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Abstract. We investigate decision bireducts which extend the notion of
a decision reduct developed in the theory of rough sets. For a decision
table A = (U,A∪{d}), a decision bireduct is a pair (X,B), where B ⊆ A
is a subset of attributes which allows to distinguish between all pairs of
objects in X ⊆ U labeled with different values of decision attribute d, and
where B and X cannot be made, respectively, smaller and bigger without
losing this property. We refer to our earlier studies on deriving bireducts
(X,B) from decision tables and utilizing them to construct families of
rule-based classifiers, where X ⊆ U is equal to total support of decision
rules built using attributes in B ⊆ A. We introduce the notion of a correct
ensemble of decision bireducts (X1, B1), ..., (Xm, Bm), where each u ∈ U
must be validly classified by more than 50% of the corresponding models.
We show that the problem of finding a correct ensemble of bireducts with
the lowest cardinalities of subsets Bi ⊆ A is NP-hard.

Keywords: Decision bireducts · Classifier ensembles · Rule-based
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1 Introduction

There are a number of approaches based on ensembles of classifiers – or decision
models, more generally – in the areas of knowledge discovery and data classifi-
cation [1,4]. One can name several reasons to use ensembles. First, we can count
on stability and robustness of the collective. Moreover, it is expected that each
of classifiers – a part of a bigger ensemble – can be simpler than a single, not
ensemble-based decision model that would yield a similar level of accuracy. On
the other hand, if we look at all ensemble parts as a whole, they often lose some-
thing out of their interpretability. It may be hard to set up their cooperation.
Finally, a lot of computing power is needed to derive them from the data.

Several optimization tendencies repeat in case of numerous methods for learn-
ing classifier ensembles. For instance, it is widely assumed that components of
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the ensemble should not misclassify too often the same training cases. Each sin-
gle classifier is expected to make mistakes (in other words, each single part can
be relatively weak with respect to its classification power) but for each training
case, a (possibly weighted) majority of models in the ensemble should be cor-
rect. To address this aspect while building classifier ensembles, popular machine
learning meta-algorithms such as boosting or bagging can be used.

One more aspect – besides tending to simplicity (and to some extent weak-
ness) and complementarity (avoiding repeatable mistakes) in the ensemble –
corresponds to diversification of attributes (features) that are used as inputs to
learn particular models. For example, in case of rough-set-inspired approaches
to knowledge discovery, it refers to computation of diverse decision reducts, i.e.,
irreducible (the smaller – the better) subsets of attributes that are sufficient to
determine decision labels. If we want to put this idea together with diversifica-
tion of cases which are classified correctly/wrongly by particular models, we can
rely on ensembles of so-called decision bireducts [7,8], whereby irreducibility of
a subset of attributes is combined with non-extendability of a subset of objects
(cases), for which those attributes let us form valid classification rules.

Rough-set-based approaches are also a good reference while considering for-
mal optimization problems behind construction of decision models. Indeed, start-
ing from fundamental works on NP-hardness of the problem of finding minimal
(in terms of the number of attributes) decision reduct, a lot of attention is paid
in the rough set literature to develop mathematical and algorithmic methods for
operating with the simplest yet sufficiently accurate (and thus the most power-
ful) classifiers [2,3]. However, even in the realm of rough sets, there are no studies
on formulation of optimization problems related to classifier ensembles. In other
words, optimization goals and their complexity characteristics are investigated
only at the level of single models, rather than the whole ensembles.

Accordingly, in this paper we propose how to define the optimization problem
related to searching for the simplest possible ensembles of decision models that
meet specific accuracy constraints. We realize that there are plenty of ways of
stating such constraints, with respect to various aspects of an ensemble as a whole
or its single components. Similarly, there may be many ways of understanding
the simplicity of an ensemble. Nevertheless, we believe that the introduced for-
mulation – based on collections of decision bireducts that include the minimal
amounts of attributes (the optimization goal) and in the same time, sufficiently
cover all considered objects using the corresponding decision rules (the accuracy
constraint) – can be a good starting point for further investigations.

The paper is organized as follows: Sect. 2 recalls decision bireducts (X,B),
whereby – for the training data set (referred as so-called decision table) A =
(U,A ∪ {d}) – B ⊆ A is a subset of attributes which allows to distinguish
between all pairs of objects in X ⊆ U labeled with different values of deci-
sion attribute d, and where B and X cannot be reduced and extended, respec-
tively. Section 3 introduces correct ensembles of bireducts (X1, B1), ..., (Xm, Bm),
m > 0, whereby there is inequality |{i = 1, ...,m : u ∈ Xi}| > m/2 for
each u ∈ U . Section 4 presents our idea of expressing simplicity (which is the
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optimization goal) of correct ensembles in terms of cardinalities of subsets
B1, ..., Bm. Section 5 shows our main theoretical result, i.e., NP-hardness of find-
ing the simplest correct ensembles of decision bireducts. Section 6 concludes the
paper.

2 Decision Bireducts

We use tabular data representation by means of decision tables [3] – pairs
A = (U,A∪ {d}) of finite sets U and A∪ {d}, where U is the universe of objects
and A ∪ {d} is the set consisting of attributes such that every a ∈ A ∪ {d} is
associated with function a : U → Va, where Va is called the value set of a. The
distinguished attribute d /∈ A is called the decision. Elements of A are called
conditional attributes. Values vd ∈ Vd correspond to decision classes.

Definition 1. Let A = (U,A ∪ {d}) and B ⊆ A, X ⊆ U be given. We say that
B determines d within X, further denoted as B �X d, if and only if B discerns
all pairs ui, uj ∈ X such that d(ui) �= d(uj). Further, we say that the pair (X,B)
is a decision bireduct, if and only if the following holds:

1. There is B �X d,
2. There is no proper subset B′

� B such that B′ �X d,
3. There is no proper superset X ′

� X such that B �X′ d.

We will say that objects in X are covered by B �X d.

Every decision bireduct (X,B) may be understood as a pair consisting of an irre-
ducible subset of attributes that can be evaluated by means of an non-extendable
subset of objects for which it provides good classification. It was shown in [8]
that X is actually the set-theoretic sum of objects supporting deterministic rules
using the values of attributes in B to describe the values of d.

Figure 1 displays some bireducts derived for decision table A with objects U =
{u1, ..., u6} and conditional attributes A = {a1, a2, a3}. For instance, consider
the pair B = {a1, a2} and X = {u2, ..., u6}. It corresponds to rules “if a1 = 0
and a2 = 0 then d = 0” (supported by u2), “if a1 = 0 and a2 = 1 then d = 0”
(supported by u3), “if a1 = 1 and a2 = 0 then d = 1” (supported by u4 and u5)
and “if a1 = 1 and a2 = 1 then d = 0” (supported by u6). Neither a1 nor a2
would be sufficient by itself to cover X with shorter rules. Moreover, u1 cannot
be added to X because it is inconsistent with the first rule.

The first algorithms aimed at deriving decision bireducts from the data were
proposed in [7]. They were based on random generation of mixed orderings
of attributes and objects. Such orderings were utilized to encode sequences of
attempts to remove attributes from B (starting with B = A) and add objects to
X (starting with X = ∅) in order to obtain pairs (X,B) such that B �X d, with
possibly minimal B and maximal X. By using an appropriate process of gen-
eration of families of diverse orderings, one could derive collections of bireducts
with quite different subsets of attributes and objects involved.
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Probably the most efficient known technique for deriving decision bireducts
consists of four phases: 1) Choose randomly a subset C ⊆ A; 2) For each block of
objects (so-called indiscernibility class) with the same values on C, add randomly
one of its elements to Y ⊆ U ; 3) For table A = (Y,C ∪ {d}), run one of classical
methods for finding standard decision reducts [2]; 4) For a decision reduct B ⊆ C,
construct superset X ⊇ Y by adding to Y all objects that are consistent with
decision rules generated from table A = (Y,B ∪ {d}).

Fig. 1. Examples of decision bireducts for table A = ({u1, ..., u6}, {a1, a2, a3} ∪ {d}).
Bireducts in the middle layer form a correct ensemble (each object is validly classified
by at least two bireducts out of three). For each “middle” bireduct treated as a new
decision table, its corresponding correct ensemble is provided in the lowest layer.

3 Bireduct Ensembles

The notion of a decision bireduct allows us to operate with subsets of condi-
tional attributes treated as classification descriptions, and with the associated
subsets of objects for which those descriptions are valid. This gives us an elegant
way to investigate complementarity of bireducts interpreted as classifiers in the
ensemble. For instance, the following formulation expresses the idea of majority
voting between ensemble components which – if properly tuned on the training
data – gives us a chance of efficient performance over new cases too.

Definition 2. Let A = (U,A∪ {d}) and the ensemble of decision bireducts B =
(X1, B1), ..., (Xm, Bm) be given. We say that B is correct, if and only if there is
inequality |{i = 1, ...,m : u ∈ Xi}| > m/2 for each u ∈ U .
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The above inequality means that more than 50% of decision rules triggered for
u ∈ U point at the valid decision d(u). Figure 1 illustrates a kind of hierarchy of
correct bireduct ensembles for m = 3. Alternatively, one can work with a “flat”
collection of decision bireducts that are supposed to vote correctly on each of
objects, even if some single bireducts are wrong for some single cases.

Figure 1 implicitly suggests a top-down way of constructing correct ensem-
bles, whereby each of m bireducts is derived in the same time, with an option
of further decompositions on even smaller pieces. Such algorithms have been
already considered in [5] for another type of (bi)reducts, i.e., so-called generalized
decision reducts. On the other hand, one can proceed with the aforementioned
ordering-based methods [7], whereby – somewhat reflecting the mechanisms of
bagging and boosting – each next ordering may take into account which objects
were covered least frequently by decision bireducts derived up to now.

4 Ensemble Simplicity

The rough literature provides a great number of theoretical works on compu-
tational complexity of optimization problems focused on deriving the simplest
possible decision models from the data [2]. Let us refer to a recent comparative
study reflecting both decision bireducts and so-called approximate reducts with
this respect [8]. By “the simplest” one can mean (bi)reducts involving the mini-
mal amounts of attributes, generating minimal amounts of decision rules, having
the minimal information entropy, etc. However, all those formulations refer to
single (bi)reducts which correspond to single classifiers.

In other words, as it was emphasized in [3], simplicity is a crucial aspect of
decision models, in relation to paradigms such as Occam’s Razor or the Min-
imum Description Length Principle. However, there is no clear guidance how
to understand simplicity of ensembles. Thus, if we want to define optimization
problems for ensembles, we need to know how to aggregate “complexities” of par-
ticular ensemble components (e.g.: the number of attributes in a single decision
bireduct, the number of leaves in a single decision tree, etc.).

Intuitively, in case of ensembles of decision bireducts, the corresponding opti-
mization problem should be stated by means of finding the smallest subsets
B1, ..., Bm that satisfy – together with their counterparts X1, ...,Xm – the con-
straints of Definition 2. The question remains what we should mean by “the
smallest” in case of a collection of subsets. In [6], for the analogous task related
to the already-mentioned generalized decision reducts, it was proposed to look at
it from the perspective of the maximum cardinality out of all involved subsets.
For the purpose of bireducts it can be phrased as follows:

Definition 3. Let decision table A = (U,A∪ {d}) and two correct ensembles of
decision bireducts B = {(X1, B1), ..., (Xm, Bm)} and C = {(Y1, C1), ..., (Yn, Cn)},
m,n ≥ 0, be given. We say that B is simpler than C, denoted as B ≺ C, if and
only if the following procedure yields it:
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1. Sort sequences of cardinalities of attribute subsets in a descending order.
2. Add a sentinel item with the value −1 at the end of each of sequences.
3. Find the first position for which the sorted sequences differ from each other.
4. If the value in the above-found position is lower for B than for C, then B ≺ C.

The above procedure – illustrated additionally by Fig. 2 – induces a linear order
over ensembles of bireducts for a given A. We therefore propose to search through
a space of all correct ensembles B = {(X1, B1), ..., (Xm, Bm)}, paying special
attention to cardinalities of their largest components along a kind of cardinality-
based lexicographic order. This is because the largest subsets of attributes cor-
respond to the largest collections of the longest rules, i.e., they affect complexity
of the model more significantly than other subsets.

Fig. 2. Illustration of the procedure in Definition 3.

5 Main Result

Let us formalize the optimization goal that we drafted in the previous section:
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Definition 4. By the Simplest Correct Decision Bireduct Ensemble Problem
(SCDBEP) we mean the task of finding – for each input decision table A –
the correct ensemble of decision bireducts B such that there is no other correct
ensemble for A that would be simpler than B according to Definition 3.

Theorem 1. SCDBEP is NP-hard.

Before we present the proof, let us refer to Fig. 3. The proof is based on
polynomial reduction of the problem of finding the smallest dominating sets in
undirected graphs to SCDBEP. It requires encoding of each input graph G to its
corresponding decision table AG. This encoding is analogous to those that were
utilized for other (bi)redect-related optimization problems [2,8].

Fig. 3. Illustration for the proof of Theorem 1.

Figure 3 can also serve as one more illustration of creation of correct ensem-
bles of decision bireducts. It displays how to interpret those bireducts as
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rule-based classifiers. In particular, as it could be already noticed earlier in Fig. 1,
some bireducts can correspond to empty sets of attributes. We can interpret them
as “dummy” classifiers which point always at the same decision class. They may
help to tune the majority voting mechanism in the ensemble.

Proof. As already stated, we intend to show NP-hardness of SCDBEP by polyno-
mial reduction of the minimum dominating set problem. Let us consider an undi-
rected graph G = (V,E) and create decision table AG = (UG ∪{u∗}, AG ∪{dG}),
where av ∈ AG corresponding to v ∈ V takes 1 on uv′ ∈ UG corresponding
to v′ ∈ V , i.e., av(uv′) = 1, if and only if v = v′ or (v, v′) ∈ E, and where
av(u∗) = 0. Let us also put dG(uv′) = 0 and dG(u∗) = 1 (see Fig. 3).

Clearly, any B ⊆ V is a dominating set in G, if and only if it corresponds to a
decision bireduct (UG, BG). It is obvious that a single-element bireduct ensemble
{(UG, BG)} is correct according to Definition 2. However, we can always construct
a simpler (or equally simple if BG is a singleton) correct ensemble.

Assuming that BG = {av1 , av2 , ..., avn
}, let us define new subsets of attributes

as BG,1 = {av1}, ..., BG,n = {avn
}, BG,n+1 = ∅, ..., BG,2n−1 = ∅ and new subsets

of objects as XG,1 = {u∗} ∪ {u ∈ UG|av1(u) = 1}, ..., XG,n = {u∗} ∪ {u ∈
UG|avn

(u) = 1}, XG,n+1 = UG, ..., XG,2n−1 = UG. Then, the proposed simpler
ensemble would be equal to {(XG,1, BG,1), ..., (XG,2n−1, BG,2n−1)} and it would
be still correct according to Definition 2 (see Fig. 3 again).

The consequence of the above is that the simplest correct ensemble of decision
bireducts corresponds to the smallest dominating set in the graph G. ��

6 Conclusions

We investigated ensembles of so-called decision bireducts, which can be inter-
preted as rule-based classifiers. We introduced the notion of a correct ensemble,
which means that every object (training case) must be validly recognized using
the corresponding rules by more than majority of classifiers. We discussed how
to specify a kind of simplicity criterion for such ensembles and we formulated an
example of optimization problem related to extracting possibly simplest correct
ensembles of decision bireducts from the input data. The main mathematical
result of our paper is the NP-hardness of the considered problem.

In future, given such a sound theoretical framework, more attention should
be paid to further extensions of our previous algorithmic approaches [7,8] to
deriving and applying decision bireducts for the real-life data. Moreover, some
alternative formulations of optimization problems should be discussed as well,
possibly referring to ensembles of other types of classifiers.
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