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Abstract. Modern Operating Systems (OSs) enable user processes to
obtain full access control over other processes initiated by the same user.
In scenarios of sensitive security processes (e.g., antivirus software), pro-
tection schemes are enforced at the kernel level such as to confront arbi-
trary user processes overtaking with malicious intent. Within the Win-
dows family of OSs, the kernel driver is notified via dedicated routines
for user-mode processes that require protection. In such cases the ker-
nel driver establishes a callback mechanism triggered whenever a handle
request for the original user-mode process is initiated by a different user
process. Subsequently, the kernel driver performs a selective permission
removal process (e.g., read access to the process memory) prior to pass-
ing a handle to the requesting process. In this paper we are the first
to demonstrate a fundamental user-mode process access control vulner-
ability, existing in Windows 7 up to the most recent Windows 10 OSs.
We show that a user-mode process can indeed obtain a fully privileged
access handle before the kernel driver is notified, thus prior to the call-
back mechanism establishment. Our study shows that this flaw can be
exploited by a method to (i) disable the anti-malware suite Symantec
Endpoint Protection; (ii) overtake VirtualBox protected processes; (iii)
circumvent two major video game anti-cheat protection solutions, Bat-
tlEye and EasyAntiCheat. Finally we provide recommendations on how
to address the discovered vulnerability.

1 Introduction

Process isolation acts as a core OS security function, prohibiting user interaction
with processes that do not belong to them. Hence, the OS prevents access to pro-
cess memory, and does not allow interference with process execution. Nonethe-
less, interaction is possible if two processes are owned by the same user. Whilst
both processes have the same owner, interaction is not considered as a security
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risk as in reality many processes require such interaction to fulfill their tasks.
For instance, a debugger must be able to attach itself to another process to con-
trol it and access its process memory. In fact, OSs provide Application Program
Interface (API) functions to support such interactions. Namely, Linux provides
the ptrace system call to observe and control another process whereas Windows
provides the OpenProcess system call to obtain process handles that can then
be used to interact with other API functions (e.g., ReadProcessMemory).

Regardless of the usefulness derived from the interaction between various
user-mode processes, there exist situations where such functionality needs to
be controlled. For example, on a desktop computer all User Interface (UI)-
dependent processes initiated by the user have access to each other. Unavoidably,
if the user accidentally executes a piece of malware, the resulted spawned pro-
cess is able to access and control all other processes belonging to the same user.
Consequently, the malware can deploy a range of operations on other processes,
including suspending or terminating the process, or reading and modifying its
memory. Under this simple access take over, malware would therefore be in a
position to access a banking application and read credit card details, or suspend
execution of anti-virus software processes running as the current user.

The Windows OS family contains kernel API functions for modules (drivers)
to protect security sensitive processes such as anti-virus software. As currently
implemented in Windows OSs, the kernel driver is notified when a user-mode
process requiring protection starts. Subsequently, the kernel driver registers a
callback procedure in memory, triggered every time another process requests a
handle on the protected process. The kernel driver is set up to intercept system
calls such as OpenProcess, and selectively remove permissions (e.g. read access
to the process memory) before passing the handle to the requesting process.
Subsequently, the caller obtains a process handle with reduced capabilities that
prevent security critical forms of process interaction. In general, the kernel driver
feature is widely used in Windows OS to protect critical processes. For instance,
anti-virus software utilises the aforementioned feature to prevent malware from
disabling anti-virus processes; Virtual Machines (VMs) use it to enforce appro-
priate isolation preventing access to security critical kernel functions exposed
by their drivers from other processes; anti-cheat software uses this feature to
prevent cheaters from obtaining access to the game process.

In this paper we show that the previously described protection method can
be circumvented, highlighting a fundamental issue within the Windows OSs.
We argue that this discovery is not a traditional vulnerability that could be
fixed with a simple patch, but rather a core OS security design flaw. Through
this work, we demonstrate that arbitrary user-mode processes can obtain fully
privileged handles before the kernel driver instruments a callback protection
procedure. Consequently, user-mode processes can outrun notification routines
destined for the kernel protection driver of the newly created processes. This vul-
nerability has been acknowledged by Microsoft (see Sect. 6.5); however, Microsoft
argues that the issue should be addressed by individual software developers, as
addressing it on a kernel level would lead to backward compatibility issues.
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The contributions of our work are:

– Outrunning Kernel Notifications: we introduce how kernel notification rou-
tines can be outrun by an unprivileged user-mode process.

– Example Exploits: we show how the flaw can be exploited to (i) disable the
anti-malware suite Symantec Endpoint Protection; (ii) take control of Virtual-
Box protected processes; (iii) circumvent the two major video game anti-cheat
protection software solutions, BattlEye and EasyAntiCheat.

– Mitigating the Flaw by Design: we recommend that user-mode functions tak-
ing a Process identifier (PID) as a parameter should not be able to do so
with incomplete initialisation since kernel routines are triggered post initiali-
sation. Although, Microsoft does not plan to implement such functionality as
it would create compatibility issues.

– Handle Invalidation Procedure: we indicate that on spawn detection of the
protected process, the kernel driver could initiate immediate termination,
thus invalidating any handle that might have been obtained by exploiting the
discovered vulnerability. The driver can then respawn the process from kernel-
space and set up callback protection without delay. However, the proposed
procedure has limitations and cannot be used in all cases.

The remainder of this paper is structured as follows: Sect. 2 focuses on the
required background knowledge to understand the identified vulnerability, asso-
ciated exploits, and their impact. Section 3 discusses the discovered vulnerabil-
ity and two example exploits applying alternate exploitation methods. Section 4
demonstrates the vulnerability and our two exploits over three case studies.
Related work is presented in Sect. 5, followed by a discussion in Sect. 6 detailing
how we discovered the vulnerability, its consequences, and possible solutions. We
conclude and summarise the paper in Sect. 7.

2 Background

One of the many roles an OS has, is to enable processes to execute concurrently,
securely isolated, with sufficient guarantees that they will not disrupt each other
or the overall system. However, in some cases processes require interaction to
fulfill their tasks, and must request authorisation to do so from the OS. Tradi-
tionally, on Microsoft Windows OSs the function OpenProcess is used to request
a handle on a target process; the obtained handle represents authorisation.

A handle has a set of privileges [1] allowing it to be used for specific opera-
tions. For instance, a process handle may permit the creation of child processes
and new threads, duplication of handles, querying of information, setting of quo-
tas as well as suspension, resumption and termination of the process. Moreover,
a handle can permit the creation of virtual memory operations, reading and
writing of the process virtual memory, and synchronisation with a given target
process. Many of these aforementioned privileges can be used to alter adja-
cent processes, it may therefore be important to apply restrictions. Examples of
processes where privilege limitation is necessary include anti-malware software,
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software using drivers exposing sensitive kernel functions, banking and point of
sale applications, and multiplayer video game processes.

Access to processes can be limited by executing them as different users. How-
ever, if processes are executed under the same user, control can be challenging to
implement, as by default a user has full access to all of his processes. In addition,
processes running as administrator can also access user processes. Microsoft pro-
vides a standard method to implement such protection using specialised kernel
API functions, to limit handle privileges obtained for a process running as the
same user or higher privileged users. To the best of our knowledge, this is the
only officially advised method to implement such a security mechanism.

A kernel driver uses the kernel API function PsSetCreateProcessNotifyRou-
tine/Ex to receive notification of new processes. When a new handle on a process
is requested, a callback previously registered with ObRegisterCallbacks is trig-
gered, and the kernel process can apply filters to limit the privileges of this
handle. Thus, fine-grained access control amongst processes owned by the same
user or more privileged users can be implemented. This is an important feature,
as on a Windows OS most processes run under the user logged into the GUI of
the system. This includes processes of security critical applications.

2.1 Notification Routines

To implement process protection, the kernel driver must be notified of new pro-
cesses in the system. The driver registers a create process notify routine using
PsSetCreateProcessNotifyRoutine/Ex providing a pointer to one of its functions
that will be executed when a new process is created or terminated. The pseudo-
code in Listing 1.1 depicts the key instructions.

1 NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject ,

PUNICODE_STRING RegistryPath) {

2 PsSetCreateProcessNotifyRoutine (

ProtectionDriverFindProtected , FALSE);

3 }

4

5 NTSTATUS ProtectionDriverFindProtected (HANDLE ParentId ,

HANDLE ProcessId , BOOLEAN Create) {

6 // Code executed at process creation

7 }

Listing 1.1. Key steps to register a notify routine

In the DriverEntry function, the kernel driver calls PsSetCreateProcessNo-
tifyRoutine with ProtectionDriverFindProtected as a parameter. This instructs
the kernel to execute the driver’s function ProtectionDriverFindProtected when
new processes are created or terminated. The kernel passes parameters to this
function: (i) a HANDLE to the parent process, (ii) a HANDLE to the new
process, and (iii) a BOOLEAN indicating if the process was started or termi-
nated. Now that the driver is notified of any new processes, it can be decided in
ProtectionDriverFindProtected if a process requires protection, and what type
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of protection to apply. For example, protection might be applied to processes
matching a specific image name or signature.

Figure 1 shows the sequence of events when a new process is created. In
this diagram, process A starts process B. For example, process A could be
explorer.exe used to find and then double click on an application to start process
B. The parent process (process A) in this example uses CreateProcess to create
process B, however, the same sequence of events occurs if another function is
used to create process B (e.g. CreateProcessAsUser, ShellExecute, or system).

Fig. 1. Creating a new process with a driver’s process create notify routine

Fig. 2. Handle request with a driver having set up callbacks protection
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The kernel performs various checks and operations to prepare process B for exe-
cution. Amongst these operations, the kernel creates memory structures describ-
ing the new process, such as KPROCESS or EPROCESS, and attributes a
unique PID to the new process, making it reachable with other API functions
taking a PID as a parameter, including OpenProcess. The kernel then looks
at the registered create process notify routines, and transfers execution to the
drivers having registered one. In our example, control is then passed to our ker-
nel driver, and its ProtectionDriverFindProtected function is executed. The code
in this function first checks whether protection should be applied, then applies
it if necessary.

This specific sequence of events is problematic as the newly created process
B is accessible before protection can be applied. Process B can be addressed
by other processes in the system before protection is applied in Step 4. This
provides a time window for malicious processes to obtain a handle on process
B before protection is put in place. The driver then transfers control back to
the kernel, then back to the user-mode process, and finally process A continues
execution and process B starts executing with protection in place.

2.2 Protection via Callback

The kernel driver registers a callback so that when a handle on a process is
requested, a function in the kernel driver is called. This process is depicted in
Fig. 2. Before delivering the requested handle, the kernel first transfers execution
to the driver, and passes parameters allowing it to retrieve relevant informa-
tion about the handle operation to perform adequate filtering. This information
includes whether the handle is newly created or duplicated, whether it is a kernel
handle or not, a pointer to the target process or thread, a pointer to the object
type, and a pointer to a memory structure describing operation-specific param-
eters. With this mechanism, a driver can apply fine grained filtering on handles
to the process it protects. The decision on which processes to protect is per-
formed when the driver is notified on the creation of new processes as described
in the previous section. The driver can, for example, remove specific rights on a
handle, preventing operations including reading or writing the process memory.
After the driver’s callback function is executed, the driver transfers control back
to the kernel, and then back to the user-mode process having initially requested
the handle. Listing 2 shows the key steps to register a callback.

1 PVOID pCbHandle = NULL;

2 OB_OPERATION_REGISTRATION obCbOp;

3 OB_CALLBACK_REGISTRATION obCbReg;

4 obCbOp.ObjectType = PsProcessType;

5 obCbOp.Operations |= OB_OPERATION_HANDLE_CREATE;

6 obCbOp.PreOperation = PreCbOp;

7 obCbReg.OperationRegistration = &obCbOp;

8 ObRegisterCallbacks (&obCbReg , &pCbHandle);

9 OB_PREOP_CALLBACK_STATUS PreCbOp(PVOID RegistrationContext ,

POB_PRE_OPERATION_INFORMATION OperationInformation) {
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10 // Code executed at handle request

11 }

Listing 1.2. Key steps to set up callbacks protection

To register a callback, we initialise and fill the required memory structures,
specifying that we want our callback to be triggered when a handle is requested
on processes. We set our callback to be executed when a new handle is created
with the flag OB OPERATION HANDLE CREATE, and supply a pointer to
the function to be executed. Finally we register the callback by calling ObRegis-
terCallbacks.

