Skip to main content

Cooperative Communications, Distributed Coding and Machine Learning

  • Conference paper
  • First Online:
Book cover E-Business and Telecommunications (ICETE 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1247))

Included in the following conference series:

  • 253 Accesses

Abstract

In this contribution, we will investigate how cooperative communications using relay nodes can achieve a higher channel capacity, compared to conventional transmissions. Then, a distributed coding scheme is designed for approaching the corresponding channel capacity. More specifically, a virtual Irregular Convolutional Code (IRCC) is designed based on an iterative learning algorithm and the resultant component encoders are distributed to multiple relay nodes. The near-capacity scheme is applied to an Unmanned Aerial Vehicle (UAV) network for improving the transmission rate at the cell-edge or isolated area. Machine learning algorithm is used to find the optimal location for the UAVs, which serve as the relay nodes. It is shown that a high performing next-generation wireless communications scheme can be created by incorporating cooperative communications, distributed coding and machine learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This definition is in line with  [6, 15], but it is unconventional, because it relates the transmit power to the receiver noise measured at two distinct locations.

  2. 2.

    The rational of considering \(\gamma ^{sd}_\texttt {r}=-3.5\) dB is explained in Sect. 6.

  3. 3.

    The CSI knowledge is only needed at the receiver for decoding purposes, where each RN only has to know the CSI between the SN and itself, while the DN only has to know the CSI between the corresponding RNs/SN and itself.

  4. 4.

    The original DTTCM scheme of [38] employed 2/3-rate TTCM-8PSK at the SN and uncoded-4PSK at the RN. The DTTCM scheme considered here uses 1/2-rate TTCM-4PSK at the SN and uncoded-4PSK at the RN, in order to make its throughput as close as possible to the proposed DIRCC scheme for a fair comparison.

  5. 5.

    In terms of SNR per information bit, the gain of DIRCC over DTTCM is given by 2.0 dB \(+10\log _{10}(0.667)-10\log _{10}(0.50)=0.76\) dB.

References

  1. Bletsas, A., Khisti, A., Reed, D.P., Lippman, A.: A simple cooperative diversity method based on network path selection. IEEE J. Sel. Areas Commun. 24(3), 659–672 (2006). https://doi.org/10.1109/JSAC.2005.862417

    Article  Google Scholar 

  2. Chakrabarti, A., Baynast, A., Sabharwal, A., Aazhang, B.: Low density parity check codes for the relay channel. IEEE J. Sel. Areas Commun. 25(2), 280–291 (2007)

    Article  Google Scholar 

  3. Chakrabarti, A., Baynast, A., Sabharwal, A., Aazhang, B.: Low density parity check codes over wireless relay channels. IEEE Trans. Wireless Commun. 6(9), 3384–3394 (2007)

    Article  Google Scholar 

  4. Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity Part I: system description. IEEE Trans. Commun. 51(11), 1927–1938 (2003)

    Article  Google Scholar 

  5. Arikan, E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009). https://doi.org/10.1109/TIT.2009.2021379

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhao, B., Valenti, M.C.: Distributed turbo coded diversity for relay channel. IEE Electron. Lett. 39, 786–787 (2003)

    Article  Google Scholar 

  7. BBC: Google AI defeats human Go champion. BBC News, 25 May 2017. https://www.bbc.co.uk/news/technology-40042581

  8. ten Brink, S.: Convergence behaviour of iteratively decoded parallel concatenated codes. IEEE Trans. Commun. 49(10), 1727–1737 (2001)

    Article  Google Scholar 

  9. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and decoding: turbo codes. In: Proceedings of the International Conference on Communications, Geneva, Switzerland, pp. 1064–1070 (1993)

    Google Scholar 

  10. Cover, T., Gamal, A.E.: Capacity theorems for the relay channel. IEEE Trans. Inf. Theory 25(5), 572–584 (1979)

    Article  MathSciNet  Google Scholar 

  11. Divsalar, D., Dolinar, S., Pollara, F.: Serial turbo trellis coded modulation with rate-1 inner code. In: ISIT, Sorrento, Italy, p. 194 (2000)

