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Abstract. Pooling layers help reduce redundancy and the number of
parameters before building a multilayered neural network that performs
the remaining processing operations. Usually, pooling operators in deep
learning models use an explicit topological organization, which is not
always possible to obtain on multi-label data. In a previous paper, we
proposed a pooling architecture based on association to deal with this
issue. The association was defined by means of Pearson’s correlation.
However, features must exhibit a certain degree of correlation with each
other, which might not hold in all situations. In this paper, we propose
a new method that replaces the correlation measure with another one
that computes the entropy in the information granules that are generated
from two features or labels. Numerical simulations have shown that our
proposal is superior in those datasets with low correlation. This means
that it induces a significant reduction in the number of parameters of
neural networks, without affecting their accuracy.

Keywords: Granular computing · Rough sets · Association-based
pooling · Deep learning · Multi-label classification

1 Introduction

Multi-Label Classification (MLC) is a type of classification where each of the
objects in the data has associated a vector of outputs, instead of being associated
with a single value [8,20]. Formally speaking, suppose X = Rd denotes the d-
dimensional instance space, and L = {l1, l2, . . . , lk} denotes the label space with
k being the possible class labels. The task of multi-label learning is to estimate
a function h : X −→ 2L from the multi-label training set {(xi, Li) | 1 ≤ i ≤ n}.
For each multi-label example (xi, Li), xi ∈ X is a d-dimensional feature vector
(xi1, xi2, . . . , xid) and Li ⊆ L is the set of labels associated with xi. For any
unseen instance x ∈ X, the multi-label classifier h(· ) predicts h(x) ⊆ L as the
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set of proper labels for x. This particular case of classification requires addi-
tional efforts in extracting relevant features describing both input and decision
domains, since the boundaries regions of decisions usually overlap with each
other. This often causes the decision space to be quite complex.

Deep learning [6,10] is a promising avenue of research into the automated
extraction of complex data representations at high levels of abstraction. Such
algorithms develop a layered, hierarchical architecture of learning and repre-
senting data, where higher-level (more abstract) features are defined in terms of
lower-level (less abstract) features. For example, pooling layers [6,11,12] provide
an approach to down sampling feature maps by summarizing the presence of fea-
tures in patches of the feature map. Two common pooling methods are average
pooling and max pooling, which compute the average presence of a feature and
the most activated presence of a feature, respectively.

In the case of MLC, this must be done for both features and labels. Several
authors [5,15,17,21] have proposed MLC solutions inspired on deep learning
techniques. All these solutions are associated with application domains in which
the data have a topological organization (i.e. recognizing faces, coloring black and
white images or classifying objects in photographs). In [1] the authors introduced
the association-based pooling that exploits the correlation among neurons instead
of exploiting the topological information as typically occurs when using standard
pooling operators. Despite of the relatively good results reported by this model,
the function used to quantify the association between problem variables does not
seem to be suitable for datasets having poor correlation among their features or
labels. An alternative to deal with this issue consists in replacing the correlation
measure with a more flexible association estimator.

In this paper, we compute the entropy of the granules that are generated from
two problem features or labels. Several methods based on Granular Computing
use granules as basic elements of analysis [7,18], so that from two similar gran-
ulations of the universe of discourse, similar results must be achieved. One way
to measure this similarity between the granulations is to measure the entropy in
the data that they generate [19]. The rationale of our proposal suggests that two
features (or labels) can be associated if the generated granulations from them
have equal entropy. Therefore, the proposal consists in obtaining a universe gran-
ulation, where each feature (or label) defines an indiscernibility relation. In this
method, the information granules are the set of indiscernible objects with respect
to the feature (or label) under consideration.

The rest of the paper is organized as follows. Section 2 presents the theoretical
background related to our proposal. Section 3 introduces the new measure to
quantify the association between features and labels, and Sect. 4 is dedicated to
evaluating its performance in the model on synthetic datasets. Finally, in Sect. 5
we provide relevant concluding remarks.

2 Theoretical Background

In this section, we briefly describe the bidirectional neural network to be modi-
fied, and the granulation approach used in our proposal.
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2.1 Bidirectional Deep Neural Network

Recently, in [1] the authors introduced a new bidirectional network architecture
that is composed of stacked association-based pooling layers to extract high-level
features and labels in MLC problems. This approach, unlike the classic use of
pooling, does not pool pixels but problem features or labels.

The first pooling layer is composed of neurons denoting the problem features
and labels (i.e. low-level features and labels), whereas in deeper pooling layers the
neurons denote high-level features and labels extracting during the construction
process. Each pooling layer uses a function that detects pairs of highly associated
neurons, while performing an aggregation operation to derive the pooled neurons.
Such neurons are obtained from neurons belonging to the previous layer such that
they fulfil a certain association threshold. Figure 1 shows an example where two
pooling layers are running for both features (left figure) and labels (right figure).
In this example, five high-level neurons were formed from the association of the
feature pairs (f1, f2) and (f3, f4), and the label pairs (l1, l2) and (l3, l4). The f5
feature is not associated with any other feature, so it is transferred directly to
the t+1 pooling layer. In this pooling architecture, ⊕ and � are the aggregation
operators used to conform the pooled neurons.

f
(2)
1

f
(2)
3

f
(2)
2

f
(1)
1

f
(1)
2

f
(1)
3

f
(1)
4

f
(1)
5

f1 ∈ x

f2 ∈ x

f3 ∈ x

f4 ∈ x

f5 ∈ x

f
(2)
1 = f

(1)
1 ⊕ f

(1)
2

f
(2)
2 = f

(1)
3 ⊕ f

(1)
4

f
(2)
3 = f

(1)
5

(a) Feature pooling process

l
(2)
1 = l

(1)
1 � l

(1)
2

l1 ∈ x

l2 ∈ x

l3 ∈ x

l4 ∈ xl
(2)
2 = l

(1)
3 � l

(1)
4

l
(2)
1

l
(1)
1

l
(1)
2

l
(1)
3

l
(1)
4

l
(2)
1

(b) Label pooling process

Fig. 1. Bidirectional association-based pooling.
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This model uses Pearson’s correlation to estimate the association degree
between two neurons. Overall, the authors computed the correlation matrix
among features and labels, and derive the degree of association of the pooled
neurons from the degree of association between each pair of neurons in the pre-
vious layer. The pooling process is repeated over aggregated features and labels
until a maximum number of pooling layers is reached.

Once the high-level features and labels have been extracted from the dataset,
they are connected together with one or several hidden processing layers. Finally,
a decoding process [9] is performed to connect the high-level labels to the orig-
inal ones by means of one or more hidden processing layers. Figure 2 depicts
the network architecture resulting five high-level neurons that emerge from the
association-based pooling layers. These hidden layers are equipped with either
ReLU, sigmoid or hyperbolic tangent transfer functions, therefore conferring the
neural system with prediction capabilities.
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Fig. 2. Neural network architecture using association-based pooling.

It is worth reiterating that this model is aimed at pooling features and labels
in traditional MLC problems where neither features nor labels have a topological
organization. For example, when using numerical descriptors to encode a protein,
it might happen that two distant positions in the sequence are actually close two
each other in the tri-dimensional space.
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2.2 Universe Granulation

The underlying notion for granulation in classic rough sets [2,13,14] relies
on equivalence relations or partitions. Let U be a finite and non-empty uni-
verse, and A is a finite non-empty set of features that describe each object.
Given a subset of attributes B ⊆ A, an indiscernibility relation is defined as
IND = {(x, y) ∈ U × U |∀b ∈ B, x(b) = y(b)}. This relation is reflexive, sym-
metric and transitive. The equivalence class [x]IND consists of all elements
equivalent to x according to relation IND. The family of equivalence classes
U/IND = {[x]IND |x ∈ U} is a partition of the universe.

The indiscernibility relation seems to be excessively restrictive. In presence
of numerical attributes, two inseparable objects (according to some similarity
relation R [16]) will be gathered together in the same set of non-identical (but
reasonably similar) objects. The definition of R may admit that a small difference
between features values is considered as unsignificant. This relation delimits
whether two objects x and y are inseparable or not, and defines a similarity
class where R̄(x) = {y ∈ U |yRx}. Equation (1) shows the similarity relation,
assuming that 0 ≤ ϕ(x, y) ≤ 1 is a similarity function,

R : yRx ⇔ ϕ(x, y) ≥ ξ. (1)

This weaker binary relation states that objects x and y are deemed insep-
arable as long as their similarity degree ϕ(x, y) exceeds a similarity threshold
0 ≤ ξ ≤ 1. It is worth mentioning that the similarity relation R does not induce
a partition of U into a set of equivalence classes but rather a covering [3] of U
into multiple similarity classes R̄(x).

3 Feature Association Using the Granulation Entropy

The granular approach in [19] uses the Shannon entropy to characterize parti-
tions of a universe. Two granulations with the same (or similar) entropy value
could be considered equivalent. Similarly, the degree of association between two
features (or labels) could be determined using the entropy of the granulations
they generate. Our method verifies if the coverings (or partitions) generated by
two features (or labels) induce similar entropy values.

Let us assume that the problem feature f1 generates the covering Cf1 =
{GF1, GF2, . . . , GFs} that contains s granules, i.e. the family of similarity
classes when only the f1 feature is considered. Thus, we define ϕ(x, y) =
1 − |x(f1) − y(f1)| as a similarity function used in Eq. (1), where x(f1) and
y(f1) are the values of the feature f1 in objects x and y. In addition, the l1 label
generates the partition Pl1 = {GL1, GL2, . . . , GLt} with t granules, i.e. the fam-
ily of equivalence classes where all objects have exactly the same value on the l1
label. Since the domain of the label is {0, 1}, this partition will only contain two
equivalence classes. Equations (2) and (3) define the probability distributions
for the partitions Cf1 and Pl1, respectively,

DCf1 =
{ |GF1|

|U | ,
|GF2|
|U | , . . . ,

|GFs|
|U |

}
(2)
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DPl1 =
{ |GL1|

|U | ,
|GL2|
|U | , . . . ,

|GLt|
|U |

}
(3)

where |·| denotes the cardinality of a set. The Shannon entropy function of the
probability distributions is defined by Eqs. (4) and (5),

H(Cf1) = −
s∑

i=1

( |GFi|
|U |

)
log

( |GFi|
|U |

)
(4)

H(Pl1) = −
t∑

j=1

( |GLj |
|U |

)
log

( |GLj |
|U |

)
. (5)

The similarities of the granulations generated by two features f1 and f2, or
two labels l1 and l2 can be defined according to the measures GSE1(f1, f2) and
GSE2(l1, l2) defined in the Eqs. (6) and (7) respectively,

GSE1(f1, f2) =
(1 + E1)
(1 + E2)

(6)

GSE2(l1, l2) =
(1 + N1)
(1 + N2)

(7)

where E1 = min {H(Cf1),H(Cf2)}, E2 = max {H(Cf1),H(Cf2)}, N1 =
min {H(Pl1),H(Pl2)}, and N2 = max {H(Pl1),H(Pl2)}.

In this way, two features can be associated if GSE1(f1, f2) ≥ α1, where α1 is
the association threshold regulating the aggregation of features. In the same way,
two labels will be associated if GSE2(l1, l2) ≥ α2, where α2 is the association
threshold regulating the aggregation of labels.

In our approach, we estimate the association degree between pairs of pooled
neurons from the values of the association matrix calculated for the original
features and labels of the problem. Then, the association between two pooled
neurons would be performed as the average of the values determined by GSE1

and GSE2 for each pair of features (or labels) in these neurons.
Equations (8) and (9) define the association between f

(v)
1 and f

(v)
2 (i.e. neu-

rons in the v-th pool of features), and between l
(w)
1 and l

(w)
2 (i.e. neurons in the

w-th pool of labels), respectively,

SP1(f
(v)
1 , f

(v)
2 ) =

1
k1

k1∑
i=1

GSE1(p
f
i ) (8)

SP2(l
(w)
1 , l

(w)
2 ) =

1
k2

k2∑
j=1

GSE2(plj) (9)

where k1, k2 are the number of pairs of features and labels that can be formed
from the aggregation of f

(v)
1 and f

(v)
2 , and l

(w)
1 and l

(w)
2 , respectively. Similarly,

pfi and plj denote the ith and jth pairs of features and labels. In this way, we

say that two pooled neurons f
(v)
1 and f

(v)
2 , or l

(w)
1 and l

(w)
2 can be associated in

the current layer if SP1 ≥ α1, or SP2 ≥ α2, respectively.
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4 Simulations

In this section, we evaluate the ability of our proposal to estimate the association
between problem variables (low-level features and labels), and between pooled
neurons (high-level features and labels).

To perform the simulations, we use 10 multi-label datasets taken from the
RUMDR repository [4]. In these problems (see Table 1), the number of instances
ranges from 207 to 10,491, the number of features goes from 72 to 635, and the
number of labels from 6 to 400. Also, the average maximal correlation of Pearson
according to both features and labels is reported.

Table 1. Characterization of datasets used for simulations.

Dataset Name Instances Features Labels Correlation-F Correlation-L

D1 Emotions 593 72 6 0.62 0.39

D2 Scene 2,407 294 6 0.74 0.22

D3 Yeast 2,417 103 14 0.49 0.57

D4 Stackex-chemistry 6,961 540 175 0.18 0.13

D5 Stackex-chess 1,675 585 227 0.27 0.24

D6 Stackex-cooking 10,491 577 400 0.14 0.14

D7 Stackex-cs 9,270 635 274 0.18 0.18

D8 GnegativePseAAC 1,392 440 8 0.29 0.22

D9 GpositivePseAAC 519 440 4 0.33 0.34

D10 VirusPseAAC 207 440 6 0.40 0.22

The simulations aim at comparing our approach with the correlation-based
method proposed in [1]. In order to make fair comparisons, we will use the same
network architecture proposed by the authors. Similarly, as far as the pooling
process is concerned, we set the maximum number of pooling layers to 5 for the
features and 3 for the labels. The association thresholds α1 and α2 will range
from 0.0 to 0.8. The operators used to aggregate two neurons (i.e. ⊕ and �) are
the average in the feature pooling process, and maximum in the label pooling.
In addition, the value of the similarity threshold parameter used in Eq. (1) is
fixed to 0.85, although other values are also possible.

In all experiments conducted in this section, we use 80% of the dataset to
build the model and 20% for testing purposes, while the reported results are
averaged over 10 trials to draw consistent conclusions.

4.1 Results and Discussion

Table 2 displays the results of our measure in the model proposed by [1]. These
tables report the number of high-level features, the reduction percentage those
high-level features represent (%Red-Features), the number of high-level labels,
the reduction percentage in the number of labels (%Red-Labels), the accuracy
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obtained when using only the high-level features and labels, and the accuracy
loss with respect the model using all features and labels (i.e. neural network
model without performing the pooling operations).

Table 2. Results achieved by the GSE1 and GSE2 measures.

Dataset HL-Features %Red-Features HL-Labels %Red-Labels Accuracy Loss

D1 3 95.83% 3 50% 0.515 −0.308

D2 10 96.60% 3 50% 0.771 −0.144

D3 4 96.12% 4 71.43% 0.765 −0.036

D4 17 96.85% 22 87.43% 0.988 0

D5 19 96.75% 29 87.22% 0.99 0

D6 19 96.71% 50 87.5% 0.995 0

D7 20 96.85% 35 87.23% 0.991 0

D8 14 96.82% 4 50% 0.864 −0.054

D9 14 96.82% 4 0% 0.646 −0.22

D10 14 96.82% 3 50% 0.736 −0.058

(a) accuracy (b) high-level features

(c) high-level labels

Fig. 3. Average statistics over G1 using the GSE1 and GSE2 measures.
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Our proposal (i.e. to compute the association between variables from GSE1

and GSE2) obtains a percentage of reduction in the features over 95%, and in
the labels over 50% in most cases. On the other hand, the loss of accuracy is
significant in those datasets that present a high correlation (e.g., D1,D2,D9),
which means that this measure is not suitable in this datasets. It is remarkable
the accuracy loss for D1, which is also the dataset with the lowest number of
features in our study. However, the proposal reports a very small loss in those
datasets having a lower correlation (e.g., D4,D6,D7).

Figures 3 and 4 show the comparison of our proposal against the one using
Pearson’s correlation (baseline). In these figures, we report the differences in
accuracy between our method versus the baseline (Z1), the differences in the
number of high-level features (Z2), and the number of high-level labels (Z3),
when using different α1 and α2 values. Figure 3 summarizes the results for a
first group of datasets G1 = {D1,D2,D3,D8,D9,D10}, while Fig. 4 shows the
result of the second group G2 = {D4,D5,D6,D7}. The first group contains
datasets having high correlation between their features and a middle correlation
between their labels. Meanwhile, the second group consists of datasets having
low correlation between their features and their labels.

For both groups, our proposal obtains a higher reduction rates when it
comes to the number of high-level features and labels describing the problem.

(a) accuracy (b) high-level features

(c) high-level labels

Fig. 4. Average statistics over G2 using the GSE1 and GSE2 measures.
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This difference is more significant when using high values for the association
thresholds. In terms of accuracy, although the differences are not significant,
the greatest differences are obtained in the G1 datasets, and that is, when high
thresholds of association are used, while for the G2 datasets the opposite occurs.
Our proposal achieves better results in datasets that have low correlation (i.e,
those in G2), which confirms the hypothesis of our research.

It is worth mentioning that this model does not aim at increasing the predic-
tion rates but to reduce of features and labels associated with the MLC problem.
However, our results cry for the implementation of a convolutional operator to
also increase networks’ discriminatory power.

5 Concluding Remarks

In this paper, we have presented a method to quantify the association between
problem variables (features and labels). This measure detects pairs of features (or
labels) that are highly associable, and that will be used to perform an aggregation
operation resulting in high-level features and labels. Unlike the pooling approach
proposed in [1], our proposal does not require that either the features or labels
have a certain degree of correlation with each other. Numerical results have
shown that our proposal is able to significantly reduce the number of parameters
in deep neural networks. When compared with the correlation-based variant, our
model reported higher reduction values in datasets having low correlation values
among their features and labels. As a result, we obtained simpler models without
significantly affecting networks’ discriminatory power.
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