this partial order. We
use this to make the result secret when secret and public values are mixed.

3.1 L-Values and Expressions

Variable environments, denoted by ρ with optional subscript, bind identifiers
(denoted by x with optional subscript) to variable types. Environments are func-
tions, so ρ(x) is the variable type that x is bound to in ρ. We update environments
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using the notation ρ[x �→ τ ], which creates a new environment that is identical
to ρ, except that x is bound to τ .

Sequents for typing expressions, denoted by e with optional subscript, are
of the form ρ �E e : V alType, and sequents for typing L-values (denoted by l
with optional subscript) are of the form ρ �L l : V arType. In order to make
updates, swaps, and parameter passing reversible, we must impose restrictions
to avoid aliasing and similar clashes. To do this, we introduce functions that
find variables in expressions or parts of expressions. V () finds the variables in an
expression or L-value, R() finds the root variable of an L-value, and V ()I finds
the variables in index expressions in an L-value.

V (n) = ∅ V (x) = {x}
V (x[e]) = {x} ∪ V (e) V (¬e) = V (e)
V (e1 	 e2) = V (e1) ∪ V (e2) V (size x) = ∅

R(x) = x VI(x) = ∅
R(x[e]) = x VI(x[e]) = V (e)

Note that V () does not include variables in size-expressions, as these are harm-
less in terms of aliasing.

We specify rules for L-values and expressions in Fig. 2.
For L-values, the rule for variables says that a variable has the type speci-

fied by the environment. The rule for array access says that the array variable
must have an array type and the index expression must be public. This ensures
that timing of memory accesses (which can depend on the address, but not the
accessed value) does not leak secret information. The rules for constants state
that a constant is public. n denotes an integer constant. The rule for non-constant
L-values say that the L-value must be a scalar and that the expression type is
the value type part of the type of the L-value. The rule for an unary operator ¬
just say that the result has the same type as its argument. The rules for a binary
operator 	 is more complex. If any of the arguments are secret, the result is also
secret. Additionally, some potentially time-variant operations are not allowed on
secret values. We assume a set TV of time-variant operators is given. This will
typically contain division and modulo operators, but can also contain multipli-
cation if the target architecture does not have a constant-time multiplication
instruction. The last rule states that the size of an array is a public value.

3.2 Statements and Local Declarations

A seqent for a statement s is of the form Γ, ρ �S s and states that given a
procedure environment Γ and variable environment ρ, the statement s is well
typed. A procedure environment binds procedure names to lists of variable types.
The type rules for statements are shown in Fig. 3.

The first rule says that the empty statement is well typed. To ensure
reversibility, the rule for updates (where ⊕= denotes an update operator) says
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ρ �L x : ρ(x) (Variable)
ρ(x) = tz[] ρ �E e : public

ρ �L x[e] : tz
(ArrayAccess)

ρ �E n : public (Constant1)
ρ �L l : constant
ρ �E l : public (Constant2)

ρ �L l : tz

ρ �E l : t
(L-val) ρ �E e : t

ρ �E ¬ e : t
(UnOp)

ρ �E e1 : t1 ρ �E e2 : t2 t1 � t2 = public
ρ �E e1 � e2 : public (BinOp1)

ρ �E e1 : t1 ρ �E e2 : t2 t1 � t2 = secret � /∈ TV
ρ �E e1 � e2 : secret (BinOp2)

ρ(x) = tz[]
ρ �E sizex : public (Size)

Fig. 2. Type rules for L-values and expressions

that the root variable of the L-val must not occur in the expression. Further-
more, if the expression is secret, the L-Val must also be secret. The rule for a
swap states that the two L-values must have exactly the same type, and that
the root variable of one side can not occur in index expressions on the other
side. The rule for conditional swap additionally requires that the root variables
of the L-values do not occur in the condition and that the condition is no more
secret than the L-values. The rule for loops state that the loop bounds must be
public, and that the loop variable is implicitly declared to be a public 64-bit
variable local to the loop body. The rules for procedure calls state that the types
of the argument L-values must match those found in the procedure environment.
Furthermore, to avoid aliasing and ensure reversibility, the root variable of one
argument can not occur in another argument. The rule for blocks states that all
statements in the block must be well typed in the environment that is extended
by the local declarations. Static scoping is used. The bottom of Fig. 3 show the
rules for extending environments.

