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Abstract. This paper presents a theoretical research about the relationship
between weak negations and adjoint negations. Adjoint negations are a gener-
alization of residuated negations built from the implications of an adjoint triple.
Specifically, this work shows how to build adjoint triples on the unit interval such
that their adjoint negations coincide with a given weak negation. Moreover, the
algebraic structure formed by these adjoint triples is also investigated.
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1 Introduction

Non-monotonic operators play an important role in different applications [7,9,29,31,
38]. The need to use these operators in real applications has promoted the study and
development of novel operators capable of addressing new challenges [3,4,8,14,18,38,
39]. Weak negations were introduced in [23,24,26,43] and they are one of the most
versatile negation operators. For that reason, a generalization of weak negations was
given in [14]. Specifically, it was proven that weak negations can be defined from the
implications of adjoint triples.

Adjoint triples were introduced in [11–13] as a flexible tool to generalize the opera-
tors usually considered in residuated frameworks. One of the main advantages provided
by these operators is the capability of being applied in non-associative or commuta-
tive settings. This fact has given rise to make more flexible frameworks such as logic
programming [9,34–36], formal concept analysis [15,33], rough set theory [17], fuzzy
relation equations [10,20,21] and fuzzy mathematical morphology [1,2,30].

In this paper, we will continue studying the relationship between weak negations
and adjoint negations. Given a weak negation on the unit interval, we will show that
different adjoint triples can be defined on the unit interval satisfying that its correspond-
ing adjoint negations coincide with the weak negation. In addition, we will establish
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two different procedures to define these adjoint triples. We will also define an ordering
relation on adjoint triples generating a given weak negation and we will prove that the
set composed of these adjoint triples has the structure of a complete join-semilattice
with maximum element.

The paper is organized as follows: Sect. 2 recalls the basic definitions and properties
associated with adjoint triples, adjoint negations and weak negations. Given a weak
negation, in Sect. 3, we propose two different mechanisms to define adjoint triples on
[0, 1] whose adjoint negations are equal to the considered weak negation. Furthermore,
we analyze the algebraic structure formed by these adjoint triples. The contribution is
accompanied by examples in order to illustrate some of the developed technical results.
Some conclusions and prospects for future work are presented in Sect. 4.

2 Preliminaries

Adjoint triples provide an interesting generalization of the well-known adjoint prop-
erty satisfied by a t-norm and its residuated implication, since they preserve the main
properties usually assumed in residuated frameworks, dismissing for example the com-
mutativity and the associativity [19].

Definition 1. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,↙ : P3 ×
P2 → P1, ↖ : P3 × P1 → P2 be mappings. We say that (&,↙,↖) is an adjoint triple
with respect to P1, P2, P3 if the following double equivalence is satisfied:

x ≤1 z↙ y iff x& y ≤3 z iff y ≤2 z↖ x (1)

for all x ∈ P1, y ∈ P2 and z ∈ P3. The previous double equivalence is called adjoint
property.

Interesting properties related to the monotonicity of the operators &, ↙, ↖, the
boundary conditions and the preservation of the infimum and/or supremum, among
others, can be deduced from the adjoint property. The following propositions show
alternative ways to verify that the operators &,↙ and↖ form an adjoint triple, when
they are defined on complete lattices.

Proposition 1 [13].Given the complete lattices (L1,�1), (L2,�2), (L3,�3), an arbitrary
operator &: L1 × L2 → L3 and the mappings ↙ : L3 × L2 → L1, ↖ : L3 × L1 → L2,
defined as z ↙ y = sup{x ∈ L1 | x& y �3 z} and z ↖ x = sup{y ∈ L2 | x& y �3

z}, respectively, for all x ∈ L1, y ∈ L2 and z ∈ L3, the the following statements are
equivalent:

1. (&,↙,↖) is an adjoint triple with respect to L1, L2, L3.

2.

⎛
⎜⎜⎜⎜⎜⎜⎝

∨

xi∈X
xi

⎞
⎟⎟⎟⎟⎟⎟⎠& y =

∨

xi∈X
(xi & y), for any X ⊆ L1 and y ∈ L2.

x&

⎛
⎜⎜⎜⎜⎜⎜⎝

∨

yi∈Y
yi

⎞
⎟⎟⎟⎟⎟⎟⎠ =
∨

yi∈Y
(x& yi), for any Y ⊆ L2 and x ∈ L1.
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3. z ↙ y = max{x ∈ L1 | x& y �3 z} and z ↖ x = max{y ∈ L2 | x& y �3 z} for
all x ∈ L1, y ∈ L2 and z ∈ L3, where & is an order-preserving operator in both
arguments.

Proposition 2 [13]. Given three complete lattices (L1,�1), (L2,�2), (L3,�3), the arbi-
trary operators↙ : L3×L2 → L1,↖ : L3×L1 → L2 and the mapping &: L1×L2 → L3

defined as x& y = inf{z ∈ L3 | x �1 z ↙ y} = inf{z ∈ L3 | y �2 z ↖ x}, for all x ∈ L1

and y ∈ L2, the following statements are equivalent:

1. (&,↙,↖) is an adjoint triple with respect to L1, L2, L3.

2.

⎛
⎜⎜⎜⎜⎜⎜⎝

∧

zi∈Z
zi

⎞
⎟⎟⎟⎟⎟⎟⎠↙ y=

∧

zi∈Z
(zi ↙ y), for all Z ⊆ L3 and y ∈ L2.

⎛
⎜⎜⎜⎜⎜⎜⎝

∧

zi∈Z
zi

⎞
⎟⎟⎟⎟⎟⎟⎠↖ x=

∧

zi∈Z
(zi ↖ x), for all Z ⊆ L3 and x ∈ L1.

3. x& y = min{z ∈ L3 | x �1 z ↙ y} = min{z ∈ L3 | y �2 z ↖ x}, for all x ∈ L1 and
y ∈ L2, where↙ and↖ are order-preserving operators in the first argument.

A detailed study of adjoint triples can be found in [11,13]. These operators were also
considered to generalize residuated negations [6,25,40]. Specifically in [14], adjoint
negations were defined from the implications of an adjoint triple. The formal definition
of adjoint negations is given below.

Definition 2. Let (P1,≤1) and (P2,≤2) be two posets, (P3,≤3,⊥3) be a lower bounded
poset and (&,↙,↖) an adjoint triple with respect to P1, P2 and P3. The mappings
nn : P1 → P2 and ns : P2 → P1 defined, for all x ∈ P1, y ∈ P2 as:

nn(x) = ⊥3 ↖ x ns(y) = ⊥3 ↙ y

are called adjoint negations with respect to P1 and P2. The operators ns and nn satis-
fying that x = ns(nn(x)) and y = nn(ns(y)), for all x ∈ P1 and y ∈ P2, are called strong
adjoint negations.

Now, we will show the notion of weak negation which is one of the most general
negation operators given in the literature [23,24,26,43].

Definition 3. Given a mapping n : [0, 1] → [0, 1] is said to be a weak negation if the
following conditions hold, for all x, y ∈ [0, 1]:

1. n(1) = 0;
2. if x ≤ y then n(y) ≤ n(x);
3. x ≤ n(n(x)).

We say that n is a strong negation if the equality x = n(n(x)) holds, for all x ∈ [0, 1].

Once the notion of weak negation has been introduced, we can recall the relationship
between adjoint negations and weak negations. The following result, which was proven
in [14], shows that adjoint negations are more general than weak negations.



340 M. E. Cornejo et al.

Theorem 1 [14]. If the mapping n : [0, 1]→ [0, 1] is a weak negation, then there exists
an adjoint triple (&,↙,↖) with respect to the poset ([0, 1],≤) satisfying n = ns = nn.

Notice that, the previous theorem shows that weak negations can be obtained from
the implication operators of an adjoint triple. However, we cannot guarantee the unicity
of the adjoint triple which allows us to ensure that each weak negation is actually an
adjoint negation. This fact and the notions introduced in the current section will be
illustrated in the following example.

Example 1. The most usual adjoint triples with respect to ([0, 1],≤) are those defined
from the Gödel, product and Łukasiewicz t-norms together with their residuated impli-
cations. Due to these t-norms are commutative, we have that ↙G=↖G, ↙P=↖P and
↙L=↖L. As a consequence, the adjoint negations defined from these implications ver-
ify that nsG = nnG , nsP = nnP and nsL = nsL . In order to simplify the notation, we will
use nG, nP and nL to refer to the adjoint negations obtained from the Gödel, product and
Łukasiewicz implications, respectively. The mentioned adjoint triples are given below:

&G(x, y) = min{x, y} z↙G y =

⎧
⎪⎪⎨
⎪⎪⎩

1 if y ≤ z

z otherwise

&P(x, y) = x · y z↙P y = min{1, z/y}

&L(x, y) = max{0, x + y − 1} z↙L y = min{1, 1 − y + z}

Taking into account the of definition these operators, we obtain that the adjoint
negations associated with the Gödel and product residuated implications are defined
as:

nG(x) = nP(x) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if x = 0

0 otherwise

for all x ∈ [0, 1]. From now on, this negation operator will be called product negation.
In addition, the adjoint negation obtained from the Łukasiewicz residuated implication
is defined as follows:

nL(x) = 1 − x

for all x ∈ [0, 1], and it is commonly known in the literature as the standard negation.
It is easy to see that the product negation is a weak negation whereas the standard

negation is a strong negation. Obviously, we can ensure that the Gödel and product
adjoint triples (&G,↙G,↖G) and (&P,↙P,↖P) verify Theorem 1, for the weak nega-
tion nP. Hence, we can conclude that there exist at least two different adjoint triples
whose adjoint negations coincide with the weak negation nP.

Next section studies how to define adjoint triples such that their adjoint negations
are equal to a given weak negation. Furthermore, the algebraic structure formed by these
adjoint triples is analyzed.
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3 Adjoint Triples Generating a Weak Negation

This section presents two different procedures to define adjoint triples whose adjoint
negations coincide with a given weak negation. Besides, an ordering relation is defined
on the whole set of adjoint triples generating a given weak negation. From this ordering
relation, the algebraic structure composed of the aforementioned set of adjoint triples is
obtained.

3.1 Adjoint Triples Associated with Weak Negations from Adjoint Triples

The first procedure to define adjoint triples generating a given weak negation n is pre-
sented in the following proposition. This procedure is based on the use of an adjoint
triple (&,↙,↖) with respect to ([0, 1],≤) verifying the inequalities 0 ↙ y ≤ n(y) and
0 ↖ x ≤ n(x), for all x, y ∈ [0, 1]. From now on, given a weak negation n, the set of all
adjoint triples with respect to ([0, 1],≤) such that their adjoint negations coincide with
the weak negation n, we will denoted as Tn.

Theorem 2. Let n be a weak negation and (&,↙,↖) be an adjoint triple with respect
to ([0, 1],≤) such that 0 ↙ y ≤ n(y) and 0 ↖ x ≤ n(x), for all x, y ∈ [0, 1]. The
mappings &n,�n,�n : [0, 1] × [0, 1]→ [0, 1] defined, for all x, y, z ∈ [0, 1], as:

x&n y =

⎧
⎪⎪⎨
⎪⎪⎩

x& y if x � n(y)

0 if x ≤ n(y)

z�n y = max{z↙ y, n(y)} z�n x = max{z↖ x, n(x)}

form an adjoint triple with respect to ([0, 1],≤) belonging to Tn, that is, they satisfy that
n = nsn = nnn , where nsn and nnn are the adjoint negations defined from the implications
�n and�n, respectively.