    Google Scholar 

  12. Telatar, E.: Capacity of multi-antenna Gaussian channels. Eur. Trans. Telecommun. 10(6), 585–595 (1999)

    Article  MathSciNet  Google Scholar 

  13. Forney, G.: Concatenated Codes. MIT Press, Cambridge (1966)

    Google Scholar 

  14. Gallager, R.: Low-density parity-check codes. IEEE Trans. Inf. Theory 8(1), 21–28 (1962)

    Article  MathSciNet  Google Scholar 

  15. Ochiai, H., Mitran, P., Tarokh, V.: Design and analysis of collaborative diversity protocols for wireless sensor networks. In: Proceedings of IEEE VTC Fall, Los Angeles, USA, pp. 4645–4649 (2004)

    Google Scholar 

  16. Nguyen, H.V., Ng, S.X., Hanzo, L.: Irregular convolution and unity-rate coded network-coding for cooperative multi-user communications. IEEE Trans. Wirel. Commun. 12(3), 1231–1243 (2013)

    Article  Google Scholar 

  17. Watt, J., Borhani, R., Katsaggelos, A.K.: Machine Learning Refined: Foundations, Algorithms, and Applications. Cambridge University Press, New York (2016)

    Book  Google Scholar 

  18. Yuan, J., Chen, Z., Li, Y., Chu, L.: Distributed space-time trellis codes for a cooperative system. IEEE Trans. Wirel. Commun. 8, 4897–4905 (2009)

    Article  Google Scholar 

  19. Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K., Hanzo, L.: Machine learning paradigms for next-generation wireless networks. IEEE Wirel. Commun. 24(2), 98–105 (2017). https://doi.org/10.1109/MWC.2016.1500356WC

    Article  Google Scholar 

  20. Ju, M., Kim, I.M.: Relay selection with ANC and TDBC protocols in bidirectional relay networks. IEEE Trans. Commun. 58(12), 3500–3511 (2010). https://doi.org/10.1109/TCOMM.2010.101210.090585

    Article  Google Scholar 

  21. Hanzo, L., Liew, T.H., Yeap, B.L., Tee, R.Y.S., Ng, S.X.: Turbo Coding, Turbo Equalisation and Space-time Coding: EXIT-Chart-aided Near-Capacity Designs for Wireless Channels, 2nd edn. Wiley-IEEE Press, New York (2011)

    Book  Google Scholar 

  22. Kong, L., Ng, S.X., Maunder, R.G., Hanzo, L.: Maximum-throughput irregular distributed space-time code for near-capacity cooperative communications. IEEE Trans. Veh. Technol. 59(3), 1511–1517 (2010)

    Article  Google Scholar 

  23. Kong, L., Ng, S.X., Tee, R.Y.S., Maunder, R.G., Hanzo, L.: Reduced-complexity near-capacity downlink iteratively decoded generalized multi-layer space-time coding using irregular conv olutional codes. IEEE Trans. Wirel. Commun. 9(2), 684–695 (2010)

    Article  Google Scholar 

  24. Lampe, L., Schober, R., Yiu, S.: Distributed space-time coding for multihop transmission in power line communication networks. IEEE J. Sel. Areas Commun. 24(7), 1389–1400 (2006)

    Article  Google Scholar 

  25. Loeliger, H.: New turbo-like codes. In: Proceedings of IEEE International Symposium on Information Theory, June 1997. https://doi.org/10.1109/ISIT.1997.613024

  26. Butt, M.F.U., Riaz, R.A., Ng, S.X., Hanzo, L.: Distributed self-concatenated coding for cooperative communication. IEEE Trans. Veh. Technol. 59(6), 3097–3104 (2010)

    Article  Google Scholar 

  27. Janani, M., Hedayat, A., Hunter, T., Nosratinia, A.: Coded cooperation in wireless communications: space-time transmission and iterative decoding. IEEE Trans. Signal Process. 52, 362–371 (2004)

    Article  MathSciNet  Google Scholar 

  28. Shirvanimoghaddam, M., Li, Y., Vucetic, B.: Distributed raptor coding for erasure channels: partially and fully coded cooperation. IEEE Trans. Commun. 61(9), 3576–3589 (2013)

    Article  Google Scholar 

  29. Tüchler, M., Hagenauer, J.: EXIT charts of irregular codes. In: Proceedings of Conference on Information Science and Systems, pp. 465–490. Princeton University (2002)

    Google Scholar 

  30. MacKay, D.J.C., Neal, R.M.: Good codes based on very sparse matrices. In: Boyd, C. (ed.) Cryptography and Coding 1995. LNCS, vol. 1025, pp. 100–111. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60693-9_13