Sequents for declarations are of the form ρ �D d � ρ1, and state that the
declaration d extends the environment ρ to ρ1. The first rule state that an empty
declaration does not change the environment. The rule for constant declarations
extends the environment with the constant name bound to constant. The rules
for variable declarations are straightforward. The rules for array declarations
require that the expression that determines the size of an array must be public,
and that the array variable can not shadow any variable used in this expression.

3.3 Procedures and Programs

The rules for declarations of procedures and programs are shown in Fig. 4. A
sequent of the form � pgm states that pgm is a valid program. �P p � Γ states
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Fig. 3. Type rules for statements and declarations

that a procedure p generates a procedure environment Γ , Γ �P p states that,
given the procedure environment Γ , the procedure p is valid, and �A a � V/τ
states that the argument list a generates the variable list V and the type list τ .
We use � to append two (variable or type) lists and ∩ to represent the set of
elements common to two lists.

The rule for programs first builds a procedure environment, ensuring that no
procedure is declared twice, and then checks that all procedures are well typed in
this procedure environment. Procedures can all call each other. The Procedure1
rule builds a procedure environment for a single procedure, and Procedure2
checks that a single procedure is well typed. Both use rules for building a list of
argument names and types, ensuring no name occurs twice.
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Fig. 4. Type rules for procedures and programs

4 Run-Time Semantics of Hermes

The run-time semantics of Hermes does not distinguish secret and public values
– type checking ensures that no secrets leak into public variables – so values in
Hermes are just sized numbers. Expressions all evaluate to 64 bit numbers, which
are only truncated when used to update variables or array elements, which can
be 8, 16, 32, or 64 bits in size. An array has an element size, a vector size, and a
vector of elements of the vector size. The sizes of scalar variables and the element
sizes of array are known at compile time, but for specification convenience they
are part of the run-time environments. A compiler can check sizes at compile
time, so the run-time environments bind names (or offsets) to locations only.
Similarly, named constants can be eliminated at compile time, so they do not
need to be part of the run-time environments.

Environments (η) bind constants to their value and variables to their integer
sizes (8, 16, 32, or 64) and locations.

Stores (σ) bind locations to values. The value of a scalar variable is an 8, 16, 32,
or 64 bit integer, and the value of an array is a record (struct) of its vector
size and its vector. The elements of the vector are locations holding 8, 16, 32,
or 64 bit integers, according to the integer size of the array.

We use the same notation for environments as in the type semantics, but we
also use the update notation as a pattern: If η1 is known, we use the notation
η2[x �→ v] = η1 to say that η2 is equal to η1 with the latest binding of x removed.
This means that earlier bindings of x are retained in the environment and can be
retrieved. The environments are stack-like: Bindings are removed in the opposite
order in which they are created. Stores, on the other hand, do not need to retain
older bindings of locations, so when a new value is bound to a location, the old
value can be forgotten. We use the notation σ[λ := v] when updating stores.
While this is not immediately evident from the semantic rules, there is only
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be one store in use at any given time, and locations are disposed of in the
opposite order of their creation, so the store acts like and can be implemented
as a global stack, allocating new zero-initialised locations on the top of the stack
and removing them in the opposite order of their allocation.

We use a family of functions newlocationz where z an integer size (8, 16, 32,
or 64) that takes a store σ returns a new store σ1 and location λ of size z such
that λ is bound to zero in σ1, and the dual function disposelocationz that takes a
storeσ1 and a location λ and returns a store σ obtained by removing (unstacking)
λ from σ1, after checking that the contents of λ in σ1 is 0. If not, the result is
undefined. If (σ1, λ) = newlocationz(σ), then σ = disposelocationz(σ1λ).

We also use a family of functions newarrayz that each take a store σ and a
vector size vs and returns a new store σ1 and a location λ that in the new store is
bound to two fields: σ1(λ) = (vs, ve), where vs is the vector size at this location,
and ve is a vector of new locations for the elements of the vector, all of which
are bound to zero in the new store. We use array notation to access elements of
a vector. newarrayz also have duals, disposearrayz, that each take a store σ1,
a vector size vs, and a location λ and returns a new store σ where the array at
λ has been removed (unstacked). It checks that the vector size at the location
matches vs, and that all vector elements are locations with zero as content. If
either of these is not true, the result is undefined. If (σ1, λ) = newarrayz(σ, vs),
then σ = disposearrayz(σ1, vs, λ).

Fig. 5. Semantic rules for L-values and expressions

4.1 L-Values and Expressions

Figure 5 shows the evaluation rules for L-values and expressions. L-values eval-
uate to locations, and expressions to 64-bit integers. Sequents for L-values are
of the form σ, η |=L l @ (z, λ) and state that the L-value l is stored at location
λ which is of size z. We use a special case for constants: When λ = null, l is a
constant equal to z. null is a null location where no values are stored.
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Fig. 6. Inverting statements

Sequents of the form σ, η |=E e → v, state that e evaluates to v.
We use a function I that binds operator symbols to the functions they rep-

resent. So I(+) is a function that takes a pair of integers and returns their sum
(modulo 264) and I(~) is a function that takes a single 64-bit integer and returns
its bitwise negation. I takes a pair of an update operator and an integer size and
returns a function that takes two integers of this size and returns a third inte-
ger of this size. Note that the actual updating is not done by this function. For
example, I(<<=,8) is a function that takes two 8-bit integers and returns the first
rotated left by the second modulo 8. So I(<<=,8)(129,18) =I(<<=,8)(129,2) = 6.
I is defined outside the semantic rules. Recall that comparison operators return
0 when the relation is false and 264−1 when the relation is true.

The rule for variables and constants says that the size and location of a scalar
variable or constant is found in the environment. The rule for array elements
states that the location of the variable is bound in the store to a pair of vector
size and vector elements, that the index expression must evaluate to a value
less than the vector size, and that the location of the array element is found in
the vector of elements. The type system guarantees that the location is not null
and that it is bound to a pair, but it does not ensure that the index is within
bounds, so this is checked at runtime. If the index it out of bounds, the effect is
undefined.

The two first rules for expressions handle constants. The first handles simple
number constants, which evaluate to themselves, and the second handles named
constants that are bound to pairs of values and null locations. The rule for
L-values finds the location of the L-value and gets its contents from the store,
and then extends the value to 64 bits. For this, we use a postfix operator ↑z
that extends a z-bit value to 64 bits. The rules for unary and binary operators
evaluate the operand(s) and then applies the semantic operator to the value(s)
of the operand(s). Finally, the rule for size finds the size of the array in the
store. The type system ensures that the location is not null and that it is bound
to a pair.

4.2 Statements

To handle uncall in the semantics for statements, we need to “run” statements
backwards. To this end, we use the function I in Fig. 6 to invert statements:
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In a type-correct program, the effect of first executing s and then I(s) is, if s
terminates without error, a null effect: The store is in the same state as before
s was executed. Proving this is tedious, but relatively uncomplicated. The main
complications are declarations and that some statements are only reversible if
the aliasing constraint in th etype system hold. We do, however, not at the time
have a complete proof written down.

Statements transform stores into stores, while keeping the environment
unchanged. Sequents for running statements are of the form Δ, η |=S s : σ0 � σ1

and state that, given a procedure environment Δ and a variable environment η,
a statement s reversibly transforms a store σ0 to a store σ1.

The rules for statements are shown in Fig. 7. The rule for the empty statement
states that it does not change the store. The rule for updates finds the value v
of the L-value and the value w of the expression. It then truncates w to s bits
(using the ↓s operator), performs the operation (restricted to s bits) between
the two values, and stores the result in the location of the L-value.

The rule for swap finds the values of the two L-values in the store and updates
the store with these swapped. There are two rules for conditional swap: The first
rule states that if the condition evaluates to 0 (false), there is no change in the
store. The other rule states that if the condition evaluates to a non-zero (true)
value, the effect on the store is like an unconditional swap. Note that this does
not imply that the condition is evaluated twice if it is non-zero, nor that the
timing differs. It is up to the implementation to ensure invariant timing.

The rule for loops first evaluate the loop bounds, allocates a new location
in the store, and stores the first bound at the location, applies helper rules |=F

using an environment where the loop counter is bound to the location, and then
disposes of the location in the resulting store. There are two helper rules: One
for when the loop counter is equal to the second bound, and one where it does
not. Both use the location and the value of the second bound.

The rule for call finds the sized locations of the arguments, looks the pro-
cedure up in the procedure environment to get the list of parameter names
and the body of the procedure. It then creates a new environment that binds
the parameter names to the argument locations and executes the body in this
environment. This implements call-by-reference parameter passing. The rule for
uncall is similar, but it is the inverse of the body that is executed. The type
system guarantees that the sizes of the given parameters are the same as the
sizes of the declared parameters.

The rule for blocks uses the declarations to extend the environment and store,
executes the body, and uses the declarations to restrict the store.

4.3 Declarations

The rules for declarations is shown in Fig. 8. There are two kinds of sequents for
declarations: η0, σ0 |=D d � η1, σ1 says that the declaration d extends η0 and
σ0 to η1 and σ1. Conversely, η0, σ0 |=inv

D d � η1, σ1 says that “undoing” the
declaration d restricts η0 to η1 and σ0 to σ1.
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Fig. 7. Semantic rules for statements

The first two rules say that the empty declaration has no effect. The next two
rules state that a constant declaration extends the environment but leaves the
store unchanged. Recall that constants are stored in the environment by using
a null location. The rules for variable and array declarations do not distinguish
secret and public values. In the forwards direction, a new location (bound to
zero) is created for the variable and the variable is bound to the location. In
the backwards direction, disposelocationz verifies that the location is bound
to zero before it is removed from the store. In the forwards direction, a new
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Fig. 8. Semantic rules for declarations

zeroed array is created in the store and the variable is bound to its location in
the environment. In the backwards direction is it verified that the expression
evaluates to the array size, and disposearrayz checks that the elements of the
array are all bound to 0 in the store and removes the array from the store. Note
that the rules for undeclaring things treat the declarations in reverse order.

4.4 Procedures and Programs

The rules for procedures and programs are shown in Fig. 9. There is no main
function and no input/output in Hermes, so it is assumed that procedures are
called from outside Hermes. Therefore, the semantics of a program is just cre-
ating a procedure environment Δ. The external program can call (or uncall) a
procedure in this environment by providing a store and a list of locations for the
procedure parameters. The rule for procedures creates a procedure environment
for a single procedure. This binds the procedure name to a list of (name, integer
size) pairs and the body of the procedure. The environments are combined using
� in the rule for programs. Additional rules describe external calls to Hermes.
These are very like the rules for calls in statements, except that the locations
are given directly instead of being derived from a list of L-values.
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Fig. 9. Semantic rules for procedures and programs

5 Code Examples

In the examples, we use some syntactic sugar that the Hermes compiler
expands into the core syntax during parsing. The statements Lval++;, Lval--;,
and if (Exp)LvalupdateExp; are expanded to Lval += 1;, Lval -= 1;, and
Lvalupdate (Exp != 0) & (Exp);, respectively. The latter works because 0 is
a neutral element for all the update operators used in Hermes. A declaration
that specifies a number of variables and arrays of the same type is expanded to
a sequence of individual declarations, and if secret or public is omitted from
a declaration, secret is assumed. For example, the declarations public u32
x, a[n]; u64 z; is just a shorter way to write the equivalent public u32 x;
public u32 a[n]; secret u64 z;. Operator precedences can be overridden by
parentheses.

Figure 10 (top) shows Hermes code for the TEA encryption algorithm [14], a
simple cypher used mainly for teaching. Only the encryption function is shown –
decryption is done by uncalling the encryption function. The sizes of v and k are
2 and 4, respectively. Compare to the equivalent program in C [17] at the bottom
of Fig. 10. Apart from using updates and swaps, the main difference is that the C
version requires an explicit decryption function, which is not needed in Hermes.
Also, the local variables are in Hermes cleared to 0 by “uncomputation”, where
the C version leaves these uncleared.

Figure 11 shows Hermes and C code for the central part of RC5 [9], another
simple algorithm. The Hermes program shows size s being used as a loop
bound, which makes the procedure independent of the size of the expanded
key. Since C does not have a rotate operator, the C version [15] uses a macro for
this. And since C does not have a swap operator, the central loop is unrolled so
one iteration in the C version correspond to two iterations in the Hermes ver-
sion. Again, C needs an explicit decryption function (not shown), which is not
required in Hermes. Key expansion in RC5 (not shown) is not reversible, so to
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encrypt (u32 v [ ] , u32 k [ ] )
{

u32 v0 , v1 , k0 , k1 , k2 , k3 ;
public u32 sum;
const delta = 0x9E3779B9 ; /∗ key schedule constant ∗/
v0 <−> v [ 0 ] ; v1 <−> v [ 1 ] ; /∗ se t up ∗/
k0 += k [ 0 ] ; k1 += k [ 1 ] ; k2 += k [ 2 ] ; k3 += k [ 3 ] ; /∗ cache key ∗/
for ( i=0; 32) { /∗ basic cyc le s ta r t ∗/

sum += delta ;
v0 += ((v1<<4) + k0) ˆ (v1 + sum) ˆ ((v1>>5) + k1 ) ;
v1 += ((v0<<4) + k2) ˆ (v0 + sum) ˆ ((v0>>5) + k3 ) ;
i++;