Notice that, the previous result follows the idea presented in [5] for the construction
of left continuous t-norms from a given weak negation. Specifically, Theorem 2 extends
Lemma 1 introduced in [5] to the framework of adjoint triples.

Example 2. We will consider different adjoint triples with respect to ([0, 1],≤) generat-
ing the weak negation nP. We have considered this negation operator due to its simplic-
ity and that it is not a strong negation. The first adjoint triple that we use in this example
was already considered in previous works [11,32]. This adjoint triple (&,↙,↖) with
respect to ([0, 1],≤) is defined as follows:

x& y = x2 · y

z↙ y =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if y = 0

min

{√
z
y
, 1

}

otherwise
z↖ x =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x = 0

min
{ z
x2
, 1
}

otherwise



342 M. E. Cornejo et al.

for all x, y, z ∈ [0, 1]. It is easy to check that the following inequalities 0 ↙ y ≤ nP(y)
and 0 ↖ x ≤ nP(x) are satisfied, for all x, y ∈ [0, 1]. Indeed, the inequalities are equali-
ties in this case. Hence, by using Theorem 2, we can define the following operators:

x&1
nP
y =

⎧
⎪⎪⎨
⎪⎪⎩

x& y if x � nP(y)

0 if x ≤ nP(y)
=

⎧
⎪⎪⎨
⎪⎪⎩

x2 · y if x � nP(y)

0 if x ≤ nP(y)
= x2 · y

z�nP1 y = max{z↙ y, nP(y)} =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if y = 0

min

{√
z
y
, 1

}

otherwise

z�nP1 x = max{z↖ x, nP(x)} =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x = 0

min
{ z
x2
, 1
}

otherwise

Clearly, the adjoint triple (&1
nP
,�nP1 ,�nP1 ) defined as in Theorem 2 coincides with

(&,↙,↖). Notice that, the adjoint triple (&1
nP
,�nP1 ,�nP1 ) belongs to TnP since the

following chains of equalities hold, for all x, y ∈ [0, 1]:

nsnP1
(y) = 0�nP1 y =

⎧
⎪⎪⎨
⎪⎪⎩

1 if y = 0

0 otherwise
= nP(y)

nnnP1
(x) = 0�nP1 x =

⎧
⎪⎪⎨
⎪⎪⎩

1 if x = 0

0 otherwise
= nP(x)

The implications associated with the Gödel adjoint triple (&G,↙G,↖G) also verify
the hypothesis required in Theorem 2, that is, the inequalities 0 ↙G y = nG(y) ≤ nP(y)
and 0 ↖G x = nG(x) ≤ nP(x) trivially hold, for all x, y ∈ [0, 1]. Consequently, applying
Theorem 2, we can define the following operators:

x&2
nP
y =

⎧
⎪⎪⎨
⎪⎪⎩

x&G y if x � nP(y)

0 if x ≤ nP(y)
=

⎧
⎪⎪⎨
⎪⎪⎩

min{x, y} if x � nP(y)

0 if x ≤ nP(y)
= min{x, y}

z�nP2 y = max{z↙G y, nP(y)} =
⎧
⎪⎪⎨
⎪⎪⎩

1 if y ≤ z

z otherwise

Therefore, we also have that (&2
nP
,�nP2 ,�nP2 ) defined as in Theorem 2 coincides

with (&G,↙G,↖G). Indeed, this fact will arise to every adjoint triple satisfying the
hypotheses in Theorem 2, due to the restrictive definition of the negation operator nP.
As previously, the following chain of equalities is satisfied, for all y ∈ [0, 1]:

nsnP2
(y) = 0�nP2 y = nP(y) = 0�nP2 y = nnnP2

(y)

Thus, (&2
nP
,�nP2 ,�nP2 ) ∈ TnP , that is, it is an adjoint triple generating the weak

negation nP. Obviously, the product adjoint triple (&P,↙P,↖P) also belongs to TnP .
Notice that, the Łukasiewicz adjoint triple (&L,↙L,↖L) cannot be considered to build
an adjoint triple whose adjoint negations coincide with the weak negation nP. This fact
is due to that the hypothesis required in Theorem 2 are not satisfied. For example, if we
consider y = 0.2 and z = 0, we have that:

0↙L 0.2 = min{1, 1 − 0.2 + 0} = 0.8 � 0 = nP(0.2)
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3.2 Adjoint Triples Associated with Weak Negations from Sup-Homomorphisms

The following result establishes the second procedure to define adjoint triples generat-
ing a given weak negation. This second mechanism weakens the required conditions in
the first procedure and considers more general operators than adjoint triples. In particu-
lar, the proposed mechanism is based on the use of mappings preserving the supremum
of non-empty sets, which are called supremum-homomorphisms on lattice theory.

Theorem 3. Let n be a weak negation, f , g, h : [0, 1] × [0, 1] → [0, 1] three mappings
such that f preserves the supremum of non-empty sets in both arguments, g is defined
as g(z, y) = sup{x ∈ [0, 1] | f (x, y) ≤ z} satisfying that g(0, y) ≤ n(y) and h is defined as
h(z, x) = sup{y ∈ [0, 1] | f (x, y) ≤ z} satisfying that h(0, x) ≤ n(x), for all x, y, z ∈ [0, 1].
The triple (&n,�n,�n) composed of the following operators:

x &n y =

⎧
⎪⎪⎨
⎪⎪⎩

f (x, y) if x � n(y)

0 if x ≤ n(y)

z �n y = max{g(z, y), n(y)} z �n x = max{h(z, x), n(x)}

is an adjoint triple with respect to ([0, 1],≤) of Tn.

As a consequence of this result, general operators can be considered to define adjoint
triples in Tn, such as uninorms [13,22,27,41,42,44]. This fact notably increases the
number of operators that can be considered for obtaining triples in Tn, which has a
direct consequence in the flexibility for using these operators in real cases.

Example 3. In this example we will consider the uninorm f : [0, 1] × [0, 1] → [0, 1],
defined for all x, y ∈ [0, 1] as follows.

f (x, y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

min{x, y} if x ≤ 1
2

and y ≤ 1
2

max{x, y} otherwise

It is easy to check that f preserves the supremum of non-empty sets in both argu-
ments. Moreover, from f , we can define two mappings g, h : [0, 1] × [0, 1] → [0, 1] as
g(z, y) = sup{x ∈ [0, 1] | f (x, y) ≤ z} and h(z, x) = sup{y ∈ [0, 1] | f (x, y) ≤ z}, for
all x, y, z ∈ [0, 1]. Notice that, f is a commutative mapping and therefore g = h. The
analytic expression of the mapping g is displayed below:

g(z, y) = sup{x ∈ [0, 1] | f (x, y) ≤ z} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

if y ≤ z ≤ 1
2

z if y ≤ z and z >
1
2

0 otherwise

Clearly, the inequality g(0, y) ≤ nP(y) holds for all y ∈ [0, 1], and consequently
h(0, x) ≤ nP(x), for all x ∈ [0, 1]. Under the hypothesis of Theorem 3, we can define
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an adjoint triple (&3
nP
,�nP3 ,�nP3 ) from the mappings f , g and h such that it belongs to

TnP . Specifically, the analytical expression of the conjunctor &3
nP

is:

x &3
nP

y =

⎧
⎪⎪⎨
⎪⎪⎩

f (x, y) if x � nP(y)

0 if x ≤ nP(y)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = 0 or y = 0

min{x, y} if x, y ∈
(

0,
1
2

]

max{x, y} otherwise

In this case, &3
nP

does not coincided with f . As the conjunctor &3
nP

is commutative,
we have that�nP3=�nP3 . For all y, z ∈ [0, 1], the implication�nP3 is defined as:

z �nP3 y = max{g(z, y), nP(y)} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if y = 0

z if 0 < y ≤ z and z >
1
2

1
2

if 0 < y ≤ z ≤ 1
2

0 otherwise

As we mentioned above, (&3
nP
,�nP3 ,�nP3 ) ∈ TnP since the following chain of

equalities is verified, for all y ∈ [0, 1]:

nsnP3
(y) = 0�nP3 y = nP(y) = 0�nP3 y = nnnP3

(y)

