®

Check for
updates

Distributed Heterogeneous N-Variant
Execution

Alexios Voulimeneas' ™) Dokyung Song', Fabian Parzefall!, Yeoul Na!,
Per Larsen!, Michael Franz', and Stijn Volckaert?

! Department of Computer Science, University of California, Irvine, USA
{avoulime ,dokyungs,fparzefa,yeouln,perl, franz}@uci .edu
2 Department of Computer Science, imec-DistriNet, KU Leuven, Leuven, Belgium
stijn.volckaert@cs.kuleuven.be

Abstract. N-Variant Execution (NVX) systems utilize artificial diver-
sity techniques to enhance software security. The general idea is to run
multiple different variants of the same program alongside each other while
monitoring their diverging behavior on a malicious input. Existing NVX
systems execute diversified program variants on a single host. This means
the level of inter-variant diversity will be limited to what a single plat-
form can offer, without costly emulation. This paper presents DMON,
a novel distributed NVX design that executes native program variants
across multiple heterogeneous hosts. Our approach greatly increases the
level of diversity between the simultaneously running variants that can be
supported, encompassing different ISAs and ABIs. Our evaluation shows
that DMON can provide comparable performance to traditional, non-
distributed NVX systems, while enhancing security.

1 Introduction

Memory errors are a continuous source of software vulnerabilities for C and
CH++ programs. Attackers and defenders are engaged in an arms race in which
the latter keep developing sophisticated defenses while their adversaries create
new exploits that bypass these defenses [46]. At present, adversaries rely on
intimate knowledge of the target environment to mount code-reuse [7,42,43] or
data-oriented attacks [9,22,23] that allow them to take control of the target or
leak its sensitive data. While memory safety techniques protect against these
threats, many of these techniques have not seen widespread deployment due to
performance [34,35] and compatibility problems [44]. Instead, defenders resort to
mitigations that have a more reasonable performance impact, e.g., control-flow
integrity (CFI) techniques [1,6], automated software diversity techniques [28], or
a combination thereof. However, both classes of defenses have a history of known
weaknesses: CFI defenses often still leave some leeway to mount control-flow
hijacking attacks [11,14,48]. Software diversity techniques have been bypassed
using brute-forcing and information leakage attacks, including attacks enabled
by micro-architectural side channels [4,18,24,43].

© Springer Nature Switzerland AG 2020
C. Maurice et al. (Eds.): DIMVA 2020, LNCS 12223, pp. 217-237, 2020.
https://doi.org/10.1007/978-3-030-52683-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52683-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-52683-2_11

218 A. Voulimeneas et al.

N-Variant eXecution (NVX) systems amplify the effectiveness of software
diversity techniques and increase resilience [3,5,12,20,21,25-27,31,32, 36,39, 50,
52-55]. An NVX system runs multiple diversified variants of the same pro-
gram in parallel on the same inputs while monitoring the variants’ behavior
for divergences. With the right selection of diversity techniques, NVX can make
exploitation substantially harder (and, in some cases, provably impossible) as
it forces adversaries to simultaneously compromise multiple program variants
without causing observable changes in their behavior. Existing NVX systems
have been particularly effective at stopping attacks that rely on knowledge of
the target’s absolute virtual address space layout [5,12,52], as well as attacks
that attempt to acquire that knowledge through information leakage [31]. How-
ever, these systems are not resilient to Position-Independent Return-Oriented
Programming (PIROP) attacks [16] and certain Data-Oriented Programming
(DOP) attacks [23], which build on knowledge of the program’s internal geom-
etry (e.g., relative data/instruction layouts) and/or data representation. The
main reason is that in previous NVX systems all the variants run on the same
machine. Thus, the amount of diversity that such systems can achieve is limited
to what a single platform can offer, without using costly emulation.

In this paper, we present DMON, an NVX system that leverages the diversity
that naturally exists across different platforms, thereby increasing resilience to
memory exploits. DMON runs each program variant natively on its own dedi-
cated machine and monitors divergent behavior between these distributed vari-
ants by cross-checking them at the system call boundary via a network. To
bypass DMON, adversaries would need to develop exploits that work simulta-
neously against the two or more different Instruction Set Architectures (ISAs)
and Application Binary Interfaces (ABIs) for which the program variants are
compiled.

Our contributions are as follows:

— We present DMON, the first system that combines ISA and ABI heterogene-
ity with N-Variant Execution. DMON distributes the execution of a set of
variants over a heterogeneous set of physical machines.

— We redefine semantic equivalence of system calls in the context of heteroge-
neous platforms. Based on this definition, we propose Platform-Independent
State Canonicalization (PISC), a novel technique that translates system call
states in different platforms into platform-independent states.

— We present ways to reduce the performance overheads associated with a dis-
tributed NVX system. Our results show that with the proposed performance
optimizations, DMON performs on par with traditional ptrace-based NVX
systems while providing stronger security guarantees.

— We evaluate DMON’s security on several server applications and show
that DMON makes code-reuse attacks substantially more difficult, and that
DMON naturally provides a high degree of structure layout diversity which
raises the bar for attacks that rely on consistent structure layout.

Distributed Heterogeneous N-Variant Execution 219

2 Background

Researchers in the information security [3,5,12,26,31,36,39,50,52-55] and soft-
ware reliability communities [20,21,25,27,32,38] have presented over a dozen
different NVX systems since 2006. Although serving different purposes, they do
have some essential similarities. All systems have the same high-level architec-
ture; two or more software variants execute simultaneously on the same physical
machine, while a monitoring component (on that same machine) compares the
variants’ overall behavior, provides them with identical inputs, and demulti-
plexes their outputs. Most monitors force the variants to execute in lock-step at
the granularity of system calls. Thus, the variants are suspended at every system
call entry and exit, and do not proceed until the system call numbers and argu-
ments have been cross-checked across all variants. In addition, the majority of
existing NVX systems cross-check behavior and replicate I/O by intercepting the
variants’ system calls. Most early systems used a dedicated monitoring process
that attaches to the variants and intercepts their system calls using the ptrace
API [5,20,32,39,53]. To avoid the high run-time performance overhead incurred
by context switching between a variant process and the monitor process, several
teams explored alternative designs that use binary rewriting [21], virtualization
features [26], or kernel modules [12,31,52,54] to intercept and cross-check system
calls more efficiently, within the variants’ processes and address spaces.

2.1 System Calls and I/0O Replication

Most NVX systems monitor behavior and replicate I/O at the system call inter-
face. This design lets the system monitor all behavior that can affect the integrity
of the OS or other processes, as well as all communication between the variants
and external entities. The monitoring and replication must be transparent to the
program variants and to the end-user, i.e., no observable functional differences
between native execution of a single variant and NVX of multiple variants. To
provide this guarantee, most NVX systems designate one variant as the leader,
while the others become followers. Whenever the variants attempt an I/O oper-
ation, the NVX systems ensure that only the leader variant actually completes
the operation, while the followers skip the operation and wait until they receive
the I/O results from the monitor.

2.2 ISA and ABI Heterogeneity

An underlying assumption of most NVX systems is that the program variants will
behave identically at the system call level when they receive equivalent, benign
inputs. This assumption no longer holds in our setting, where variants run on
processors with different Instruction Set Architectures (ISAs). Differences in the
endianness, register and pointer width, and the available system calls could lead
to observable (yet benign) differences in the variants’ behavior, which would all
cause false alarms in a traditional NVX system. In addition, the Application
Binary Interface (ABI) documents rules such as sizes of primitive data types,

220 A. Voulimeneas et al.

struct packing, calling conventions, etc. Many of these conventions also affect the
program behavior as observed from the system call interface. Therefore, we had
to carefully design DMON to tolerate divergences arising from the heterogeneous
ISA and ABI setting.

3 Threat Model

Throughout the rest of the paper, we will make the following assumptions about
the host system and the attacker. Our assumptions are consistent with related
work in this area [52].

Host Defenses. We assume that the standard set of mitigations are in place
on any of the physical machines DMON and the variants run on. Specifically, we
assume that Data Execution Prevention (DEP) is used, which therefore rules out
direct code-injection attacks. Likewise, we assume that all of the host systems
have Address Space Layout Randomization (ASLR) enabled. ASLR randomizes
the base addresses of the main program executable and shared libraries, as well
as the heap, stack, and any other mapped memory regions.

Remote Attacker. We assume that the attacker does not have direct physical
access to any of the machines DMON (or the variants) run on. The attacker can
only communicate with the protected application running on the leader machine
via a remote communication channel such as a network socket. The followers
are connected to the leader through a secure private network connection. The
adversary can, therefore, not communicate with the follower variants. We also
consider attacks on this private connection to be outside the scope of this paper.
Because the attacker is remote, we also assume that any run-time secrets embed-
ded into the variants (e.g., randomized base addresses) are not known a priori.
The goal of the attacker in this scenario is to take control of the leader variant,
e.g., by exploiting a memory-corruption vulnerability. We assume that the pro-
tected application has an arbitrary memory read/write vulnerability that the
attacker knows how to trigger.

4 DMON Design

DMON orchestrates and supervises the execution of a set of diversified program
variants running natively on machines that differ in their instruction set archi-
tecture. Like most other NVX systems, DMON uses a leader/follower-model for
I/O replication. The designated leader variant is the only variant allowed to
perform externally observable I/O operations such as sending or receiving data
from a network socket. DMON forces follower variants to skip these I/O oper-
ations and instead provides them with the leader’s 1/O results, thus emulating
the original operation unbeknownst to the follower.

Similar to other security-focused NVX systems such as ReMon [52] and
MvArmor [26], DMON executes all security sensitive system calls in lock step.
Whenever the variants attempt to execute a sensitive system call, DMON ensures

Distributed Heterogeneous N-Variant Execution 221

jj m 000)
9 X

Follower O 8 W_' Leader

‘ Variant . MON ‘@/ L-MON ‘ Variant 4
syscall(.. syscall(...) (;)
(>
Kernel Kernel
Physical host 1 Physical host 2

Fig. 1. DMON’s basic components and interactions.

that the variants can neither enter the system call routine, nor exit from it until
DMON has ensured that all variants have reached equivalent states. We distin-
guish between the following components of a running DMON system:

1. Leader Variant. Only the designated leader variant is allowed to perform
externally observable I/O. As in any other NVX system, DMON requires that
there is exactly one leader variant.

2. Follower Variants. Follower variants skip externally observable I/O opera-
tions and use the leader’s 1/O results instead.

3. Monitors. DMON uses two types of monitors: the (single) L-MON monitor
supervises the leader variant, while every follower variant is supervised by its
own F-MON monitor.

4. RC-COM. A reliable communication component used to exchange system
call metadata between the monitors. Separating the communication logic into
its own layer lets the monitors communicate over a variety of channels.

These components interact whenever the variants execute system calls, as
shown in Fig. 1. Whenever a leader or follower variant attempts to enter or exit
from a system call (@®), the corresponding L-MON or F-MON interrupts and
suspends the variant, reads the call number of the interrupted system call, and
invokes a specialized handler routine within the monitor process (@), which
implements the cross-checking and replication logic for that system call.

The monitors use cross-checking handlers when they interrupt variants upon
entering a system call. In F-MON, the cross-checking handler gathers informa-
tion about the variant’s state, sends this information to L-MON (®), and waits
for L-MON to confirm that the follower variant is in a state equivalent to the
leader variant (@). In L-MON, the cross-checking handler waits for incoming
state information from F-MON, compares that state information with the leader
variant’s state, and informs F-MON about the results of the comparison.

The state information consists of system call numbers and arguments, with
the latter often consisting of pointers to complex data structures (e.g., I/O vec-
tors). The cross-checking handlers serialize these corresponding data structures
and append the serialized data to the state information, thereby allowing L-
MON to check the variant states for deep equivalence (two data structures are

222 A. Voulimeneas et al.

deeply equivalent when the raw data they contain is identical, even though the
data or the data structures may be stored at different addresses). If the variant
states do not match, DMON takes that as a sign of potential compromise and
aborts execution to protect the host system.

Naive cross-checking of these variant states triggers false alarms for divergent
behavior because the system call interfaces, calling conventions, etc. differ across
platforms. DMON transforms system call states to platform-independent states
before comparing them, to avoid alarms for the expected platform differences
(see Sect.4.1). If the states match, the cross-checking handler allows the leader
variant to proceed and to enter the kernel-space system call routine. The follower
variants can also proceed, but may (optionally) see their system call number
replaced by that of the sys_getpid routine in case they attempt to perform an
externally observable I/O operation. This mechanism for skipping system calls
was also used in prior work [39]. The monitors use replication handlers when
they interrupt variants that return from a system call. Replication handlers for
I/0O system calls broadcast the system call results from the leader variant to the
followers. Replication handlers for other system calls are generally no-ops.

4.1 Platform-Independent State Canonicalization

In traditional NVX systems, all program variants are compiled for the same tar-
get architecture and execute on a single machine. In DMON, on the other hand,
individual variants run on different physical machines and thus the variants may
target different ISAs/ABIs. Heterogeneous platforms expose different system call
interfaces. Without awareness of this heterogeneity, cross-checking at this inter-
face leads to false alarms, where the NVX system detects divergence despite the
program behavior being equivalent. We find that the root cause of this type of
false alarm is the lack of understanding of semantic equivalence of system calls
in the presence of heterogeneous platforms. To broaden this understanding, we
define semantic equivalence of system calls as follows:

Definition 1. The functionality of a syscall is a transformation of one user-
observable system state to the other, which constitutes observable behavior. We
do not consider behavior observable if it is only visible through side-channels.

Definition 2. Given a syscall (¢, p), where ¢ is a vector of configuration param-
eters and p is a vector of data parameters, a unique ¢ on platform A determines
the functionality of the system call, which we denote as F(p). ¢ includes the
system call number, as well as any flags, modes, etc. that the syscall accepts as
parameters to configure its behavior.

Definition 3. F(p) and F'(p’) are semantically equivalent iff F and F' are
mapped to the same system call functionality and parameters p and p’ are iden-
tical in a serialized form.

Based on the definition of semantic equivalence, we introduce a technique
called platform-independent state canonicalization (PISC), which marshalls

Distributed Heterogeneous N-Variant Execution 223

syscall states into a canonical syscall state. To do so, DMON internally main-
tains a canonical representation of system call functionalities and serialization
rules. By cross-checking this canonical state, DMON eliminates false positive
detections that stem from ABI/ISA heterogeneity.

Semantically equivalent system calls must be mapped to the same canonical
system call state. To preserve this property, we define a set of rules that DMON
should follow to perform platform-independent state canonicalization (PISC).

Rule 1 - Configuration Constant Canonicalization. According to our definition
of semantic equivalence, the configuration parameters of a system call (¢) include
the system call number, syscall flags and modes, the union of which determines
the system call functionality. These constant values can be different across ABIs
and platforms. For example, the sys_read system call has system call number
0 on x86-64 platforms and 3 on i386 platforms. Directly comparing these con-
stants, as traditional NVX systems do, will cause a false alarm even if they are
“semantically” equivalent.

Rule 1 resolves this issue, by translating these configuration parameters to a
canonical representation before comparing them. PISC compiles this rule auto-
matically by reading the system call tables on the fly and replace system call
numbers, with their corresponding system call name before comparison. For
flags, modes and any other configuration constant defined as a macro inside
glibe, PISC follows the same principle. This is a fully automated procedure and
thus allows DMON to seamlessly extend to additional platforms.

Rule 2 - Struct Layout Canonicalization. Data parameters p of a system call
may include some struct type parameters. Determining equivalence of struct
type parameters is challenging because C structs are not necessarily bit-for-bit
identical across ABIs, even when the arguments are semantically equivalent;
different platforms define different packing (i.e., padding) and alignment rules
for a data structure. To allow for bitwise comparisons of such structs, PISC
canonicalizes structs to an internal “shadow” type that uses fixed size fields and
is carefully constructed so it has the same layout across platforms. Again, this
procedure is completely automated and thus extensible to new architectures.

Rule 8 - Implicit Parameter Canonicalization. Beyond differences in the syscall
numbers for the same system call, heterogeneous-ISA variants may use similar
yet different system calls for the same functionality, because not all system calls
are available on every platform. According to our definition of semantic equiva-
lence of system calls, such similar system calls represent an equivalent function-
ality F. Checking equivalence of the data parameters p in this case serves as a
key to determine semantic equivalence of these system calls.

x86-64 kernels, for example, implement both sys_open and sys_openat.
ARMvS kernels, on the other hand, do not implement sys_open. ARMvS8 vari-
ants therefore always use sys_openat to open a file. sys_openat is similar to
sys_open, but has an additional argument that can hold the file descriptor of
a directory. If the pathname argument of the sys_openat is relative, then it is

224 A. Voulimeneas et al.

interpreted relative to the directory specified in the additional argument. In this
concrete example, PISC maps sys_open and sys_openat to the same system call
functionality and it fully resolves equivalence of the data parameters including
the directory paths that the variants are trying to access.

4.2 Distributed Monitor Design

Prior work often used a central monitor process which simultaneously supervised
all of the variants [5,39,53]. Subsequent research showed that this centralized
model was overly focused on simplicity and security at the expense of perfor-
mance, and suggested various designs in which each variant was supervised by a
dedicated monitor instance [21,26,31,52,54,55]. This dedicated monitor instance
could be loaded directly into the variants’ address spaces, thereby trading off the
isolation between the variants and the monitor for reduced variant-monitor com-
munication overhead. DMON combines elements of both designs. Since we run
ISA-heterogeneous variants on different machines, we cannot use a central mon-
itor that attaches locally to all variants. Instead, we use a dedicated monitor for
each variant and run the monitor on the same machine as the variant it super-
vises. Our design does, however, enforce strict isolation between the variant and
its monitor by running the monitor as a separate process that attaches to the
variant using the ptrace API.

4.3 Inter-Monitor Communication

F-MON and L-MON communicate whenever the variants execute a system call.
This exchange may include system call numbers, serialized system call argu-
ments, system call results, or instructions on how to proceed from a system
call entry point (see Sect.4). In many cases, particularly when the system call
being executed is deemed security-sensitive, communication must happen syn-
chronously. For instance, L-MON cannot allow the leader variant to proceed
past a system call entry point until all instances of F-MON have serialized the
state of their corresponding variant, and until they have sent this state to L-
MON. F-MON needs to wait even longer as it cannot allow the follower variants
to proceed until L-MON has compared the variant states and it has received
L-MON’s confirmation that the states match. To achieve good performance,
DMON therefore requires a reliable inter-monitor communication channel with
minimal latency and high bandwidth. We experimented with various designs
of this communication channel and implemented them in our RC-COM, which
exposes the inter-monitor communication API to our monitors.

Network Protocol Choice. The most obvious protocol that meets our relia-
bility demands is TCP, which we used as the basis for our first implementation
of RC-COM. However, even with extensive tuning, our TCP-based implementa-
tion had poor throughput and high latency. As an alternative, we therefore used
ENet, a lightweight UDP-based protocol that also offers reliable in-order and
error-free data transfer [17]. Besides the networking hardware, the operating

Distributed Heterogeneous N-Variant Execution 225

system also affects the communication bandwidth and latency. When a net-
work adapter receives a packet, for example, the OS first stores the packet in a
kernel-space buffer, before copying it into the receiving application’s memory and
transferring control to the application. Remote Direct Memory Access (RDMA)
avoids these extra copy operations by allowing two communicating peers to read
or write directly from or to the other peer’s application memory, thus bypassing
the kernel’s networking stack. We implemented an RDMA-based version of our
RC-COM using Mellanox ConnectX 100 gigabit Ethernet interfaces [33] and the
Mellanox Messaging Accelerator user-space networking library [29].

4.4 Optimizations

To further improve DMON’s performance, we implemented several optimizations
that reduce the number of the data packets exchanged by our monitors.

Permissive Filesystem Access. Traditional NVX systems allow one variant
to perform all 1/O operations and then replicate the results to the other variants.
Even though this replication mechanism seamlessly provides identical inputs to
all variants, it is not always necessary. Specifically, there is no need to replicate
read accesses to read-only files that were identical on all physical machines when
DMON started, as long as the files have not been modified while DMON was
running. We refer to such files as static files and designed the replication handlers
for read-only operations such as sys_read and sys_fstat so that all variants may
(optionally) read static files directly from their local file system, thus bypassing
the I/O replication. For this optional optimization, DMON requires that the
application’s root directory has the same path name on all machines as well as
identical content including sub-directories with the exception of executables and
shared libraries.

Asynchronous Cross-Checking. Our basic approach described in Sect. 4 adds
considerable overhead to every system call invocation as every cross-check hap-
pens synchronously and requires at least two network round-trips; one for F-
MONSs to send the system call states of their supervised variants to L-MON,
and one for L-MON to instruct F-MONs on how to proceed (abort or continue
execution of the variant). We developed a technique which we call asynchronous
cross-checking to reduce this overhead. Inspired by previous work [26,52], the
idea is to classify system calls into three categories—highly sensitive, moderately
sensitive, and non-sensitive—based on the system call number and/or arguments.
With asynchronous cross-checking, highly sensitive system calls still execute in
lock-step, as before. When F-MON deems a system call moderately sensitive,
however, it still sends the system call state information to L-MON, but then
immediately resumes execution of the supervised variant without waiting for a
reply from L-MON. L-MON eventually receives the state information and may
detect a divergence. In that case, L-MON will instruct F-MONSs to abort execu-
tion through a separate error channel that is used only for this specific purpose.
Non-sensitive system calls can execute without any cross-checking.

226 A. Voulimeneas et al.

5 Implementation

We implemented DMON for GNU/Linux. DMON runs natively on the x86-64
and ARMvS architectures. DMON also has partial support for ARMv7 and 1386.
Currently, our prototype has 35k lines of C and C++ code and supports variants
compiled with the stock versions of gcc and Clang. We do, however, require
the variants to link against our patched C library (see Virtual System Calls
below for details). DMON currently supports 100 system calls. Adding support
for additional system calls generally requires a trivial amount of engineering
effort (typically less than 10 lines of code), as DMON defines helper macros to
replicate and cross-check most types of system call arguments (see Sect. 4.1). Our
helper macros resemble those used in ReMon [52], but differ from them as they
automatically apply PISC, thus making our macros fully portable. The type of
cross-checking depends on the security-sensitivity of the call (see Sect. 4.4).

DMON always cross-checks highly sensitive system calls in lock-step. Mod-
erately sensitive calls are checked asynchronously. Non-sensitive calls are not
checked at all. The type of replication depends on the kind of results the sys-
tem call returns. DMON enforces replication for all I/O operations that are not
reads from static files (see Sect.4.4), and for all system calls that return mutable
program state. Read operations from static files execute without replication if
the permissive filesystem access optimization is enabled. System calls that must
be executed by all variants are not subject to any replication.

Virtual System Calls. On most architectures, Linux loads a Virtual Dynamic
Shared Object (VDSO) or vsyscall page into the address spaces of all user-space
programs. These executable code pages expose virtual system calls, which allow
the program to execute certain system calls (e.g., sys_gettimeofday) without
switching into kernel space. Most NVX systems either hide, replace, or disable
the VDSO and vsyscall page because virtual system calls are invisible to the
monitor. For our prototype, we patched the C library our variants link against
so that virtual system calls are disabled.

6 Security Analysis

Scope. NVX systems can prevent usage of absolute code addresses by adopting
Address Space Partitioning (ASP) [12,31,50] that lays out the variants’ code sec-
tions to have non-overlapping/disjoint virtual addresses. In this Section, we focus
on evaluating the additional security DMON can provide through ISA/ABI-
heterogeneity. Specifically, we show the extent to which ISA/ABI-heterogeneity
prevents concrete code-reuse and data-only attacks that cannot be easily stopped
using existing NVX systems.

Analysis Targets and Configurations. We used four popular server applications—
Nginx 1.14.2, Lighttpd 1.4.52, Redis 5.0.1, and ProFTPD 1.3.0—as our analy-
sis targets, which is in line with previous work on security-oriented NVX sys-
tems [26,31,52,54]. We evaluated the security of a heterogeneous configuration
with one program variant compiled for Intel x86-64 and one for ARMv7.

Distributed Heterogeneous N-Variant Execution 227

6.1 Code Layout Diversity

Existing NVX systems that deploy address space partitioning (ASP) can be
bypassed using attacks that rely on partial overwrites of code pointers such as
return addresses or function pointers [13,16]. The basic idea is to force the pro-
gram to produce a (number of) legal code pointer(s) at memory locations that
the attacker can overwrite. The attacker then overwrites the least significant bits
or adds arbitrary offsets to each of these code pointers, and thereby diverts the
execution of the program to a series of attacker-chosen gadgets (i.e., instruction
sequences ending with indirect branches, such as return instructions). In the
PIROP attack, for example, Goktas et al. exploited a vulnerability in the Aster-
isk communication server that allowed them to produce legal return addresses
at an attacker-controlled position on the stack [16]. They then overwrote the
least significant byte of each of these return addresses to build a PIROP gadget
chain, which they then invoked by exploiting another vulnerability.

These attacks can in principal bypass existing NVX systems because they do
not require any information leakage (which the NVX system would detect), and
because the same partial pointer overwrites can achieve the same results in each
variant. In this section, we show that DMON makes these position-independent
code-reuse attacks far more challenging because ISA/ABI-heterogeneity sub-
stantially reduces the number of position-independent gadgets available to the
attacker.

Position-Independent Gadget Availability. Position-independent gadgets are
instruction sequences that can be reliably invoked by patching legal code point-
ers. We consider two ways to patch legal code pointers. First, an attacker could
overwrite an offset variable that is later added to a code pointer in a pointer
arithmetic operation. This primitive allows attackers to reliably invoke any gad-
get, as long as the internal layout of the target binary is known. Second, the
attacker could overwrite the least significant bits of a code pointer directly using
a memory write vulnerability. This primitive is far less potent than the former,
as it allows the attacker to overwrite only the 8 least significant bits (i.e., one
byte). Overwriting more than one byte is not possible unless the attacker knows
the base address of the target binary because the ASP scheme randomizes all
but the 12 least significant bits of each base address.

We compiled a list of the position-independent gadgets in both our x86-64 and
ARMvT binaries as follows. We first collected the addresses of (i) all instructions
that immediately follow call instructions, and (ii) all address-taken functions in
the program. The former is an approximation of the set of legal return addresses
that could exist in the program’s address space at any given point during its
execution. The latter is the set of other code pointers that could be found in
the program’s memory. Combined, this list approximates the set of pointers
that could potentially be patched by attackers to construct position-independent
code-reuse payloads. We then used Ropper to generate lists of regular ROP
gadgets consisting of 15 instructions or less [40]. This, again, is consistent with
related work [16]. Next, we combined the two lists for each binary as follows. For

228 A. Voulimeneas et al.

‘ [x86-64 [x86-64/ARMvVT (any/syscall# /argl/arg2/arg3) ‘ ‘ [] x86-64 [x86-64/ARMv7 (any/syscall# /argl/arg2/arg3)
-10°
3 30
2 20
gE8S g SERE 5EEE Sx5% EEE
MilscEss | [xsk ngztg £5584 10 x2Z8% £ 282
3588 ||5gg5% | |RcSg5s ||§243%8 SER&% Sedsc
S33335 ||25S338 ||42225 ||2s32s:2 $3323 NEEE
0 0
Nginx Lighttpd Redis ProFTPD Nginx Lighttpd Redis ProFTPD
(a) Offset overwrite (b) Partial pointer overwrite

Fig. 2. Number of position-independent code-reuse gadgets.

every code pointer in the first list, we calculated the (i) addresses of all gadgets
relative to the pointer, and (ii) absolute addresses of gadgets that only differ
from the code pointer in their 8 least significant bits. The former is the set of
gadgets reachable through offset overwrites, while the latter is the set of gadgets
reachable through partial pointer overwrites.

Next, we correlated the position-independent gadgets found for the x86-
64 binary with those found for ARMv7. For each x86-64 gadget, we checked
whether there is an ARMv7 gadget that can be reached using the same offset
overwrite/partial pointer overwrite. We then eliminated gadgets whose absolute
address or offset from the source code pointer is not 4-byte aligned, since code
pointers patched in either way would be unaligned on ARMv7 and would trigger
an unaligned instruction exception when the gadget is invoked. We collected 2553
code pointers from Nginx, 1988 code pointers from Lighttpd, 1732 code pointers
from Redis, and 4514 code pointers from ProFTPD. Figure 2 shows how many
gadgets can be reached on average from each code pointer by offset overwrite
and partial pointer overwrite attacks. In a traditional NVX system where all
variants are compiled for Intel x86-64, all of the gadgets identified in the x86-64
binary would survive. In contrast, in all four of our target programs, and for
both code pointer patching strategies, less than 3.3% of the gadgets survive in
an NVX configuration with a x86-64 variant and an ARMv7 variant.

Position-Independent Gadget Semantics. The final step of an exploit is often
to call a security-sensitive function or a system call with attacker-specified
arguments (e.g., execve with “/bin/sh” as argument for a shell). The ABI-
heterogeneity provided by DMON imposes another constraint on chaining gad-
gets to build such an exploit. Because different architectures have different calling
conventions for system calls and subroutines, as shown in Table 1, the attacker
should chain a sequence of gadgets that prepare the same set of arguments, but
in a different way for each architecture. For example, in an ARMv7 variant, the
attacker must use r7 to prepare a system call number, whereas in a x86-64 variant
the same attacker must use rax. To show the difficulty of constructing a code-
reuse attack that performs one or more system calls and/or subroutine calls, we
analyzed the semantics of position-independent gadgets surviving under DMON.
Specifically, we looked for gadgets that read a value from memory and write that

Distributed Heterogeneous N-Variant Execution 229

value into the system call number register, or the registers for one of the first
three arguments of a system or function call. As shown in Fig. 2, only a small
fraction of the position-independent gadgets have suitable semantics for argu-
ment preparation (see 3rd to 6th bars in the figure). More interestingly, system
call number preparation gadgets are rare compared to other argument prepara-
tion gadgets. In a standalone ARMv7 binary of Nginx, Redis, and ProFTPD,
we could not find a single partial-pointer-overwrite based position-independent
gadget which can load a system call number. Obviously then, we also could not
find such gadgets among those that survive across architectures.

Table 1. Comparison of function and syscall conven- Table 2. Number of diversified

tions. data structures.

arch/ABI |syscall#|argl|arg2|arg3|arg4| arg5 larg6 larg7 |result Artificial DMON | Total
x86-64 - rdi rsi rdx rex r8 r9 - rax Nginx 1.14.2 53 335 365
arm/EABI 0 rl r2 r3 Stack|Stack|Stack|r0-r3 Lighttpd 1.4.52|15 95 116
x86-64 rax rdi |rsi |rdx |r10 |r8 r9 - rax Redis 5.0.1 57 158 209
arm/EABI|r7 r0 rl r2 r3 rd r5 ré r0 ProFTPD 1.3.0(23 72 84

6.2 Structure Layout Diversity

Apart from code layout diversity we achieve from ISA-heterogeneity, DMON
naturally provides data structure layout diversity. Due to differences in sizes
of pointers and primitive data types, as well as differences in struct packing
and alignment, data structures rarely have the same sizes and layouts across
platforms. Diversifying structure layouts greatly raises the bar for attacks that
require knowledge about data structure definitions including certain types of
data-only attacks that rely on deterministic placement of structure fields [15,23].
Previous NVX systems could achieve structure layout diversity by artificially
reorganizing structures at compile time. However, in practice, only a limited num-
ber of structs can be diversified at compile time. Specifically, it is not safe to
diversify (i) structures used as arguments or return types of external library func-
tions, (ii) structures with an initialization list, (iii) structs cast to different types,
etc. [10,30]. We implemented existing type-based structure layout randomization
techniques [10,30], and we examined struct layouts in a set of server applications
to show how much structure layout diversity DMON can naturally achieve, com-
pared to the number of structures that can be artificially diversified. As shown in
Table 2, our heterogeneous NVX system provides a much higher degree of struc-
ture layout diversity than one can achieve using a compiler-based technique.

Case Study: ProFTPD SSL Private Key Leak. Hu et al. demonstrated an infor-
mation disclosure attack on ProFTPD, in which the attacker locates a base
pointer to an SSL context data structure, and then uses Data-Oriented Pro-
gramming (DOP) gadgets to traverse through the context and 6 other data

230 A. Voulimeneas et al.

structures, ultimately reaching a private key, which is then leaked to a remote
attacker [23]. DMON can prevent this attack because the layouts of the 6 data
structures differ across architectures. We examined the relevant data structures
in ARMv7 and x86-64 binaries of ProFTPD and found that 4 of the 6 pointer
fields that need to be dereferenced in this attack are located at different offsets
in the two binaries. A DOP exploit that traverses through the structs therefore
cannot simultaneously reach and leak the private key on both platforms without
triggering a divergence in DMON.

7 Performance Evaluation

We conducted an extensive performance evaluation of DMON using handwrit-
ten microbenchmarks (see Sect. 7.1), as well as popular high-performance server
applications (see Sect.7.2). We tried two different configurations:

The low-end configuration had an ARMvS variant running on a Raspberry Pi
3 Model B board with a quad-core 1.2GHz Broadcom BCM2837 64-bit CPU and
1GB of RAM, running the 64-bit ARM Debian 9 distribution of GNU/Linux, as
well as an x86-64 variant running on a desktop machine with a quad-core Intel
i5-6500 CPU and 16 GB of RAM, running the x86-64 version of Ubuntu 16.04.5
LTS. The machines were connected through a private 100 megabit Ethernet
connection with approximately 0.5 ms latency.

The high-end configuration had an x86-64 variant running on a desktop
machine with an octa-core Intel i9-9900K CPU and 32GB of RAM, and an
x86-64 variant running on a machine with a quad-core Intel i5-6500 CPU and
16 GB of RAM. Both machines ran the x86-64 version of Ubuntu 16.04.5 LTS
and were connected using a private 100 gigabit connection between two Mel-
lanox ConnectX Ethernet interface cards. These RDMA-capable cards support
the Mellanox Messaging Accelerator, a user-space networking library with low
latency.

In both configurations, we ran the leader variant on the slower machine. We
evaluated two implementations of RC-COM (see Sect.4.3) for the low-end con-
figuration. The first implementation, which appears as KTCP in the graphs,
uses standard TCP/IP. The second implementation uses the ENet protocol. For
the high-end configuration, we additionally evaluated an implementation that
leverages the Mellanox Messaging Accelerator. This implementation appears as
UTCP (short for user-space TCP) in the graphs. We could not test this UTCP
implementation for low-end configuration as it was not supported by our ARMv8
board. Finally, we evaluated the impact of our replication and cross-checking
optimizations described in Sect. 4.4. Our Asynchronous Cross-Checking and Per-
missive Filesystem Access optimizations appear as ACC and PFA respectively
in the graphs.

7.1 Microbenchmarks

To measure the overhead introduced by DMON, we designed microbenchmarks
to test our optimizations (see Sect.5). We used the following system calls:

Distributed Heterogeneous N-Variant Execution 231

1. sys_read(STATIC_FILE_FD, buf, 512) is treated as a moderately sen-
sitive system call. As such, this microbenchmark benefits from our asyn-
chronous cross-checking optimization and skips replication if all optimizations
are enabled (see Sect.4.4).

2. sys_getcwd(buf, 512) The results of this system call do not need to be
replicated, as long as the current working directory is either the application’s
root directory, or one of its subdirectories (see Sect.4.4).

3. sys_sched_yield() is a representative of system calls that require neither
cross-checking nor replication.

Figure 3(a) shows the execution time under DMON’s hign-end configuration
relative to the native execution time. We used our UTCP implementation of
RC-COM for all experiments, but did run separate tests with and without our
permissive file access (PFA) and asynchronous cross-checking (ACC) optimiza-
tions. We also measured the execution time without cross-checking and replica-
tion (PTRACE). This experiment shows that the ptrace API is the main perfor-
mance bottleneck in our system. Prior work illustrates that replacing ptrace-
based monitoring by in-process alternatives allows for a much wider range of
security-performance trade-offs [26,52].

60

48.95
45.01
45.01

50

42.47

T4 3100

37.90

T 3190

35.48
37.90

40

32.86

+ UTCP

30 UTCP + PFA
S UTCP + PFA + ACC

20
W PTRACE

SYSCALL RUNTIME OVERHEAD

29999999990 09900000000
4444444404404 00044
PE500990009906809096494
$33333IIIIIITIIILITL
$40400000000000000041
$8834488834480844 35 g
R22222222220220022 -8

o
B
=
o
)
m
o
=
=
S

SCHED_YIELD
(a) Fully distributed ptrace-based NVX

—
o
©

5.49

2 UTCP

UTCP + PFA
N UTCP + PFA + ACC

3.00

SYSCALL RUNTIME OVERHEAD
1.61

:
.
N o ~oS
2.00 ‘ = s2s 8 8 S S o
« - e — =]
1.00 i N pees Q 1384 3
| \ 4+ § 233 %
TN 2N 2N

0.00
READ GETCWD SCHED_YIELD

(b) Proof of concept distributed in-process NVX
Fig. 3. Microbenchmarks for high-end configuration
The results show that the overhead can be attributed to the network com-

munication of our replication and cross-checking mechanisms, and the context
switching caused by ptrace. PFA reduces the overhead of read from 48.95x to

232 A. Voulimeneas et al.

42.47x, but does not affect the other benchmarks. ACC further decreases over-
head of read and getcwd, from 42.47x to 37.04x and from 45.01x to 39.39x
respectively. sched_yield’s performance is unaffected, since DMON does not
perform any cross-checking for this system call. Finally, the rightmost columns
in Fig.3(a) indicate that the context switching overhead of ptrace is by far
the biggest contributor to DMON’s overhead. We hypothesized that monitoring
non-sensitive system calls in-process, as was done in prior work [21, 38, 52], would
substantially reduce the context switching overhead, and set up an experiment
to confirm this hypothesis. Specifically, we implemented a distributed in-process
NVX system using the syscall_intercept [45], and evaluated it on the same
microbenchmarks we used for the ptrace-based prototype. Our in-process pro-
totype implements the optimizations described in Sect. 4.4, but only supports a
small set of system calls. Figure 3(b) shows that in-process monitoring reduces
the per-system call overhead from 32.86-37.90x to only 6-10% with all opti-
mizations enabled.

10000

s 1625
1801

<
@
o
=1

] »KTCP

1000 =
KTCP + PFA

KTCP + ACC

100 & ENET

% ENET + PFA

= ENET + PFA + ACC

NORMALIZED RUNTIME OVERHEAD

100000
IIKTCP

10000 KTCP + PFA

KTCP + ACC
1000

T ENET

NORMALIZED RUNTIME OVERHEAD

~
<
100 3 - o N UTCP
Sgn o N oo NG
10 G o cEen N~ G #%UTCP+PFA
¢ << <ENG
§I gx SS<ENY I W UTCP + PFA + ACC
, B §§ \| R\
LIGHTTPD 1.4.52 NGINX 1.14.2 REDIS 5.0.1

(b) High-end configuration

Fig. 4. Server benchmarks in two configurations

7.2 Server Benchmarks

We evaluated DMON on 3 popular server applications—Nginx 1.14.2, Lighttpd
1.4.52 and Redis 5.0.1—that were also used to evaluate prior work [21,26,31,52].
For each of our experiments, we connected a benchmarking client to the leader
machine through a 100 megabit Ethernet connection (for our low-end configura-
tion) or a 1 gigabit Ethernet connection (for the high-end configuration). Figure 4
shows our results. We used the wrk client to evaluate Nginx and Lighttpd, and

Distributed Heterogeneous N-Variant Execution 233

the redis-benchmark utility to evaluate Redis. We configured wrk to repeatedly
request the same static 4KB web page for 10s using 10 parallel connections, and
redis-benchmark to simulate 50 clients issuing 100,000 requests in total. Run-
ning redis-benchmark under DMON’s slowest configurations would take over a
day, so we skipped them and denote it as N/A in Fig. 4. The latency on the 100
megabit link was just under 0.5 ms, whereas the latency on the 1 gigabit link
was under 0.1 ms. With all of DMON’s optimizations enabled, the performance
overheads ranged between 7.03x and 21.71x for the low-end configuration, and
between 4.52x and 6.65x for the high-end configuration.

7.3 Comparison with Other NVX Systems

We compared the performance of DMON with traditional NVX systems. Thanks
to our inter-monitor communication optimizations, DMON achieves similar (or
better) performance than traditional single-host NVX systems with ptrace-
based monitors. Specifically, GHUMVEE (the state of the art ptrace-based
NVX system) was tested on the same server applications (albeit slightly older
versions), and in highly similar conditions, with a 1 gigabit link that had less than
0.1 ms of latency. GHUMVEE’s overhead on Lighttpd was 7.0x on a saturated
server (vs 5.43x for DMON), and 12.48x for Redis (vs 6.65x for DMON) [52].
Delegating the monitoring of non-sensitive system calls to an in-process monitor
would substantially reduce the overhead, as was shown in prior work [21,38,52],
as well as in Sect. 7.1. We summarize our findings in Table 3. DMON (IP) refers
to our PoC distributed in-process prototype and DMON (CP) refers to our dis-
tributed ptrace-based implementation. As GHUMVEE was not evaluated on
microbenchmarks, and DMON (IP) currently does not support server applica-
tions, these numbers are shown as N/A in the table.

Table 3. Comparison with other NVX systems.

NVX system Monitor type | Distributed | Overhead

System call Server apps
GHUMVEE [52] | CP No N/A 7.0-12.48x
DMON (CP) |CP Yes 32.86—37.90x | 4.52—6.65 %
Varan [21] P No 36-139% 11-37%
DMON (IP) |IP Yes 6—61% N/A

8 Discussion

Performance Improvements. While developing DMON, we identified a promising
path to substantially improve our monitoring performance. We could replace
our ptrace-based monitoring mechanism with an in-process alternative based
on API call interception [21], or hardware-based virtualization extensions [26].
Securing an in-process monitoring design is challenging, however.

234 A. Voulimeneas et al.

Leveraging Hardware Features. A potential advantage of running variants on
different architectures is that the NVX system could leverage hardware security
features available on one platform to protect software running on other platforms.
A hypothetical configuration in which DMON runs one variant on an ARMv8.5-
A CPU and one variant on an Intel x86-64 CPU could be used to bring the
benefits of memory tagging to Intel x86-64 software.

Micro-Architectural Attacks. While our primary focus was on defending against
memory exploits, we believe DMON might also be able to stop certain micro-
architectural attacks. Rowhammer attacks in particular would become exceed-
ingly hard to launch against DMON [19,41,49]. To build reliable Rowhammer
attacks, the attacker needs to know exactly how the memory controller translates
physical memory addresses into DRAM addresses [37,47]. Translation schemes
differ greatly across platforms, however, which makes Rowhammer attack pay-
loads non-portable.

9 Related Work

N-Variant eXecution. Inspired by Chen and Avizienis’ seminal work on N-
Version Programming [2,8], Berger and Zorn proposed a system for probabilis-
tic memory safety that could simultaneously execute identical variants with
differently seeded randomizing memory allocators [3]. This system only sup-
ported trivial applications, however. Cox et al.’s N-Variant Systems monitored a
much wider array of system calls, thus supporting variants of complex applica-
tions [12]. Subsequent publications explored consistent delivery of asynchronous
signals [5,39], dealing with shared memory [5], thread synchronization [51], or
address-dependent behavior [53], and new schemes for generating software vari-
ants [26,31,50,54]. Other researchers suggested to use NVX systems for live
patch testing [20,21,25,27,32,38].

10 Conclusion

We presented DMON, a novel, distributed N-Variant Execution system that
leverages diversity in ISAs and ABIs to protect against memory corruption
attacks. To bypass DMON, attackers must provide exploits that simultaneously
work on different platforms. DMON’s heterogeneous platform setting naturally
provides code layout diversity which greatly raises the bar for code-reuse attacks,
and it naturally provides a higher level of structure layout diversity than what
existing compiler-based techniques can provide. To avoid benign divergences
caused by expected cross-platform differences, we propose PISC, a technique that
transforms system call states into platform-independent states. Also, we intro-
duce new optimization strategies to alleviate performance issues that are unique
to the distributed NVX setting. Our performance evaluation shows that the
proposed optimizations, combined with an optimized network protocol, greatly
reduce the performance overhead without sacrificing DMON’s security.

Distributed Heterogeneous N-Variant Execution 235

Acknowledgments. The authors thank Kostis Kaffes, Marios Pomonis, Georgios
Detorakis, Lefteris Kokoris-Kogias, Anil Altinay, Mohaned Qunaibit, Paul Kirth, David
Gens, Adrian Dabrowski and our reviewers. This material is based upon work partially
supported by the Defense Advanced Research Projects Agency under contract FA8750-
16-C-0260, by the United States Office of Naval Research under contract N00014-17-1-
2782, and by the National Science Foundation under award CNS-161921. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the Defense Advanced Research
Projects Agency or its Contracting Agents, the Office of Naval Research or its Con-
tracting Agents, the National Science Foundation, or any other agency of the U.S.
Government.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: CCS
(2005)

2. Avizienis, A.: The N-version approach to fault-tolerant software. IEEE TSE (12),
1491-1501 (1985)

3. Berger, E.D., Zorn, B.G.: Diehard: probabilistic memory safety for unsafe lan-
guages. In: PLDI (2006)

4. Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D., Boneh, D.: Hacking blind.
In: IEEE S&P (2014)

5. Bruschi, D., Cavallaro, L., Lanzi, A.: Diversified process replice for defeating mem-
ory error exploits. In: IEEE IPCCC (2007)

6. Burow, N., et al.: Control-flow integrity: precision, security, and performance. ACM
Comput. Surv. (CSUR) 50(1), 16 (2017)

7. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A., Shacham, H., Winandy, M.:
Return-oriented programming without returns. In: CCS (2010)

8. Chen, L., Avizienis, A.: N-version programming: a fault-tolerance approach to
reliability of software operation. In: FTCS (1978)

9. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks are
realistic threats. In: USENIX Security Symposium (2005)

10. Chen, Z., Han, H.: Attack mitigation by data structure randomization. In: Cup-
pens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds.) FPS
2016. LNCS, vol. 10128, pp. 85-93. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-51966-1_6

11. Conti, M., et al.: Losing control: on the effectiveness of control-flow integrity under
stack attacks. In: CCS (2015)

12. Cox, B., et al.: N-variant systems: a secretless framework for security through
diversity. In: USENIX Security Symposium (2006)

13. Durden, T.: Bypassing PaX ASLR protection. Phrack Mag. 11 (2002)

14. Evans, ., et al.: Control jujutsu: on the weaknesses of fine-grained control flow
integrity. In: CCS (2015)

15. Gil, R., Okhravi, H., Shrobe, H.: There’s a hole in the bottom of the C: on the
effectiveness of allocation protection. In: IEEE SecDev (2018)

16. Goktas, E., et al.: Position-independent code reuse: on the effectiveness of ASLR
in the absence of information disclosure. In: IEEE EuroS&P (2018)

17. ENet: Reliable UDP networking library. http://enet.bespin.org

18. Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: ASLR on the line: practical
cache attacks on the MMU. In: NDSS (2017)

https://doi.org/10.1007/978-3-319-51966-1_6
https://doi.org/10.1007/978-3-319-51966-1_6
http://enet.bespin.org

236

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.
37.

38.

39.

40.

41.

42.

A. Voulimeneas et al.

Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced
fault attack in javascript. In: Caballero, J., Zurutuza, U., Rodriguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 300-321. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40667-1_15

Hosek, P., Cadar, C.: Safe software updates via multi-version execution. In: ICSE
(2013)

Hosek, P., Cadar, C.: Varan the unbelievable: an efficient n-version execution frame-
work. In: ASPLOS (2015)

Hu, H., Chua, Z.L., Adrian, S., Saxena, P., Liang, Z.: Automatic generation of
data-oriented exploits. In: USENIX Security Symposium (2015)

Hu, H., Shinde, S., Adrian, S., Chua, Z.L., Saxena, P., Liang, Z.: Data-oriented
programming: on the expressiveness of non-control data attacks. In: IEEE S&P
(2016)

Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space ASLR. In: IEEE S&P (2013)

Kim, D., Kwon, Y., Sumner, W.N., Zhang, X., Xu, D.: Dual execution for on the
fly fine grained execution comparison. In: ASPLOS (2015)

Koning, K., Bos, H., Giuffrida, C.: Secure and efficient multi-variant execution
using hardware-assisted process virtualization. In: DSN (2016)

Kwon, Y., et al.: LDX: causality inference by lightweight dual execution. In: ASP-
LOS (2016)

Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diver-
sity. In: IEEE S&P (2014)

Mellanox’s Messaging Accelerator. https://github.com/Mellanox/libvma/

Lin, Z., Riley, R.D., Xu, D.: Polymorphing software by randomizing data structure
layout. In: Flegel, U., Bruschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 107—
126. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02918-9_7
Lu, K., Xu, M., Song, C., Kim, T., Lee, W.: Stopping memory disclosures via
diversification and replicated execution. In: IEEE TDSC (2018)

Maurer, M., Brumley, D.: TACHYON: tandem execution for efficient live patch
testing. In: USENIX Security Symposium (2012)

Mellanox ConnectX-5 EN Adapter Supporting 100 Gb/s Ethernet

Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: SoftBound: highly com-
patible and complete spatial memory safety for C. In: PLDI (2009)

Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: CETS: compiler enforced
temporal safety for C. In: ISMM (2010)

Novark, G., Berger, E.D.: DieHarder: securing the heap. In: CCS (2010)

Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: Drama: Exploiting
dram addressing for cross-cpu attacks. In: USENIX Security Symposium (2016)
Pina, L., Andronidis, A., Hicks, M., Cadar, C.: Mvedsua: higher availability
dynamic software updates via multi-version execution. In: ASPLOS (2019)
Salamat, B., Jackson, T., Gal, A., Franz, M.: Orchestra: intrusion detection using
parallel execution and monitoring of program variants in user-space. In: EuroSys
(2009)

Schirra, S.: Ropper (2014). https://github.com/sashs/Ropper

Seaborn, M., Dullien, T.: Exploiting the dram rowhammer bug to gain kernel
privileges. In: BlackHat USA (2015)

Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: CCS (2007)

https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://github.com/Mellanox/libvma/
https://doi.org/10.1007/978-3-642-02918-9_7
https://github.com/sashs/Ropper

43.

44.
45.
46.
47.

48.

49.

50.

51.

52.

53.

54.

55.

Distributed Heterogeneous N-Variant Execution 237

Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.:
Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: IEEE S&P (2013)

Song, D., et al.: SoK: sanitizing for security. In: IEEE S&P (2019)

System call intercepting library. https://github.com/pmem/syscall_intercept
Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: IEEE
S&P (2013)

Tatar, A., Giuffrida, C., Bos, H., Razavi, K.: Defeating software mitigations against
rowhammer: a surgical precision hammer. In: RAID (2018)

van der Veen, V., Andriesse, D., Stamatogiannakis, M., Chen, X., Bos, H., Giuf-
frida, C.: The dynamics of innocent flesh on the bone: Code reuse ten years later.
In: CCS (2017)

Van Der Veen, V., et al.: Drammer: deterministic rowhammer attacks on mobile
platforms. In: CCS (2016)

Volckaert, S., Coppens, B., De Sutter, B.: Cloning your gadgets: complete ROP
attack immunity with multi-variant execution. IEEE TDSC 13(4), 437-450 (2016)
Volckaert, S., Coppens, B., De Sutter, B., De Bosschere, K., Larsen, P., Franz, M.:
Taming parallelism in a multi-variant execution environment. In: EuroSys (2017)
Volckaert, S., et al.: Secure and efficient application monitoring and replication.
In: USENIX ATC (2016)

Volckaert, S., De Sutter, B., De Baets, T., De Bosschere, K.: GHUMVEE: efficient,
effective, and flexible replication. In: FPS (2012)

Xu, M., Lu, K., Kim, T., Lee, W.: Bunshin: compositing security mechanisms
through diversification. In: USENIX ATC (2017)

Osterlund, S., Koning, K., Olivier, P., Barbalace, A., Bos, H., Giuffrida, C.:
kMVX: detecting kernel information leaks with multi-variant execution. In: ASP-
LOS (2019)

https://github.com/pmem/syscall_intercept

	Distributed Heterogeneous N-Variant Execution
	1 Introduction
	2 Background
	2.1 System Calls and I/O Replication
	2.2 ISA and ABI Heterogeneity

	3 Threat Model
	4 DMON Design
	4.1 Platform-Independent State Canonicalization
	4.2 Distributed Monitor Design
	4.3 Inter-Monitor Communication
	4.4 Optimizations

	5 Implementation
	6 Security Analysis
	6.1 Code Layout Diversity
	6.2 Structure Layout Diversity

	7 Performance Evaluation
	7.1 Microbenchmarks
	7.2 Server Benchmarks
	7.3 Comparison with Other NVX Systems

	8 Discussion
	9 Related Work
	10 Conclusion
	References