} /∗ end cycle , now clear l oca l var iab l e s ∗/
k0 −= k [ 0 ] ; k1 −= k [ 1 ] ; k2 −= k [ 2 ] ; k3 −= k [ 3 ] ; sum −= 0xC6EF3720 ;
v [ 0 ] <−> v0 ; v [ 1 ] <−> v1 ; /∗ return coded values ∗/

}

void encrypt ( uint32 t v [ 2 ] , uint32 t k [ 4 ] ) {
uint32 t v0=v [ 0 ] , v1=v [ 1 ] , sum=0, i ; /∗ se t up ∗/
uint32 t delta=0x9E3779B9 ; /∗ key schedule constant ∗/
uint32 t k0=k [ 0 ] , k1=k [ 1 ] , k2=k [ 2 ] , k3=k [ 3 ] ; /∗ cache key ∗/
for ( i=0; i <32; i++) { /∗ basic cyc le s ta r t ∗/

sum += delta ;
v0 += ((v1<<4) + k0) ˆ (v1 + sum) ˆ ((v1>>5) + k1 ) ;
v1 += ((v0<<4) + k2) ˆ (v0 + sum) ˆ ((v0>>5) + k3 ) ;

} /∗ end cyc le ∗/
v[0]=v0 ; v[1]=v1 ;

}
void decrypt ( uint32 t v [ 2 ] , uint32 t k [ 4 ] ) {

uint32 t v0=v [ 0 ] , v1=v [ 1 ] , sum=0xC6EF3720, i ; /∗ sum=32∗de l ta ∗/
uint32 t delta=0x9E3779B9 ; /∗ key schedule constant ∗/
uint32 t k0=k [ 0 ] , k1=k [ 1 ] , k2=k [ 2 ] , k3=k [ 3 ] ; /∗ cache key ∗/
for ( i=0; i <32; i++) { /∗ basic cyc le s ta r t ∗/

v1 −= ((v0<<4) + k2) ˆ (v0 + sum) ˆ ((v0>>5) + k3 ) ;
v0 −= ((v1<<4) + k0) ˆ (v1 + sum) ˆ ((v1>>5) + k1 ) ;
sum −= delta ;

} /∗ end cyc le ∗/
v[0]=v0 ; v[1]=v1 ;

}

Fig. 10. TEA in Hermes (top) and C (bottom)

implement this in Hermes requires storing additional values i “garbage” array.
Th garbage array is reset to zeroes when the expanded key (after calling the
central procedure) is uncomputed by uncalling the key expansion procedure.

Figure 12 shows Hermes code for speck128 [1,18] (a cypher used by NSA).
Again, only encoding is shown. The main thing to note is that the R procedure
are found in two copies, one (Rs) where the k parameter is secret, and one (Rp)
where it is public. This is because two of the calls pass a public loop counter
to k, while the other two calls pass part of a secret key to k. An extension
to the type system that avoids this codeduplication is being investigated. Some
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rc5 (u32 ct [ ] , u32 S [ ] )
{

u32 A, B;
A <−> ct [ 0 ] ; B <−> ct [ 1 ] ;
A += S [ 0 ] ; B += S [ 1 ] ;
for ( i=2; s i z e S) {
A ˆ= B; A <<= B; A += S[ i ] ;
B <−> A;
i++;

}
ct [ 0 ] <−> A; ct [ 1 ] <−> B;
}

#define ROL(x , r ) ((x<<r ) | ( x>>(64−r ) ) )

void RC5ENCRYPT(WORD ∗pt , WORD ∗ct )
{

WORD i , A=pt [0]+S [ 0 ] , B=pt [1]+S [ 1 ] ;

for ( i = 1; i <= 12; i++)
{

A = ROL(A ˆ B, B) + S[2∗ i ] ;
B = ROL(B ˆ A, A) + S[2∗ i + 1 ] ;

}
ct [ 0 ] = A; ct [ 1 ] = B;

}

Fig. 11. RC5 core in Hermes (left) and C (right)

speck128 (u64 ct [ ] , u64 K[ ] )
{

u64 y , x , b , a ;
y <−> ct [ 0 ] ; x <−> ct [ 1 ] ; b += K[ 0 ] ; a += K[ 1 ] ;

c a l l Rs(x , y , b ) ;
for ( i=0; 32) {

ca l l Rp(a , b , i ) ; i++;
ca l l Rs(x , y , b ) ;

}
for ( i=32; 0) { /∗ restore a and b ∗/

i−−; uncall Rp(a , b , i ) ;
}
y <−> ct [ 0 ] ; x <−> ct [ 1 ] ; b −= K[ 0 ] ; a −= K[ 1 ] ;

}
Rs(u64 x , u64 y , secret u64 k)
{ x >>= 8; x += y ; x ˆ= k ; y <<= 3; y ˆ= x ; }
Rp(u64 x , u64 y , public u64 k)
{ x >>= 8; x += y ; x ˆ= k ; y <<= 3; y ˆ= x ; }

Fig. 12. Speck128 in Hermes

uncomputation is needed to restore a and b to 0. This is not found in the standard
C implementation, where these are left uncleared.

We have implemented several other encryption algorithms in Hermes, includ-
ing Red Pike [16] (a cypher used by GCHQ) and Blowfish [10] (designed as a
replacement for DES). With the exception of key expansion, this was relatively
straight forward.

6 Conclusion and Future Work

We have presented a language Hermes for writing light-weight encryption func-
tions. Hermes ensures reversibility, so decryption can be done by executing



108 T. Æ. Mogensen

encryption procedures backwards, and can (given a suitable implementation)
protect against certain forms of side-channel attacks, such as timing based
attacks and leaks to memory. Hermes has a formal semantics for both the type
system and runtime behavior. These semantics can be used to prove both that
secret information does not leak into publica variables and that type-correct
programs are, indeed, reversible, but we do not have complete proofs for this
at the moment, mainly because we expect Hermes to evolve over time, so we
have postponed proofs until Hermes settles to a more stable form. The seman-
tic rules do not specify what happens if a condition in a rule fails, for example
when an array bound is exceeded. For the type rules, the obvious behaviour is
an error message. For the run-time semantics, it is less clear. Run-time error
messages can be helpful in locating errors, but they can potentially leak infor-
mation about secret values. So it might be better to continue execution with
some default behaviour.

We have in Standard ML made a reference interpreter for Hermes which
closely follows the semantic rules. The interpreter does not guarantee time-
invariant operations, and it reports errors when run-time errors are detected.
We also have an implementation of Hermes in WebAssembly [2]. We are working
on extending this to target CT-Wasm [13], a variant of WebAssembly that has
a public/secret type system similar to the one used here. Targeting CT-Wasm
should preserve the safety features of Hermes. Note that the aliasing restrictions
in Hermes make call-by-reference indistinguishable from call-by-value-return, so
this can be used as an optimisation when WebAssembly, as planned, supports
multiple return values.

We are currently working on implementing the Advanced Encryption Stan-
dared (AES) in Hermes. An issue with AES is that it uses secret information
as array indexes, which the current Hermes does not allow, so to implement it
may require a relaxation of this restriction, for example by ensuring the array is
fully cached, so access time is independent of the index. We are also considering
other extensions to Hermes, including sized boolean types (with values 0 and
2z−1) and read-only parameters to procedures. The latter will avoid the need
of duplicating the R procedure in Fig. 12. We are also considering additional
control structures, but will only add them by need. A more precise alias analy-
sis could relax some of the restrictions on parameter passing, but we have not
found any examples where this matters. At the moment, index checks and checks
that variables and arrays are zeroed before being disposed are done at run time.
Static verification of these would be beneficial, for efficiency and safety both.

Some side-channel attacks (such as Spectre [4]) target speculative execution.
By partially evaluating [3,6] Hermes programs with all public values (typically
key and block lengths) considered static will leave a straight-line unconditional
sequence of operations only involving secret values and constants, thus avoiding
speculative execution. This has the added benefit that it is easier to eliminate
index checks and checks for variables being zero at the end of blocks.

Public-key cyphers are not trivially reversible – that would defeat the pur-
pose – so implementing these in Hermes it not obvious. A possibility is to let
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the encryption function return not only the cypher text, but also additional
“garbage” information that must be discarded before transmitting the cypher
text. Similarly, decryption also produces garbage in addition to the original text.
As such, the reversibility of Hermes is not exploited, but is rather a hindrance.
The safety features still apply, though.

We thank our colleagues Ken Friis Larsen and Michael Kirkedal for co-super-
vising some student projects about Hermes and for fruitful discussions, and we
thank the students who worked on these projects.
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