3 Vulnerability

A vulnerability arises from an insecure time period during new process creation.
In this initial phase the process is initialised by performing all of the operations
required prior to the execution of the program. Among these operations, the OS
kernel internal memory structures describing this new process are created, and
the process is given a unique PID, enabling API functions taking a PID as a
parameter, including OpenProcess. This insecure time period is present between
stage 2 and 4, as shown in Fig. 1. During initialisation, any driver designed to
apply protection has not yet received notification that a new process has been
created, and therefore no protection can be applied, while the process is already
reachable from API functions. Figure 3 shows a simplified time-line of these
events.

Fig. 3. Time-line of a newly spawned process

Exploiting this insecure period of time is therefore possible if one can (i) know
that a newly process has spawned and (ii) know its PID, before the initialisation
completes. We have discovered two different methods to accomplish this and
exploit the vulnerability.

The First Method is Based on Registering a Job Object on the Par-
ent Process of the Target Process. A job object allows groups of processes
to be managed as a unit. Job objects are namable, securable, sharable objects
that control attributes of the processes associated with them [2,3]. We noticed
that job objects allow a process to be notified of a new child process with its
PID directly after it starts, before the initialisation phase completes, and before
the driver is notified and applies any protection. Our exploit can then simply
call OpenProcess to obtain a fully privileged process handle before protection
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is applied. We named this first exploit hFromJob, since it gives a fully privi-
leged handle (h) using a job object (FromJob), following the Hungarian naming
convention that Microsoft traditionally uses.

The Second Method Uses Aggressive PID Guessing. We simply start
several threads calling OpenProcess on all the possible IDs that the new process
could be assigned. A separate thread then analyses all the handles gathered,
and stops the exploit once it has obtained a handle to the targeted process. We
named this second exploit hThemAll, since it obtains a fully privileged handle
(h) by attempting to obtain it through all possible PIDs (ThemAll).

3.1 Exploit Using Job Object (hFromJob)

In this first exploit, we create a job object on explorer.exe assuming that the
target process will spawn as its child process. This configuration is useful as a
proof of concept, as it represents starting a process by double-click, the normal
procedure a user would adopt to start a new process. This exploit can be adapted
to other scenarios by creating a job object on the known parent process. For
example, programs started from the command line have cmd.exe as parent; the
job object should therefore be on this process instead.

The key steps are to create an IO port handle using CreateIoCompletion-
Port, create a handle to the job object with CreateJobObjectW, configure the
job object with SetInformationJobObject, and finally assign the job object to the
parent process with AssignProcessToJobObject. The exploit process will be noti-
fied of new processes being spawned by checking the I/O completion port queue.
Therefore, we start a thread on a function that checks the queue as fast as pos-
sible, and directly calls OpenProcess on any new process. This method outruns
kernel process notification routines since the notification from the job object
takes place before the end of the initialisation phase. This exploit has the follow-
ing requirements: (i) the parent process of the targeted process must be known
in advance, and (ii) it must be possible to obtain a process handle on the parent
with the permissions PROCESS SET QUOTA and PROCESS TERMINATE.
The C++ source code for this exploit can be found on GitHub [4].

3.2 Exploit Using PID Guessing (hThemAll)

An alternative approach is possible. It is feasible to simply predict or “guess”
the PID of the target process. To the best of our knowledge, it is not possible to
predict with 100% accuracy the PID of the next process to be spawned from user-
mode, therefore we took advantage of how Windows manages PIDs to narrow
the search space for the next PID: (i) Both process IDs and thread IDs are
generated in the same namespace, therefore, they cannot overlap [5]; (ii) PIDs
& TIDs are always multiples of 4; (iii) Windows attempts to keep process and
thread IDs in low numbers.
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The exploit starts by listing all currently existing PIDs and TIDs, excluding
them as potential PID for our target process to be spawned. We then create
several threads attempting to obtain a fully privileged handle on every possible
PID as fast as possible. Every new process handle is placed in a list analysed by
a separated thread individually. When a handle to the target process is found,
the exploit terminates. The C++ source code can also be found on GitHub. [6]

4 Case Studies

We developed our own protection driver following Microsoft’s driver developer
guidelines. We first use this demonstrator to clearly showcase the vulnerability.
Thereafter, we describe how the vulnerability can be exploited to (i) disable the
anti-malware suite Symantec Endpoint Protection; (ii) take control of Virtual-
Box protected processes; (iii) circumvent the two major video game anti-cheat
protection software, BattlEye and EasyAntiCheat. We demonstrate that the
vulnerability can be used to bypass protection mechanisms for a wide variety of
current applications, highlighting the severity of this issue.

4.1 Bypassing Our Own Protection Driver

Anti-malware solutions, security critical applications, and video game anti-cheat
software are not open source and often obfuscate code structure and operations.
We decided that our work would benefit from presenting the vulnerability in a
context where both attack and target code structure is known. This allows us to
precisely pinpoint and clearly describe the vulnerability along with the sequence
of events leading to its exploitation. We therefore developed a minimalist kernel
driver that installs protection for a specific process that we then target with our
exploits; we attempt to obtain a fully privileged handle to the process protected
by the kernel driver.

The simplified pseudo-code in Listing 1.3 shows the key steps our driver fol-
lows to set up protection. The full code of the driver can be found on GitHub [7].

The driver starts by registering a routine with PsSetCreateProcessNotify-
Routine, which causes our driver’s function ProtectionDriverFindProtected to
be called whenever a process is created or terminated, as explained in Sect. 2. It
then registers a callback by calling the function ProtectionDriverSetProtection,
which will cause the function PreCbOp to be executed when a new handle is
requested on a process. This function, not included in the pseudo code for sim-
plicity, fills the required memory structures before calling ObRegisterCallbacks
as per Microsoft’s guidelines [8].
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1 HANDLE hProtectedPID = NULL;

2 NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject ,

PUNICODE_STRING RegistryPath) {

3 PsSetCreateProcessNotifyRoutine (

ProtectionDriverFindProtected , FALSE);

4 RegisterCallback ();

5 }

6 NTSTATUS ProtectionDriverFindProtected (HANDLE ParentId ,

HANDLE ProcessId , BOOLEAN Create) {

7 if (IsProtected(ProcessId , "Protected.exe"))

8 hProtectedPID = ProcessId;

9 }

10 OB_PREOP_CALLBACK_STATUS PreCbOp(PVOID RegistrationContext ,

POB_PRE_OPERATION_INFORMATION OperationInformation) {

11 HANDLE TargetProcessId = PsGetProcessId (( PEPROCESS)

OperationInformation ->Object);

12 if (TargetProcessId != hProtectedPID)

13 return OB_PREOP_SUCCESS ;

14 if (OperationInformation ->Operation ==

OB_OPERATION_HANDLE_CREATE)

15 OperationInformation ->Parameters ->

CreateHandleInformation .DesiredAccess &= ~

PROCESS_TERMINATE;

16 }

Listing 1.3. Key steps of the protection driver

The function ProtectionDriverFindProtected checks the new process’s image
name and compares it to the protected process name, then sets the protected
process ID in the global variable hProtectedPID when found. In our proof of
concept driver we protect the latest instance of any process with the image name
Protected.exe. This first phase allows the driver to find the protected process ID,
so the defence mechanism using callbacks can modify future requested handles.

If the requested handle is on the protected process, the function PreCbOp
removes the permission PROCESS TERMINATE (0x1) as evidence, demon-
strating that the handle permissions were successfully edited by our driver. This
last phase represents the defence mechanism implemented by our driver.

As an experiment, we first launch a dummy process named Protected.exe,
and then attempt to obtain a fully privileged handle from another process. This
works as intended, obtaining a fully privileged handle and therefore full access
to the target process. Next, we load our protection driver, then execute Pro-
tected.exe and attempt to obtain a fully privileged handle from another process.
This results in the acquisition of a handle without PROCESS TERMINATE
(0x1) permission. This indicates that our protection driver has successfully pro-
tected the process, and removed the permission to terminate it on the handle.

Finally we terminate Protected.exe and execute our two exploits (hFromJob
and hThemAll) described in Sect. 3 before executing Protected.exe. This time,
both our exploits successfully obtain a fully privileged handle, which indicates
that the protection was not in place on time to protect the process. This shows
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that kernel notification routines are slow enough that we can obtain a handle
using PID guessing (with exploit hThemAll), and that user-mode process notifi-
cations obtained from job objects are also faster than kernel notification routines
(with hFromJob). This allows us to bypass any protection set after PsSetCre-
ateProcessNotifyRoutine/Ex by outrunning them from unprivileged user-mode
processes; in this specific case we bypassed the callback protection.

We provide a short video demonstrating this experience [9].

4.2 Disabling Anti-malware

In this second case study we use our exploits to obtain a fully privileged handle
on the service process of Symantec Endpoint Protection. Symantec anti-malware
service, ccSvcHst.exe, is spawned as a child of services.exe under the user NT
AUTHORITY \SYSTEM, which spawns another instance of the same binary
running under the current user.

When requesting a fully privileged handle on the anti-malware user process
using OpenProcess with PROCESS ALL ACCESS, a handle is received but with
only the following permissions: Query information, Create processes, VM read,
Synchronize, Read control, and Write owner (0x1AF490). This demonstrates
that Symantec’s driver installs protection to modify the handle permissions on
its user-mode processes with ObRegisterCallbacks. The driver also needs to be
notified of the system process being spawned, which is done with PsSetCre-
ateProcessNotifyRoutine/Ex. Thus, the anti-malware appears to use the protec-
tion method we described and is therefore potentially vulnerable.

For this experiment our hFromJob exploit is not usable, as it requires a handle
to the parent process of the target with the permissions PROCESS SET QUOTA
and PROCESS TERMINATE to make use of the API AssignProcessToJobOb-
ject. The system process services.exe, being a protected system process (Pro-
tected Process Light (PPL)) means that OpenProcess would fail. It should be
possible to use this exploit if one bypasses PPL and obtains a sufficiently privi-
leged handle on services.exe, however for simplicity we will only use the exploit
hThemAll for this case study where no additional steps are required.

We begin the experiment by configuring hThemAll to look for a handle on a
process named ccSvcHst.exe using 6 threads. We execute the exploit, then start
the service of the anti-virus. Once the user processes have spawned, we used
Process Hacker [10] to verify the permissions of our process handle, and observe
that we have been granted a fully privileged handle.

With this fully privileged handle it is now possible to tamper with the anti-
malware system in a variety of ways. Most anti-malware have watchdog systems
restarting the user-mode process if terminated, therefore simply terminating it
has little interest, however a very simple workaround is to freeze its threads with
the API NtSuspendProcess, disabling malware detection alerts to the user, and
disrupting its real-time protection capabilities. Since this technique exploits an
insecure time period at launch, a piece of malware executing early, i.e. during the
boot or user login sequence, could take control of the anti-malware processes from
the start. Otherwise the malware could terminate the process using a variety of
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methods ranging from simply calling TerminateProcess to a denial of service, in
which case the anti-malware watchdog would restart a new instance, allowing us
to exploit the vulnerability on this newly spawned process. Malware could also
simply wait for the process to restart on its own during maintenance and update
cycles.

4.3 Bypassing Virtualisation Defences

Virtualisation solutions are complex in that they require device drivers to pro-
vide additional functionality at kernel level. They are also required to make these
capabilities available to specific user-mode processes. Therefore, virtualisation
kernel drivers will often expose potentially sensitive functionality to user-mode
processes. For this reason, only the trusted user-mode process of the virtuali-
sation software should be able to access the virtualisation environment’s kernel
driver. This includes processes running under the same user or a user with higher
of privileges. If a privileged handle is obtained on the virtualisation user-mode
process, then malware could leverage this handle to obtain access to the kernel
driver via the captured user-mode process.

Virtualisation software Virtual Box uses a driver for the protection of its
user-mode processes. When a virtual machine is started, another instance of
VirtualBox.exe is spawned, which has a handle on the driver VBoxDrvStub with
read and write permissions. The second instance of VirtualBox.exe then spawns
a thrird instance of VirtualBox.exe which is the process running the virtual
machine. This process has a handle on the driver VBoxDrv with read and write
permissions. Both of these processes are protected in such a way that if another
process operating under the same user, or a higher privileged user, attempts
to obtain a fully privileged handle, the returned handle is modified to only
have the access mask 0x131c11 (Query information, VM read, Suspend/resume,
Terminate, Synchronize, Delete, Read control).

Through the use of exploits hThemAll and hFromJob, we can successfully
obtain a fully privileged handle on the first instance of VirtualBox.exe. This
process has a handle on the driver VBoxDrvStub, which exposes potentially
sensitive kernel functionality. Both exploits successfully provide a fully privileged
handle on the second instance of VirtualBox.exe that is normally protected. This
gives us access to the driver VBoxDrvStub that could be leveraged for further
exploitation. Interestingly, our exploits do not obtain a fully privileged handle
on the third instance of VirtualBox.exe protected process. This indicates that
this process is either protected, or more likely is spawned differently. This latter
behaviour could be used as a basis for effective mitigation of the vulnerability.
We discuss this later in Sect. 6.

4.4 Bypassing Video Game Anti-cheat Defences

Obtaining access to a game’s process allows hackers to manipulate it to gain
unfair advantages. Anti-cheat companies offer game developers software to pre-
vent other programs, including programs running at higher privilege levels from
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gaining access to the game’s process using protection drivers. For our use cases,
we have experimented on games protected by the two major anti-cheat systems:
BattlEye and EasyAntiCheat.

We observe that a lesser privileged handle is obtained despite requesting
all privileges on the game process, indicating the use of the vulnerable APIs.
Using our two exploits, we successfully obtain a fully privileged handle on games
protected by both anti-cheat software solutions.

We have informed anti-cheat software providers of this vulnerability (see
Sect. 6), they have now included additional defences. We discuss these additional
defences in more detail in Sect. 6. The vulnerability affected a wide variety of
internationally recognised anti-cheat protected games with millions of players.

5 Related Work

This section presents other security mechanisms available in Microsoft Windows
and evaluate their validity as mitigation. We also present academic work and
patents related to the very specific nature of the vulnerability discussed.

5.1 Other Windows Security Mechanisms

Protected Processes: The Protected Process security mechanism was intro-
duced in Windows Vista and has been expanded in later versions with variants
including Protected Process Light (PPL). Protected processes differ from regular
processes due to the level of access other processes in the system can obtain on
them [11]. When a process is protected by this mechanism, other non-protected
processes can only obtain handles on it with tightly restricted rights. If it was
possible to spawn a process as protected from its initial inception, including
the initialisation phase, this could void our exploits. Unfortunately, this security
mechanism is only reserved for system use and is not available for third party
software developers.

Anti-malware Services Protection: Microsoft provides a complete guide and
specialised tools for anti-malware developers, allowing their driver to launch
before other boot-start drivers, and therefore ensure that subsequent drivers do
not contain malware [12]. This security measure helps protect against malicious
drivers, but does not offer any mitigation against the presented attack, since it
does not change the order of operations during process creation.

Mandatory Integrity Control (MIC): MIC is a mechanism for controlling
access to securable objects [13]. It uses 4 levels of integrity with the labels low,
medium, high, and system, preventing lower integrity processes from accessing
the resources of higher levels. The MIC security mechanism was introduced in
Windows Vista. This could in very specific circumstances mitigate the presented
attack. For example, if the exploits were started with the low integrity label,
and the target was allocated a medium integrity label, the exploits would fail.
However this security mechanism falls short when defending interactions between
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processes of the same integrity level. Since most processes run within the same
level, this cannot be considered a reliable counter-measure. For anti-malware
solutions specifically, running their critical processes with a high integrity level
should provide protection against the exploits when run with the medium default
integrity level.

Protected Mode: The protected mode is based on MIC and was originally
created to enhance the security of Microsoft’s web browser Internet Explorer [14].
This security feature was designed to limit possible attacks from a compromised
Internet Explorer process, by running it with greatly reduced privileges. To the
best of our knowledge, it is not possible to run third party programs in protected
mode natively. Even if this was possible, as a security mechanism it is designed
to restrict a specific process, preventing it from interacting with others, not to
prevent access from other processes as the vulnerable APIs targeted in this paper
do. This security mechanism is therefore not a viable option.

AppContainer Isolation: When creating a program with AppContainer, the pro-
cess is executed with extreme limitations, allowing only those features critical to
the program operations. This security feature functions in a similar way to other
mandatory access control implementations in other operating systems, such as
Security-Extended Linux (SELinux) or AppArmor in Linux. All non-required
resources are kept out of reach, including other processes, therefore a compro-
mised or malicious process cannot take over the rest of the machine [15]. Files,
registry, windows, and network resources are also restricted, and access can be
managed with fine granularity if required. Finally, process isolation prevents the
AppContainer program from influencing other processes. However, after experi-
menting with AppContainer ourselves, we were able to restrict a process’s access
to resources and other processes, but could not restrict other processes from
accessing itself. Consequently, we could not use AppContainer as a valid form of
mitigation.

5.2 Research Efforts and Patents

A multitude of projects and software make use of kernel notify routines and call-
backs. PsSetCreateProcessNotifyRoutine/Ex and ObRegisterCallbacks are often
used for automated malware detection and prevention, or program behavioural
analysis which permits the creation of tools for reverse engineering such as Cap-
ture presented in [16].

There exist only a few usable methods to monitor the behaviour of a program
for which the source code is not available. These methods can be categorised as
follows: (i) User level API hooking, (ii) kernel level API hooking, and (iii) Ker-
nel callbacks [16]. User-level API hooking can be easily detected or bypassed
by unprivileged programs. For this reason the quasi-totality of reputable anti-
malware use solutions in kernel space. Many kernel-mode malware and rootkits
made use of kernel level API hooking (e.g. SSDT hooking) to hide their pres-
ence and execute malicious code stealthily, consequently Microsoft now defends
the kernel with various protections including PatchGuard (also known as Kernel
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Patch Protection, KPP). A good example of malware making use of PsSetCre-
ateProcessNotifyRoutine/Ex is the Rustock Rootkit and Spam Bot studied and
documented in [17]. Due to its potential for abuse, it is no longer possible to
enact kernel level API hooking on the modern versions of Windows, leaving only
user level API hooking and a set of kernel API functions to implement security.

A presentation on how anti-viruses implement their monitoring, detection,
and defences can be found in [18]. As recommended by Microsoft, all 5 of the
major anti-viruses investigated in this work make use of the kernel callbacks
and routines, including PsSetCreateProcessNotifyRoutine/Ex to obtain process
creation and termination notifications to then run analysis and mitigations. This
makes these anti-viruses vulnerable to the attack presented in this paper. One
of the anti-viruses tested in [18] is Norton Security 2015, which is the anti-virus
we selected as a use case.

A multitude of academic projects and patents in the field of malware analysis
heavily rely on PsSetCreateProcessNotifyRoutine/Ex. In [19] a set of monitoring
drivers are presented, including a process monitoring driver that uses PsSetCre-
ateProcessNotifyRoutine to obtain information on newly created or terminated
processes. In [20] the researchers attempted to correlate network traffic with
user applications using the vulnerable API. Injecting data flow control object
into processes using the same system as in our protection driver (using first
PsSetCreateProcessNotifyRoutine then ObRegisterCallbacks) is presented in [21].
In [22], a system stored on a mass storage device is presented that registers a
process notification routine to then hook functions in processes. Two researchers
have designed a portable dynamic malware analysis tool following Microsoft rec-
ommendations in [23], therefore using the vulnerable PsSetCreateProcessNotify-
Routine to monitor process activities. A system aiming at identifying processes
responsible for system slow downs making use of process notification routines
is presented in [24]. In [25], a method relying on hooking/detouring the exe-
cution flow of PsSetCreateProcessNotifyRoutine/Ex to prevent malware from
de-registering notify routines is presented. Because of their reliance on the vul-
nerable API, all of these projects could be disrupted or bypassed entirely.

6 Discussion

6.1 Discovery

The vulnerability was discovered whilst investigating how several system pro-
cesses obtained privileged handles on video games despite active anti-cheat using
protection drivers. Three system processes held privileged handles: csrss.exe (all
privileges), lsass.exe (read/write), and PcaSvc’s svchost.exe (all privileges).

We investigated how PcaSvc obtained its handle, and quickly identified that
it was accommodated through a normal OpenProcess call. We also noticed that
if a delay is placed before calling OpenProcess, when execution is resumed the
handle is modified as intended by the protection driver. This indicated that
Windows system processes receive new process notifications before the kernel
notification routine are triggered.
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To verify this hypothesis, we developed a proof of concept exploit by hooking
OpenProcess in PcaSvc’s process. With this hook, the PID of the new process
is passed to another process using shared memory and its execution is resumed
using a semaphore, allowing it to call OpenProcess and obtain a fully privileged
handle. This exploit confirmed that PcaSvc was outrunning the kernel process
notification routines used by the anti-cheat driver.

By analysing the internals of PcaSvc, we discovered that job objects are
used to receive notifications. We then created the standalone exploit hFromJob
replicating PcaSvc’s behaviour. Finally, we developed the second exploit hThe-
mAll, which affords fewer restrictions and further confirms that the vulnerability
emerges from an insecure time period during process initialisation.

6.2 Vulnerability Time Period Measurement

Measuring the vulnerability time period is not easy, since it depends on hardware
characteristics such as CPU frequency, number of cores, threads, and also current
system state and other parameters hard to fully control. We have conducted all
our experiment in a 2.40 GHz mono-core VM on an idle system.

To measure the vulnerability time period we have counted how many fully
privileged handles could be retrieved before the protection is set up. We have
used the first non-fully privileged handle obtained as a sign that the exploita-
tion time window has finished. We have measured using 3 methods: (1) using
the RDTSC (Read Timestamp Counter) CPU instruction to get a number of
CPU cycles, (2) QueryPerformanceCounter, which is a Microsoft supplied high
resolution time stamp that can be used for time-interval measurements, and (3)
GetTickCount64 which uses the CPU clock to give an interval in milliseconds.

We first modified hFromJob, so that when its first fully privileged han-
dle is obtained, it calls a measuring function that keeps calling OpenProcess
requesting all permissions and verifying if the returned handles correctly has
them using NtQueryObject. When the first lesser privileged handle is obtained,
the measuring function calculates the time difference using the methods listed
above. hFromJob successfully obtained between 63 and 105 fully privileged han-
dles during our tests, occuring during 21 to 35 million cycles (from RDSTC),
while QueryPerformanceCounter returned between 89 and 140 k (with a base
frequency of 10 million retrieved with QueryPerformanceFrequency). GetTick-
Count64 doesn’t provide enough accuracy and returned 0 in all our tests, indi-
cating that the vulnerability is faster than its accuracy (Microsoft estimates this
accuracy to be between 10 and 16 ms). Using the RDTSC readings, the vulnera-
bility time period was measured to be between 8.75 and 14.5 ms, while using the
readings of the performance counter the vulnerability time period is measured
between 8.9 and 14 ms.

hThemAll is harder to measure, since we use a set of threads blindly attempt-
ing to get handles and a control thread looking for our target. By configuring
the exploit to be extremely aggressive and using up most of the system resources
by using 16 threads for exploitation we notice that many more (thousands) fully
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privileged handles are obtained. Since the resources that should be used to ini-
tialise the process are redirected to the exploit, the vulnerability time period
is extended due to the initialisation phase being slowed down. We attempted
to measure the vulnerability time period with a single-threaded version. Since
this exploit does PID guessing, we ran the experiment multiple times aiming at
guessing the PID correctly soon to reveal the vulnerability time period. In the
best result, hThemAll successfully obtained more 218 fully privileged handles
before being stopped. This indicates that the vulnerability was present for at
least 29 ms.

6.3 Implications

The discovered vulnerability poses the question of how to best implement pro-
tections for user-mode processes. Microsoft provides routines to obtain notifi-
cations in kernel drivers, however we demonstrated that they can be outrun by
user-mode processes. Therefore a malicious process can outrun and consequently
bypass any protections set up following reception of such notifications, simply
through execution prior to its target. The protection can also be defeated after
the target has been started if it can be forcibly restarted (e.g. by terminating it
or crashing it).

The identified vulnerability allows outrunning thread notification routines
set up with PsSetCreateThreadNotifyRoutine/Ex, and load image notification
routines set up with PsSetLoadImageNotifyRoutine. Since writing to the process
memory is possible with the process handle, a malicious program can force the
execution of any code with a simple detour or hook within the context of the
target process before any notification routine is triggered.

The most severe consequences of this vulnerability are for anti-malware solu-
tions. Due to the fact that a process with malicious intent can interact with
other processes before the routines trigger, it is feasible to fully modify and
control them before protection has been applied. Malware can, for example, exe-
cute malicious code within the context of another process, or hijack the process
completely with techniques such as process hollowing [26]. As demonstrated,
if malware can be started early enough, or can force the user-mode process of
the anti-virus to restart. Thus malware can control, disable, or prevent it from
alerting the user of any present threats.

We argue that applications requiring exposure of sensitive kernel mode func-
tions to their user-mode process, such as virtualisation software, are also at risk.
These applications limit access to their user-mode processes obtaining a handle
on the driver, thus preventing other processes from using these critical kernel
functions. If an external process gains access to the permitted user-mode pro-
cess possessing a valid handle on the driver, it can then can be exploited as
demonstrated by our Virtual Box use case.

In general, a number of applications with high security requirements may
be at risk; examples include other virtualisation and anti-malware software, but
also banking applications or point-of-sales systems. In the latter two examples,
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applications store security-critical information (e.g. full credit card details) in
memory which could be retrieved with memory scanning.

While Microsoft does not explicitly promotes PsSetCreateProcessNotifyRou-
tine/Ex to set up this security mechanism, it is to the best of our knowledge
required to set up such protection. The different case studies of real-world soft-
ware presented in this paper confirms this to an extent.

Setting up this protection solely with callbacks is possible, however it is not
possible to retrieve information on the process requesting the handle. Conse-
quently, all handles get their permissions modified, including handles for Win-
dows system processes such as csrss or lsass which either respectively prevent
the new process to initialise and run or create various instability and/or crashes.
This worryingly indicates that the operating system itself requires the behaviour
leading to the vulnerability to function correctly, making patching even more
challenging for the kernel developers.

Because the timeline of the different notifications and triggers are not docu-
mented, developers may have written vulnerable code by wrongly assuming that
kernel notifications should trigger before user-mode notifications, which is not
precised on Microsoft API documentation. It is our opinion that kernel noti-
fications should always trigger before user-mode following the protection rings
hierarchy.

We thoroughly tested this vulnerability through the case studies discussed in
Sect. 4 on Windows 10 x64 and Windows 7 x64 up to date as of November 2019.
Furthermore, we hypothesise the vulnerability is most likely present in other
Windows versions including Windows 8, all Windows editions and architectures
included.

6.4 Responsible Disclosure

We first disclosed the vulnerability to Microsoft in July 2018 following their
guidelines [27]. The formal disclosure provided a description of the vulnerability,
the code of both exploits [4,6], and the protection driver [7], along with the
compiled binaries to allow for the recreation of our experiments. Moreover, we
provided a video of the vulnerability in action [9]. The response from Microsoft
was produced almost a year after our disclosure and is provided in Sect. 6.5.

In parallel, we also disclosed this vulnerability to the remaining stakeholders
from our case studies. In fact, after disclosing our finding to anti-cheat compa-
nies, we noticed that they implemented new countermeasures aiming at prevent-
ing the exploitation of this vulnerability. Our analysis shows that the affected
anti-cheat companies developed a procedure that terminates the first instance
of the game launched, then respawns it from kernel space to obtain the handle
instantly and set up the callback without delay. This behaviour appears sim-
ilar to our observations with VirtualBox. Such a solution is sub-optimal for a
number of reasons. Overall, a malicious program can still briefly obtain a fully
privileged handle on the first instance. Moreover, it is not applicable for all
programs. Since this solution requires forceful termination of the protected pro-
cess, and subsequent respawning from kernel-space, some applications may not
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function correctly after such an operation. Furthermore, in order to implement
this solution, developers are required to have a signed kernel mode driver, this
is not common for most developers. Note however that this solution should be
applicable on the use cases previously presented in Sect. 4.

We have also identified the development of an additional defence and detec-
tion mechanism that implements a periodic walk-through of the handle table for
all running processes. The goal of this mechanisms is to search for open handles
on protected processes. Thus, if a handle to a protected process is found, the
implemented procedure modifies the granted permissions. It is unclear how anti-
cheat companies implement such a process, since it requires using undocumented
kernel functions and memory structures to do Direct Kernel Object Modification
(DKOM), which is discouraged by Microsoft.

6.5 Microsoft’s Response

Microsoft replied to our responsible disclosure and have acknowledged the vulner-
ability. Unfortunately, Microsoft “will not be addressing this scenario for in mar-
ket operating systems via a security update”. The response decision extends fur-
ther stating that Microsoft’s “assessment considers this scenario to be a defense
in depth against third party products”. Finally Microsoft acknowledges that fix-
ing this vulnerability “for in market OS’s would potentially result in significant
application compatibility issues”. Microsoft also gave us permission to publicly
disclose this vulnerability.

In our opinion, fixing this vulnerability would require changes to the functions
themselves, including the parameters they take. Eventually, such an approach
would most likely not be retro-compatible and cause problems. However, a new
function could be made available with a new name, most likely with the suffix
Ex or Ex2 as per Microsoft’s tradition, with a security notice placed on the
older functions indicating that a newer, more secure function is available as it
has been done many times in the past for other vulnerable functions.

In order to efficiently address the discovered vulnerability, the affected kernel
function must be modified. Ironically this is made impossible by default due to
various security mechanisms preventing any kernel modifications such as Ker-
nel Patch Protection (KPP, also known as PatchGuard). Unfortunately, without
Microsoft upgrading the kernel API functions, this vulnerability cannot be ade-
quately fixed in all circumstances. Nonetheless, in the next section we explore
possible solutions that, while they will not be able to remove the vulnerability,
could significantly mitigate it without requiring kernel modifications.

6.6 Possible Solutions

The most appropriate solution would be to modify the kernel so that user-mode
functions taking a PID as a parameter either instantly fails or, more elegantly,
get delayed until the process finishes its initialisation, and the kernel routines
trigger. This solution can only be implemented by Microsoft.
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A solution could be to use notification routines allowing notification of the
process to protect being spawned, but then directly terminating the process and
spawning it again from kernel space using a function that immediately returns
either the PID or a handle, such as ZwCreateProcess. This appears to be the
solution anti-cheat softwares have set up following our disclosure, and how Vir-
tualBox is spawning the virtual machine’s VirtualBox.exe dedicated process.
This solution is effective but requires a signed kernel driver, which most devel-
opers do not have and comes at a cost, in addition to the expertise required for
its implementation. It may also be inapplicable in many scenarios, especially if
attempting to protect third party processes that are not designed to be forcibly
terminated then restarted in a different way. Fortunately, the software in our use
cases satisfy these requirements and can implement this solution.

Based on our reverse engineering, anti-cheat software appears to have imple-
mented an additional mitigation in addition to the aforementioned solution.
They periodically scan the object table of all processes running on the system,
and if a handle to the protected process is found the permissions are then edited
accordingly to the desired filtering rules. This is not in our opinion a viable solu-
tion, as our exploits would still obtain privileged handles and could use them for
a brief moment which is sufficient to tamper with the process. This mitigation
also requires the use undocumented internal kernel functions and memory struc-
tures, as well as Direct Kernel Object Modification (DKOM) which are highly
discouraged by Microsoft. Note that while this solution doesn’t fully protect
against the vulnerability, it allows detection of exploitation.

It is possible to set up a handle permission filter using callbacks without
being notified of newly spawned processes, and therefore without using the vul-
nerable API functions. Using this method, all handles are filtered and have their
permissions modified. Unfortunately, in this case even Window’s vital systems
processes such as csrss.exe have their handle permissions modified, which prevent
the protected process to execute correctly. Quite ironically, it seems that Win-
dows itself makes use of this insecure time period to operate correctly. This may
be prevented if the driver could collect information about the process requesting
the handle from within the callback function, and let Windows system pro-
cesses acquire unmodified handles, along with possible other white-listed pro-
cesses. Unfortunately, with the current kernel callback functions it is not possible
to retrieve such information, making this solution impossible. Microsoft could
implement this solution without compatibility issues by modifying the kernel
memory structure POB PRE OPERATION INFORMATION to include infor-
mation about the requesting process. Alternatively, Microsoft could modify the
kernel callback API functions, to have an additional parameter allowing for the
retrieval of this information, however this would unavoidably lead to compati-
bility issues due to function parameters and memory structures changes.

7 Conclusions

In this paper we introduce a fundamental security design flaw within the
Microsoft Windows OSs. We demonstrated the feasibility of outrunning
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Windows kernel process notification routines from unprivileged user-mode pro-
cesses. Thus, effectively bypassing any protection set in kernel mode following
notification routines. Consequently, Microsoft’s standard method of protecting
user processes via a kernel driver is ineffective. We verified our work on current
Windows 7 x64 and Windows 10 x64 up to date up to date as of November 2019.

In order to validate our findings, we implemented our own protection driver
and assessed its features. Our findings highlight that the discovered vulnerability
can be exploited to bypass protection built for sensitive and widely used appli-
cations. We have assessed and demonstrated the aforementioned property by
studying the behaviour of the (i) Symantec Endpoint Protection anti-malware
suite; (ii) virtualisation environments such as VirtualBox; (iii) anti cheat pro-
tection software such as BattlEye and EasyAntiCheat. In addition, solutions to
address the vulnerability were presented, namely to change the Windows API for
handle requests, respawning the protected process from kernel space to imme-
diately set up protection, scanning object tables system-wide for detection and
protection, and providing sufficient information to callback driver functions to
avoid using routines.

We disclosed the vulnerability to Microsoft. Microsoft acknowledged the
problem but decided against a OS patch. As shown, in response to our work
application developers have reacted and implemented unique fixes to their appli-
cations. However, we feel that this is an inefficient strategy as the solutions are
incomplete, different from case to case, and have to be re-designed for each sit-
uation. A comprehensive solution in the form of an OS update from Microsoft
would effectively mitigate this vulnerability, however there would be an unde-
sirable cost from a compatibility perspective. Maybe this work serves as a well
documented example where security improvements cannot be easily balanced
with other industry requirements.

We have made the source code of every binary discussed in this paper publicly
available on GitHub [4,6] so developers can assess if their solutions are vulner-
able, and attempt to implement additional security on a minimalist protection
driver [7] before adding it to their products. A compiled version is also available
for quick testing and experimenting. Finally we made a video showing the API
functioning normally, then the effects of our exploits [9].

Overall, we argued that the discovered vulnerability is not caused by a simple
development bug, but rather a fundamental security flaw deeply ingrained in the
OS core design, laying the foundations for a new generation of OS-level attacks.
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