    Chapter  Google Scholar 

  31. Mao, Q., Hu, F., Hao, Q.: Deep learning for intelligent wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 20(4), 2595–2621 (2018). https://doi.org/10.1109/COMST.2018.2846401

    Article  Google Scholar 

  32. Laneman, N., Tse, D.N.C., Wornell, G.W.: Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inf. Theory 50(12), 3062–3080 (2004)

    Article  MathSciNet  Google Scholar 

  33. Ng, S.X., Hanzo, L.: On the MIMO channel capacity of multi-dimensional signal sets. IEEE Trans. Veh. Technol. 55(2), 528–536 (2006)

    Article  Google Scholar 

  34. Ng, S.X., Li, Y., Vucetic, B., Hanzo, L.: Distributed irregular codes relying on decode-and-forward relays as code components. IEEE Trans. Veh. Technol. 64(10), 4579–4588 (2015). https://doi.org/10.1109/TVT.2014.2370737

    Article  Google Scholar 

  35. Razaghi, P., Yu, W.: Bilayer low-density parity-check codes for decode-and-forward in relay channels. IEEE Trans. Inf. Theory 53(10), 3723–3739 (2007)

    Article  MathSciNet  Google Scholar 

  36. Proakis, J.G.: Digital Communications, 4th edn. Mc-Graw Hill International Editions, New York (2001)

    MATH  Google Scholar 

  37. Robertson, P., Wörz, T.: Coded modulation scheme employing turbo codes. IET Electron. Lett. 31(18), 1546–1547 (1995)

    Article  Google Scholar 

  38. Ng, S.X., Li, Y., Hanzo, L.: Distributed turbo trellis coded modulation for cooperative communications. In: Proceedings of International Conference on Communications (ICC), Dresden, Germany, pp. 1–5 (2009)

    Google Scholar 

  39. Ng, S.X., Li, Y., Vucetic, B., Hanzo, L.: Distributed irregular codes relying on decode-and-forward relays as code components. IEEE Trans. Veh. Technol. 64(10), 4579–4588 (2015)

    Article  Google Scholar 

  40. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–427 (1948)

    Article  MathSciNet  Google Scholar 

  41. Tüchler, M.: Design of serially concatenated systems depending on the block length. IEEE Trans. Commun. 52(2), 209–218 (2004)

    Article  Google Scholar 

  42. Tarokh, V., Seshadri, N., Calderbank, A.: Space-time codes for high data rate wireless communications: performance criterion and code construction. In: Proceeding IEEE International Conference on Communications 1997, Montreal, Canada, pp. 299–303 (1997)

    Google Scholar 

  43. Jing, Y., Hassibi, B.: Distributed space-time coding in wireless relay networks. IEEE Trans. Wirel. Commun. 5, 3524–3536 (2006)

    Article  Google Scholar 

  44. Li, Y.: Distributed coding for cooperative wireless networks: an overview and recent advances. IEEE Commun. Mag. 47(8), 71–77 (2009)

    Article  Google Scholar 

  45. Li, Y., Vucetic, B., Yuan, J.: Distributed turbo coding with hybrid relaying protocols. In: IEEE PIMRC, French Riviera, France (2008)

    Google Scholar 

  46. Li, Y., Rahman, M.S., Ng, S.X., Vucetic, B.: Distributed soft coding with a soft input soft output (SISO) relay encoder in parallel relay channels. IEEE Trans. Commun. 61(9), 3660–3672 (2013)

    Article  Google Scholar 

  47. Zhang, Q., Jiang, M., Feng, Z., Li, W., Zhang, W., Pan, M.: IoT enabled UAV: network architecture and routing algorithm. IEEE Internet Things J. 6(2), 3727–3742 (2019). https://doi.org/10.1109/JIOT.2018.2890428

    Article  Google Scholar 

  48. Zhang, Z., Duman, T.: Capacity-approaching turbo coding for half-duplex relaying. IEEE Trans. Commun. 55(10), 1895–1906 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Xin Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ng, S.X. (2020). Cooperative Communications, Distributed Coding and Machine Learning. In: Obaidat, M. (eds) E-Business and Telecommunications. ICETE 2019. Communications in Computer and Information Science, vol 1247. Springer, Cham. https://doi.org/10.1007/978-3-030-52686-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52686-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52685-6

  • Online ISBN: 978-3-030-52686-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics