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Abstract. The notion of a protoconcept in the framework of Yao’s
object oriented concepts is proposed. Approximations by object oriented
concepts are defined and these ‘object oriented protoconcepts’ are char-
acterized using them. It is shown that the object oriented protoconcepts
form a double Boolean algebra, and any double Boolean algebra is quasi-
embedded in an algebra of protoconcepts. A logic DBL for the class of
double Boolean algebras is proposed along with an extension PDBL for
the class of pure double Boolean algebras. Utilizing the representation
result for (pure) double Boolean algebras, it is established that DBL
(PDBL) is sound and complete with respect to a semantics based on
object oriented protoconcepts (semiconcepts).

1 Introduction

Formal concept analysis (FCA) [5] has seen wide applications since its inception.
In order to study a conceptual knowledge system [10], Wille introduced the
negation of a concept, leading to the notions of semiconcepts and protoconcepts.
Algebraic studies of these notions led to the definition of double Boolean algebras
and pure double Boolean algebras [11]. These structures have been investigated
by many authors [1,7–9].

Over the years, there has been a lot of work on different kinds of intersections
of the theories of rough sets and FCA. Two seminal works in this regard are by
Düntsch and Gediga, who introduced property oriented concepts [4], and by Yao,
who proposed object oriented concepts [14]. Algebraic studies of these concepts
have been conducted by many [6,12,15]. Our interest lies in introducing negation
in the study of these concepts, in the line of the study by Wille as mentioned
above. In [6], object oriented semiconcepts were introduced. In this work, we
define object oriented protoconcepts (Sect. 4), and characterize them through
a notion of approximation by object oriented concepts. The algebraic structure
formed by object oriented protoconcepts is studied giving a representation result
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for double Boolean algebras. In Sect. 5, we propose a sequent calculus DBL,
which is shown to be sound and complete with respect to the class of double
Boolean algebras. DBL is extended to PDBL to give a logic for the class of pure
double Boolean algebras. Utilizing the representation results for the algebras, it is
next shown (Sect. 6) that these logics are also sound and complete for semantics
based on object oriented protoconcepts and semiconcepts respectively.

Preliminaries required for the work are presented in the next section.
Section 3 revisits the notions of concepts and semiconcepts related to rough set
theory, illustrated through a running example. Section 7 concludes the paper.

2 FCA and Double Boolean Algebras

Definition 1 [5]. A context is a triple K := (G,M,R),where G is the set of
objects, M is the set of properties, and R ⊆ G × M .

For a context K := (G,M,R), its complement is the context K
c :=

(G,M,−R) where −R := (G × M) \ R.
For any A ⊆ G,B ⊆ M , the following sets are defined:
A′ := {m ∈ M : ∀g ∈ G(g ∈ A=⇒gRm)}, and
B′ := {g ∈ G : ∀m ∈ M(m ∈ B=⇒gRm)}.
Then (A,B) is a concept of K, provided A′ = B and B′ = A.
An order relation ≤ is defined on the set of all concepts as follows. For

concepts (A1, B1) and (A2, B2), (A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2

(equivalently B2 ⊆ B1).

Notation 1. We denote the class of all contexts by K.
For a relation R ⊆ G × M , R−1 is the converse of R, that is R−1 ⊆ M × G

and yR−1x if and only if xRy. For any x ∈ G, y ∈ M , R(x) := {y ∈ M : xRy},
and R−1(y) := {x ∈ G : xRy}.

The complement of a subset X of G (or M) will be denoted simply by Xc.
The set of all concepts of the context K is denoted by B(K). For a concept

(A,B), A := ext((A,B)) is its extent, while B := int((A,B)) is its intent.

Attempting to introduce the negation of a formal concept, it was noticed that
there is a problem of closure if set-complement is used to define it. So the notion
of concept was generalized to that of a semiconcept, and also to a protoconcept
[11].

Definition 2. Let K := (G,M,R) be a context and A ⊆ G,B ⊆ M . The pair
(A,B) is a semiconcept of K if and only if A′ = B or B′ = A, while it is a
protoconcept of K if and only if A′′ = B′ (equivalently A′ = B′′).

Notation 2. The set of all semiconcepts is denoted by H(K) and the set of all
protoconcepts is denoted by P(K).

Observation 1. For a context K := (G,M,R), H(K) ⊆ P(K).
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The following operations are defined in P(K). Let (A1, B1), (A2, B2), (A,B) be
any protoconcepts.

(A1, B1) � (A2, B2) := (A1 ∩ A2, (A1 ∩ A2)
′
),

(A1, B1) 	 (A2, B2) := ((B1 ∩ B2)
′
, B1 ∩ B2),

¬(A,B) := (A′, Ac′
), �(A,B) := (Bc′

, Bc), 
 := (G,φ), and ⊥ := (φ,M).

Notation 3. P(K) forms a abstract algebra of type (2, 2, 1, 1, 0, 0) with respect
to the above operations and is called the protoconcept algebra of a context K. It
is denoted by P(K) := (P(K),	,�,¬, �,
,⊥).

H(K) is closed under the above operations, forming a subalgebra of the pro-
toconcept algebra. This algebra is called the semiconcept algebra of a context K,
and is denoted by H(K) := (H(K),	,�,¬, �,
,⊥).

On abstraction of properties of the protoconcept algebra of a context, Wille
defined the double Boolean algebra [11]. The semiconcept algebra leads to the
notion of a pure double Boolean algebra.

Definition 3 [11]. A double Boolean algebra (dBa) is an abstract algebra D :=
(D,	,�,¬, �,
,⊥) which satisfies the following properties, for any x, y, z ∈ D.

(1a) (x � x) � y = x � y
(2a) x � y = y � x
(3a) x � (y � z) = (x � y) � z
(4a) ¬(x � x) = ¬x
(5a) x � (x 	 y) = x � x
(6a) x � (y ∨ z) = (x � y) ∨ (x � z)
(7a) x � (x ∨ y) = x � x
(8a) ¬¬(x � y) = x � y
(9a) x � ¬x = ⊥

(10a) ¬⊥ = 
 � 

(11a) ¬
 = ⊥

(1b) (x 	 x) 	 y = x 	 y
(2b) x 	 y = y 	 x
(3b) x 	 (y 	 z) = (x 	 y) 	 z
(4b) �(x 	 x) =�x
(5b) x 	 (x � y) = x 	 x
(6b) x 	 (y ∧ z) = (x 	 y) ∧ (x 	 z)
(7b) x 	 (x ∧ y) = x 	 x
(8b) ��(x 	 y) = x 	 y
(9b) x	�x = 


(10b) �
 = ⊥ 	 ⊥
(11b) �⊥ = 


12 (x � x) 	 (x � x) = (x 	 x) � (x 	 x),

where x ∨ y := ¬(¬x � ¬y) and x ∧ y :=�(�x	�y).
On D, a quasi-order � is given by x � y⇐⇒x � y = x � x and x 	 y = y 	 y,

for any x, y ∈ D.
A dBa D is called pure, if for all x ∈ D either x � x = x or x 	 x = x.

Theorem 1 [11]. P(K) forms a dBa and H(K) forms a pure dBa.

Notation 4. For any dBa D := (D,	,�,¬, �,
,⊥), D� := {x ∈ D | x � x =
x}, D� := {x ∈ D | x 	 x = x}. For x ∈ D, x� := x � x and x� := x 	 x.

Let D := (D,	,�,¬, �,
,⊥) be a dBa. Then we have
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Proposition 1 [8].

(i) D� := (D�,�,∨,¬,⊥,¬⊥) is a Boolean algebra, whose order relation is
the restriction of � to D� and is denoted by ��.

(ii) D� := (D�,	,∧, �,
, �
) is a Boolean algebra, whose order relation is
the restriction of � to D� and is denoted by ��.

(iii) x � y if and only if x � x � y � y and x 	 x � y 	 y for x, y ∈ D, that is
x� �� y� and x� � y�, for any x, y ∈ D.

The following proposition giving further properties of dBas is useful. Part
(a) is proved in [7]; we prove (b) below.

Proposition 2.

(a) [7] For any x, y, a ∈ D:
1. x � ⊥ = ⊥ and x 	 ⊥ = x 	 x, that is ⊥ � x.
2. x 	 
 = 
 and x � 
 = x � x, that is x � 
.
3. x = y implies that x � y and y � x.
4. x � y and y � x if and only if x � x = y � y and x 	 x = y 	 y.
5. x � y � x, y � x 	 y, x � y � y, x � x 	 y.
6. x � y implies x � a � y � a and x 	 a � y 	 a.
(b) For any x, y ∈ D:
1. ¬x = (¬x)� ∈ D� and �x = (�x)� ∈ D�.
2. x � y if and only if ¬y � ¬x and �y ��x.

Proof. (b) 1. Let x ∈ D. By axiom (1a), x � x ∈ D�. Using axiom (4a) and
Proposition 1(i) we have ¬x = ¬(x � x) ∈ D�. The other is proved dually.

2. Let x, y ∈ D. Proposition 1(iii) gives x � y if and only if x� �� y� and x� ��
y�, which is if and only if ¬y� �� ¬x� and �y� ���x� by Proposition 1(i)–
(ii). The latter is if and only if ¬y �� ¬x and �y ���x (using axioms (4a) and
(4b)), which is if and only if ¬y � ¬x and �y ��x, by Proposition 1(i)–(ii)
and (b)(1) of this Proposition. �

Definition 4. Let D and M be two dBas. A map h : M → D is called a
homomorphism if h preserves the operations in the algebras.

h is called quasi-injective, when x � y if and only if h(x) � h(y), for all
x, y ∈ M . A quasi-injective and surjective homomorphism is called a quasi-
isomorphism and a bijective homomorphism is called an isomorphism.

In a dBa D := (D,	,�,¬, �,
,⊥) a subset F of D is called a filter, if it is
an upset and closed under �. Dually, a subset I of D is called an ideal if it is a
downset and closed under 	.

F0(⊆ D) is called a base for the filter F if F = {y ∈ D : x � y for some x ∈
F0}. Base for an ideal is dually defined.

Notation 5. Let D := (D,	,�,¬, �,
,⊥) be a dBa.
Fp(D) := {F ⊆ D|F is a filter of D and F ∩ D� is a prime filter in D�},

and Ip(D) := {I ⊆ D|I is an ideal of D and I ∩ D� is a prime ideal in D�}.
For any x ∈ D, Fx := {F ∈ Fp(D) | x ∈ F} and Ix := {I ∈ Ip(D) | x ∈ I}.
Define the context K(D) := (Fp(D), Ip(D),Δ), where for any F ∈

Fp(D), I ∈ Ip(D), FΔI if and only if F ∩ I �= ∅.
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Lemma 1 [11]. Let F be a filter of a dBa D.

1. F ∩ D� and F ∩ D� are filters of the Boolean algebras D�, D� respectively.
2. Each filter F0 of the Boolean algebra D� is the base of some filter F of D

such that F0 = F ∩ D�. Moreover if F0 is a prime filter of D�, F ∈ Fp(D).

A similar result can be proved for ideals in a dBa.

Lemma 2. (Fx)c = F¬x and (Ix)c = I�x, for any x ∈ D.

Theorem 2 [11]. The map h : D → P(K(D)) defined by h(x) := (Fx, Ix) for
all x ∈ D, is a quasi-injective homomorphism.

Theorem 3 [1]. If D := (D,	,�,¬, �,
,⊥) is a pure dBa, the map h : D →
H(K(D)) defined by h(x) := (Fx, Ix) for all x ∈ D, is an injective homomor-
phism.

3 Concepts and Semiconcepts Based on Rough Set
Theory

In [4], Düntsch and Gediga pointed out limitations of FCA as a tool for qualitive
data analysis. They gave the example of a context K := (G,M,Γ ), where G is
a set of problems and M is a set of skills, and the relation Γ ⊆ G × M may be
interpreted in two different ways:

I. Skill s is necessary to solve q and Γ (q) is minimally sufficient to solve q.
II. It is possible to solve problem q with skill s.

In this section, we work with an instance of such a context given below.

Example 1 Let G := {q1, q2, q3, q4, q5, q6} be a set of problems and consider a set
of skills S := {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11}. The context K := (G,M,Γ )
is represented by the table below. A cross in the i−j-th cell of the table indicates
that the relation qiΓsj holds.

Table 1. Context

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

q1 × × × × ×
q2 × × × × ×
q3 × × × × ×
q4 × × ×
q5 × × × ×
q6 ×
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Case I: Let qiΓsj be interpreted as: skill sj is necessary to solve qi, and
Γ (qi) is minimally sufficient to solve qi. Let a student be asked to solve a set of
problems A := {q1, q2} in a test to check his skills (from the set S). In FCA,
A′ = {s3} gives the collection of the skills necessary to solve all the problems of A.
However, different problems in A may require different sets of skills to solve them.
For instance, q1 requires s1 while q2 does not. So {s1, s2, s3, s4, s5, s6, s7, s8, s10}
would more adequately represent the skills necessary to solve A.

Case II: Let us interpret qiΓsj as: it is possible to solve qi with skill sj .
Considering the problem set A := {q1, q2}, again A′ = {s3} does not give all the
possible skills that could be used to solve the problems in A – for instance, it is
possible to solve them with the skills s1 and s2.

Now the question is, how do we assign a skill set to the problem set A?
Düntsch and Gediga address this question in [4], using modal style operators
and introduce property oriented concepts. Let K := (G,M,R) be a context,
A ⊆ G and B ⊆ M .

B♦
R := {x ∈ G|R(x) ∩ B �= ∅} and B�

R := {x ∈ G|R(x) ⊆ B}

A♦
R−1 := {y ∈ M |R−1(y) ∩ A �= ∅} and A�

R−1 := {y ∈ M |R−1(y) ⊆ A}
If there is no confusion about the relation involved, we shall omit the subscript
and denote B♦

R by B♦, B�
R by B�, and similarly for the case of A.

Definition 5 [3]. A closure operator on a set X is an operator C on the power
set P(X) of X such that for all A,B ∈ P(X),

C1 A ⊆ C(A),
C2 A ⊆ B implies C(A) ⊆ C(B),
C3 C(C(A)) = C(A).

A ∈ P(X) is called closed if and only if C(A) = A.
An interior operator I on the set X is defined dually, and A ∈ P(X) is called

open if and only if I(A) = A.

Some properties of the operators �,♦ are as follows.

Theorem 4 [14]. Let A,A1, A2 ⊆ G and B,B1, B2 ⊆ M .

1. A1 ⊆ A2 implies that A�
1 ⊆ A�

2 and A♦
1 ⊆ A♦

2 .
2. B1 ⊆ B2 implies that B�

1 ⊆ B�
2 and B♦

1 ⊆ B♦
2 .

3. A�
R = Ac′

−R;B�
R = Bc′

−R and A♦
R = A′c

−R;B♦
R = B′c

−R.
4. A�♦� = A� and B�♦� = B�.
5. A♦�♦ = A♦ and B♦�♦ = B♦.
6. �♦ is interior operator on G and ♦� is closure operator on M .

Let K := (G,M,R) be a context, A ⊆ G,B ⊆ M .
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Definition 6 [4]. (A,B) is a property oriented concept of K if it satisfies the
conditions A♦ = B and B� = A.

Refer to Example 1, Case I. For any A ⊆ G, A♦ can be interpreted as the set
of all skills m that are necessary to solve problems in A (Γ−1(m) ∩ A �= ∅).
For any B ⊆ M , B� can be interpreted as the set of problems x such that
B contains all skills sufficient to solve x (Γ (x) ⊆ B). So the intent B of a
property oriented concept (A,B) of the context given in Example 1, repre-
sents the set of skills that are necessary and sufficient to solve problems in
the extent A. For instance, {s1, s2, s3, s4, s5, s6, s7, s8, s10} gives all the skills
that are necessary and sufficient to solve the problems in {q1, q2, q4}; hence
({q1, q2, q4}, {s1, s2, s3, s4, s5, s6, s7, s8, s10}) is a property-oriented concept.

Definition 7 [13]. (A,B) is an object oriented concept of the context K if it
satisfies the condition A� = B and B♦ = A.

An order relation ≤ can be defined on the set of such pairs. For any object
oriented concepts (A1, B1), (A2, B2), (A1, B1) ≤ (A2, B2) if and only if A1 ⊆
A2 (equivalently, B1 ⊆ B2).

Refer to Example 1, Case II. For A ⊆ G, A� can be interpreted as the set of
skills s such that A contains all the problems that are possible to solve with s
(Γ−1(s) ⊆ A). For B ⊆ M , B♦ is the set of problems that are possible to solve
with some skill in B (Γ (x) ∩ B �= ∅). So the extent A of an object oriented
concept (A,B) in this context is the set of problems which are possible to solve
with skills in B, while the intent B is the set of skills by which only problems in
A can be solved. ({q3, q5}, {s9}) then forms an object-oriented concept.

A comparative study of Wille’s concepts, property and object oriented con-
cepts and concept lattices is done extensively by Yao in [13].

We next turn to object-oriented semiconcepts, introduced in [6] to bring in
the notion of negation.

Definition 8 [6]. (A,B) is an object oriented semiconcept of K if A� = B or
B♦ = A.

Notation 6. The set of all object oriented concepts is denoted by RO-L(K),
the set of all object oriented semiconcepts is denoted by S(K).

The following are observed in [6].

Observation 2.

1. (A,B) ∈ S(K) if and only if either (A,B) = (A,A�) or (A,B) = (B♦, B).
2. RO − L(K) ⊆ S(K).
3. (A,B) is a semiconcept of K if and only if (Ac, B) is an object oriented

semiconcept of the context K
c.
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The following operations are defined in S(K). Let (A1, B1), (A2, B2), (A,B) be
any object oriented semiconcepts.

(A1, B1) � (A2, B2) := ((B1 ∩ B2)♦, B1 ∩ B2),
(A1, B1) 	 (A2, B2) := (A1 ∪ A2, (A1 ∪ A2)�),
¬(A,B) := (Ac, Ac�), �(A,B) := (Bc♦, Bc),
 := (G,M), and ⊥ := (φ, φ).

Refer again to Example 1, Case II. It is clear that it is possible to solve the prob-
lems q1, q2, q4 with skills other than s9. We are able to express this observation
in the framework of object oriented semiconcepts. Note that a := ({q3, q5}, {s9})
is an object oriented semiconcept of the context. The extent of a gives exactly
the problems that are possible to solve with skill s9. The negation of a, �a, is
the object oriented semiconcept ({q1, q2, q3, q4, q5, q6}, {s9}c) whose extent gives
all the problems that are possible to solve with skills other than s9, and includes
q1, q2, q4.

In this work, for the sake of simplicity in expressions of results, we consider
operations on object oriented semiconcepts that are dual to the ones mentioned
above. In other words, for (A,B), (C,D) ∈ S(K), we consider

(A,B) � (C,D) := (A ∪ C, (A ∪ C)�),
(A,B) 	 (C,D) := ((B ∩ D)♦, B ∩ D),
�(A,B) := (Bc♦, Bc), ¬(A,B) := (Ac, Ac�), 
 := (∅, ∅), ⊥ := (G,M).

From the results established in [6], we obtain

Theorem 5.

1. S(K) := (S(K),	,�,¬, �,
,⊥) is a pure dBa.
2. H(K) is isomorphic to S(Kc).

The map in (2) of the above theorem is due to Observation 2(3). From Lemma 2,
Theorem 5(2) and Theorem 3 we have the following.

Theorem 6. For a pure dBa D the map h : D → S(Kc(D)) defined by h(x) :=
(F¬x, Ix) for all x ∈ D, is an injective dBa homomorphism.

4 Object Oriented Protoconcepts

We now define and give some properties of object oriented protoconcepts. As
before, K := (G,M,R) is a context, A ⊆ G,B ⊆ M .

Definition 9. (A,B) is an object oriented protoconcept of K if A�♦ = B♦.

Notation 7. The set of all object oriented protoconcepts is denoted by R(K).

Proposition 3.

1. A�♦ = B♦ if and only if A� = B♦�.
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2. S(K) ⊆ R(K).

Proof. (1) Let A�♦ = B♦. Then A�♦� = B♦�. Now from 4 of Theorem 4 we
know that A�♦� = A�. Therefore A� = B♦�. Let A� = B♦� then A�♦ =
B♦�♦. Now from 5 of the Theorem 4 we know that B♦�♦ = B♦. Therefore
A�♦ = B♦.

(2) Let (A,B) ∈ S(K) then either A� = B or B♦ = A. Now if A� = B then we
gate A�♦ = B♦ and hence (A,B) ∈ R(K). Now if B♦ = A then A� = B♦�.
Therefore (A,B) ∈ R(K) by (1) of this Proposition. Hence S(K) ⊆ R(K). �

Recall Example 1 and Case II. Consider A1 := {q1, q2, q4, q6} and B1 := {s3}.
Then A�♦

1 = B♦
1 , so that (A1, B1) is an object oriented protoconcept of the

context. Now observe that B♦
1 = {q1, q2, q4} and so B♦

1 �= A1; A�
1 = {s3, s7, s10},

so A�
1 �= B1. This means (A1, B1) ∈ R(K) but (A1, B1) /∈ S(K), indicating that

the converse of (2) in Proposition 3 is not true.
We next characterize the object oriented protoconcepts of K (Theorem 7

below) using a notion of ‘approximation’ by object oriented concepts. Based on
the facts that �♦ is an interior operator on G and ♦� is a closure operator on
M , the discussion in [15] of ‘definable’ object sets gives the definition below.

Definition 10.

1. A is said to be definable in P(G) if and only if A�♦ = A.
2. B is said to be definable in P(M) if and only if B♦� = B.

It is then easy to see the following.

Proposition 4. A is definable if and only if it is the extent of some object
oriented concept of K, and B is definable if and only if it is the intent of some
object-oriented concept of K.

Proof. From Definition 7 it follows that for any object oriented concept (A,B),
A,B are definable. To see the converse assertions, for definable A and B, consider
respectively the object oriented concepts (A,A�) and (B♦, B). �

So an object oriented concept (A,B) of the context K can be thought of as a
pair of definable sets such that one can be determined by the other as A = B♦

and A� = B. However, for pairs (E,F ) ∈ P(G) × P(M) which are not object
oriented concepts, it may be worthwhile to determine the largest definable set C
contained in E and determined by F as C = F♦, and also the smallest definable
set D containing F and determined by E as E� = D. Such a pair (C,D) would
be an object oriented concept, and unique in the above respect. For instance,
referring to Example 1, Case II: for a set E of problems and set F of skills, C
would be the largest definable set of problems inside E that are possible to be
solved with the skills in F (C = F♦). We call the pair (C,D) an approximation
of the pair (E,F ).

Definition 11. An object oriented concept (C,D) is called an approximation
of (A,B) if and only if C is the largest definable set in P(G) contained in A,
and D is the smallest definable set in P(M) containing B.
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Observation 3. If (A,B) has an approximation, it is unique.

Theorem 7. (A,B) is an object oriented protoconcept of K if and only if it has
an approximation.

Proof. Let (A,B) be an object oriented protoconcept of K. Then A�♦ = B♦,
which is equivalent to A� = B♦�. Now we set C := A�♦ and D := A� = B♦�.
Then the pair (C,D) = (A�♦, A�) is an object oriented concept. Since �♦ is an
interior operator on G, C ⊆ A; since ♦� is a closure operator on M , B ⊆ D. As
C is the extent of the object oriented concept (C,D), C is definable in P(G) by
Proposition 4. Now let E be a definable set in P(G) such that E ⊆ A. By 1 of
Theorem 4 we have E = E�♦ ⊆ A�♦ = C, making C the largest definable set
contained in A. Similarly we get that D is the smallest definable set containing
B. So (C,D) is an approximation of (A,B).

For the converse, let us assume that (X,Y ) is an approximation of (A,B).
Then (X,Y ) is an object oriented concept and X ⊆ A and B ⊆ Y . Using 1 and
2 of Theorem 4 we have X = X�♦ ⊆ A�♦ and B♦� ⊆ Y ♦� = Y . By 4 and
6 of Theorem 4, A�♦�♦ = A�♦ ⊆ A, making A�♦ a definable set contained in
A. Since X is the largest definable set contained in A, A�♦ ⊆ X. Dually we
can show that Y ⊆ B♦�. So X = A�♦ and Y = B♦�. As (X,Y ) is an object
oriented concept then X� = Y and X = Y ♦. So A� = A�♦� = B♦� and hence
(A,B) is a object oriented protoconcept of K. �

In Example 1, Case II: as shown earlier, the pair ({q1, q2, q4, q6}, {s3}) is an object
oriented protoconcept but not an object oriented concept. This pair has the
object oriented concept ({q1, q2, q4}, {s3, s7, s10}) as its unique approximation.

Proposition 5. (A,B) is an object oriented protoconcept of K if and only if
(Ac, B) is a protoconcept of Kc.

Proof. A�♦
R = B♦

R if and only if Ac′′c
−R = B′c

−R by 3 of Theorem 4, and Ac′′c
−R = B′c

−R

if and only if Ac′′
−R = B′

−R. �

Recall the operations 	,�,¬, �,
,⊥ defined in Sect. 3 that made the set
S(K) of object oriented semiconcepts a pure dBa (Theorem 5). The set R(K) of
object oriented protoconcepts turns out to be closed with respect to the same
operations. In fact,

Theorem 8. (i) R(K) := (R(K),	,�,¬, �,
,⊥) is a dBa and (ii) R(K) is iso-
morphic to (P(Kc),	,�,¬, �,
,⊥).

Proof. (i) The proof is a routine check.
(ii) h : R(K) → P(Kc) defined as h((A,B)) := (Ac, B) for any (A,B) in R(K), is

an isomorphism between the two dBas. h is well defined and onto by Propo-
sition 5. Injectivity of h follows trivially. Verifying that h is a homomorphism
is a routine check. �

The dBa R(K) is called the algebra of object oriented protoconcepts.
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Observation 4. Using the definition of the quasi-order in a dBa, one sees that
for any (A,B), (C,D) ∈ R(K), (A,B) � (C,D) if and only if C ⊆ A and D ⊆ B.

Using Theorems 2 and 8 and Lemma 2, we get a representation result for dBas.

Theorem 9. For a dBa D, the map h : D → R(Kc(D)) defined by h(x) :=
(F¬x, Ix) for any x ∈ D, is a quasi-injective dBa homomorphism.

5 Logics for dBas and Pure dBas

We now give a sequent calculus DBL for the class of dBas, and extend it to
PDBL to get a sequent calculus for pure dBas. The language of DBL consists
of propositional constants ⊥,
, a set VAR of propositional variables, and logical
connectives 	,�,¬, �. The set F of all formulae of DBL is given by the scheme:

⊥ | 
 | p | α 	 β | α � β | ¬α | �α,

where p ∈ VAR. ∨ and ∧ are definable connectives: α ∨ β := ¬(¬α � ¬β) and
α ∧ β :=�(�α	�β), for α, β ∈ F.

A sequent in DBL with formulae α, β ∈ F is denoted in the usual manner as
α � β. α �� β will be used as abbreviation for (α � β and β � α).
The axioms of DBL are given by the following schemes.

1a ⊥ � α
2a α � β � α
3a α � β � β
4a α � β � (α � β) � (α � β)
5a α � α � α � (α 	 β)
6a ¬(α � α) � ¬α
7a α � ¬α � ⊥
8a ¬⊥ �� 
 � 

9a α � α � α � (α ∨ β)

10a α � (β ∨ γ) �� (α � β) ∨ (α � γ)
11a ¬¬(α � β) �� (α � β)
12a ¬
 � ⊥

1b α � 

2b α � α 	 β
3b β � α 	 β
4b (α 	 β) 	 (α 	 β) � α 	 β
5b α 	 (α � β) � α 	 α
6b �α ��(α 	 α)
7b 
 � α	�α
8b �
 �� ⊥ 	 ⊥
9b α 	 (α ∧ β) � α 	 α

10b α 	 (β ∧ γ) �� (α 	 β) ∧ (α 	 γ)
11b ��(α 	 β) �� (α 	 β)
12b 
 ��⊥

13 α � α
14 (α 	 α) � (α 	 α) � (α � α) 	 (α � α)
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Rules of inference:

α � β

α � γ � β � γ
(R1)

α � β

α 	 γ � β 	 γ
(R2)

α � β

¬β � ¬α
(R3)

α � β, β � γ

α � γ
(R4)

α � β

γ � α � γ � β
(R1′)

α � β

γ 	 α � γ 	 β
(R2)′

α � β

�β ��α
(R5)

α � β �� α � α α 	 β �� β 	 β

α � β
(R6)

Provability of sequents in DBL is defined in the standard way.

Proposition 6. The following rules are derivable in DBL.

α � β α � γ

α � α � β � γ
(R7)

β � α γ � α

β 	 γ � α 	 α
(R8)

Proof. (R7) is derived using (R1), (R1′) and (R4), while for (R8) one uses
(R2), (R2′) and (R4). �

Theorem 10. The following sequents are provable in DBL.
(1a) (α � β) �� (β � α). (1b) α 	 β �� β 	 α.
(2a) α � (β � γ) �� (α � β) � γ. (2b) α 	 (β 	 γ) �� (α 	 β) 	 γ.
(3a) (α � α) � β �� (α � β). (3b) (α 	 α) 	 β �� α 	 β.
(4a) ¬α � ¬(α � α). (4b) �(α 	 α) ��α.
(5a) α � (α 	 β) � (α � α). (5b) α 	 α � α 	 (α � β).
(6a) α � (α ∨ β) � α � α. (6b) α 	 α � α 	 (α ∧ β).
(7a) ⊥ � α � ¬α. (7b) α	�α � 
.
(8a) ⊥ � ¬
 (8b) �⊥ � 
.
(9) (α � α) 	 (α � α) � (α 	 α) � (α 	 α).

Proof. The proofs are straightforward. For instance, (4a) follows from axiom
(2a) and (R3). The proofs of (ib) are dual to those of (ia) for i = 1, 2, 3, 4, 5, 6.
(7a), (8a) follow from axiom (1a), and 7b, 8b follow from axiom (1b). Proposi-
tion 6 is also used in some of the proofs. �

PDBL is the logic obtained from DBL by adding the following axiom:
15. for any α ∈ F, either α � α � α or α 	 α � α.

Due to axioms (2a) and (2b), we get

Proposition 7. In PDBL, for any α ∈ F, either α �� α � α or α �� α 	 α.

Now we define the notion of validity for DBL (PDBL) with respect to the class
of dBas (pure dBas).

Definition 12. Let D be a (pure) dBa. A valuation v : F → D in D is a map
such that for all α, β ∈ F we have the following.
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1. v(α 	 β) := v(α) 	 v(β).
2. v(�α) :=�v(α).
3. v(
) := 
.

4. v(α � β) := v(α) � v(β).
5. v(¬α) := ¬v(α) .
6. v(⊥) := ⊥.

Definition 13. A sequent α � β is said to be satisfied by a valuation v in a
(pure) dBa D if and only if v(α) � v(β). A sequent α � β is true in D if and
only if for all valuations v in D, v satisfies α � β. A sequent α � β is valid in the
class of all (pure) dBas if and only if it is true in every (pure) dBa.

Theorem 11 (Soundness). If α � β is provable in DBL (PDBL) then it is
valid in the class of all dBas (pure dBas).

Proof. The proof that all the axioms of DBL are valid in the class of all dBas
and that the rules of inference preserve validity, is straightforward. Proposition 2
giving properties of dBas, is utilized. The result applies to PDBL and pure dBas,
as axiom (15) reflects the defining axiom of pure dBas (Definition 3). �

The completeness theorem is established in the standard way, using the
Lindenbaum-Tarski algebras of the logics DBL and PDBL. We sketch the route
taken by the proof. For α, β ∈ F, a relation ≡� is defined on F by: α ≡� β if
and only if α �� β. ≡� is shown to be a congruence relation on F with respect
to 	, �, ¬, �. The quotient set F/ ≡� induced by the relation ≡� and oper-
ations induced by the logical connectives, give the Lindenbaum-Tarski algebra
L(F) := (F/ ≡�,	,�,¬, �, [
], [⊥]). The axioms in DBL (PDBL) show that
L(F) of the respective logic is a dBa (pure dBa). One can then establish

Proposition 8. The following statements are equivalent.

1. α � β is provable in DBL.
2. [α] � [β] in L(F) of DBL.

The result can be extended to the case of PDBL. Using these and the canonical
map v : F → F/ ≡� defined as v(γ) := [γ] for any γ ∈ F, one obtains

Theorem 12 (Completeness). If a sequent α � β is valid in the class of all
dBas (pure dBas) then it is provable in DBL (PDBL).

6 Object Oriented Protoconcept and Semiconcept
Semantics for the Logics

In this section, we define object oriented protoconcept semantics for DBL and
object oriented semiconcept semantics for PDBL, and show that the logics are
sound and complete with respect to these semantics.

Definition 14. A model for DBL is a pair M := (K, v), where K is a context
and v is a map from the set F of DBL-formulae to the set R(K) of all object
oriented protoconcepts of K satisfying the following conditions:
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1. v(α 	 β) := v(α) 	 v(β).
2. v(�α) :=�v(α).
3. v(
) := 
.

4. v(α � β) := v(α) � v(β).
5. v(¬α) := ¬v(α) .
6. v(⊥) := ⊥.

M := (K, v) is a model for PDBL if v is a map from F to the set S(K) of
all object oriented semiconcepts of K. The properties satisfied by v remain the
same as above.

Notation 8. For the class K of all contexts, we define R(K) := {R(K) | K ∈ K}
and S(K) := {S(K) | K ∈ K}.

Definition 15. A sequent α � β is said to be satisfied in a model M for DBL if
and only if v(α) � v(β) in R(K). A sequent α � β is true in R(K) of a context K
if and only if every model M based on the context K satisfies the sequent α � β.
A sequent α � β is valid in R(K) if and only if it is true in every R(K) of R(K).

Replacing R(K) and R(K) by S(K) and S(K) respectively in the above, we
get the definitions for the case of PDBL.

Theorem 13 (Soundness). For any α and β in F,

(a) If α � β is provable in DBL then it is valid in R(K),
(b) If α � β is provable in PDBL then it is valid in S(K).

Proof. (a) As for any context K ∈ K the set R(K) of object oriented protocon-
cepts of K forms a dBa, and for any model M := (K, v), v is a valuation
according to Definition 12, Theorem 11 gives us the result.

(b) Replace R(K) by S(K) and dBa by pure dBa in the argument of (a). �

Theorem 14 (Completeness). For any α and β in F,

(a) If a sequent α � β is valid in R(K) then it is provable in DBL,
(b) If a sequent α � β is valid in S(K) then it is provable in PDBL.

Proof. (a) If possible, suppose α � β is not provable in DBL. Then by Proposi-
tion 8, [α] �� [β] in L(F). Therefore by Proposition 1 we have either [α] � [α] ���
[β]� [β] or [α]	 [α] ��� [β]	 [β]. Now we consider the Lindenbaum-Tarski algebra
L(F) of DBL and the context K

c(L(F)) := (Fp(L(F)), Ip(L(F)),−Δ). By the
representation Theorem 9, there will then exist a quasi-injective homomorphism
h : L(F) → R(Kc(L(F))) such that h(x) := (F¬x, Ix) for all x ∈ L(F). Define the
valuation i : F → L(F) by i(γ) := [γ], for any γ ∈ F. Therefore composition of
the two maps v := h ◦ i gives a valuation from F to R(Kc(L(F))). So we have a
model M := (Kc(L(F)), v).

Now if [α]� [α] ��� [β]� [β], there exists a prime filter F0 in L(F)� (a Boolean
algebra, by Proposition 1) such that [α] � [α] ∈ F0 and [β] � [β] /∈ F0. Therefore
by Lemma 1 there exists a filter F in L(F) such that F ∩ L(F)� = F0 and as
F0 is prime, F ∈ Fp(L(F)). As [α] � [α] ∈ F0, [α] � [α] ∈ F and [β] � [β] /∈
F as [β] � [β] /∈ F0. So [α] ∈ F as [α] � [α] � [α], and [β] /∈ F otherwise
[β] � [β] ∈ F . This gives F /∈ F¬[α] and F ∈ F¬[β], whence F¬[β] �⊆ F¬[α]. So
v(α) = (F¬[α], I[α]) �� (F¬[β], I[β]) = v(β) by Proposition 4.
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In case [α]	[α] ��� [β]	[β], we can dually show that there exists I ∈ Ip(L(F))
such that [α] /∈ I and [β] ∈ I giving I[β] �⊆ I[α].

So α � β is not true in R(Kc(L(F))), which is not possible as α � β is valid
in R(K). Hence we get a contradiction.

A similar argument using the result for PDBL corresponding to Proposi-
tion 8 and the representation Theorem 6, gives (b). �

7 Conclusion

This work proposes the notion of object oriented protoconcepts, and charac-
terizes them in terms of approximations by object oriented concepts. A repre-
sentation result is obtained, showing that any double Boolean algebra is quasi-
embeddable in an algebra of object oriented protoconcepts. A logic DBL for
the class of object oriented protoconcepts is defined and extended to a logic
PDBL for the class of pure double Boolean algebras. Using the representation
results for double and pure double Boolean algebras, the logics are shown to be
sound and complete with respect to the class of object oriented protoconcepts
and semiconcepts over the class of all contexts respectively. As further work, one
can investigate representation results for the algebras that yield isomorphisms.
On the side of the logics, other semantics could be explored – for instance, a
Kripke-style semantics that may be in the line of work done in [2].
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