It is important to emphasize that f does not preserve the supremum of non-empty
sets in both arguments. For instance, when X = ∅ and y = 1, we have that:

f

⎛
⎜⎜⎜⎜⎜⎜⎝

∨

xi∈X
xi, y

⎞
⎟⎟⎟⎟⎟⎟⎠ = f (0, 1) = 1 � 0 =

∨

xi∈X
f (xi, 1) =

∨

xi∈X
f (xi, y)

As a consequence, f cannot be the conjunctor of an adjoint triple. This fact allows
us to ensure that the mechanism given in Theorem 3 provides adjoint triples built from
more general operators.

3.3 Algebraic Structure of Tn

The following theorem includes a point-wise ordering relation defined on the conjunc-
tors of adjoint triples generating a given weak negation. This ordering relation provides
the set of adjoint triples, whose adjoint negations coincide with such a weak negation,
with the structure of a complete join-semilattice.

Theorem 4. Given a weak negation n, we have that the pair (Tn,�) forms a complete
join-semilattice, where � is the ordering relation defined as:

(&
j
n,�

n j ,�n j ) � (&k
n,�

nk ,�nk ) iff x&
j
n y ≤ x&k

n y



Algebraic Structure of Adjoint Triples Generating a Weak Negation 345

for all x, y ∈ [0, 1] and (&
j
n,�n j ,�n j ), (&

k
n,�

nk ,�nk ) ∈ Tn. The greatest element inTn
is the adjoint triple (&

g
n,�ng ,�ng ) such that�ng =�ng , which is defined as follows:

x&
g
n y =

⎧
⎪⎪⎨
⎪⎪⎩

1 if x � n(y)

0 if x ≤ n(y)
z �ng y =

⎧
⎪⎪⎨
⎪⎪⎩

n(y) if z � 1

1 if z = 1

for all x, y, z ∈ [0, 1].

If there exist two different adjoint triples (&
j
n,�n j ,�n j ), (&

k
n,�

nk ,�nk ) ∈ Tn such

that (&
j
n,�n j ,�n j ) � (&k

n,�
nk ,�nk ) and (&k

n,�
nk ,�nk ) � (&

j
n,�n j ,�n j ), then we

will say that these adjoint triples are incomparable. In this case, we will write that
(&

j
n,�n j ,�n j )||(&k

n,�
nk ,�nk ).

Finally, we clarify the previous result by means of the following example. This
example will be used to illustrate that the set (Tn,�) has not the structure of a complete
lattice, since the infimum of the elements in Tn could not necessarily belong to Tn.

Example 4. Given the weak negation nP, we will establish a hierarchy among the pro-
posed adjoint triples inTnP . According to the ordering relation introduced in Theorem 4,
we obtain that:

(&1
nP
,�nP1 ,�nP1 ) � (&P,↙P,↖P) � (&2

nP
,�nP2 ,�nP2 ) � (&3

nP
,�nP3 ,�nP3 )

Although we can find other adjoint triples belonging to TnP greater than the previous
ones, by Theorem 4, we can ensure that the greatest adjoint triple in TnP is the triple
(&g,↙g,↖g) such that↙g =↖g, which is defined, for all x, y, z ∈ [0, 1], as follows:

x&g y =

⎧
⎪⎪⎨
⎪⎪⎩

1 if x � nP(y)

0 if x ≤ nP(y)
z↙g y =

⎧
⎪⎪⎨
⎪⎪⎩

nP(y) if z � 1

1 if z = 1

Finally, we will show that there exist incomparable adjoint triples in TnP and, there-
fore, the complete join-semilattice (TnP ,�) is not linear. Given a ∈ (0, 1), we can define
the operators &a,↙a,↖a on the unit interval such that↙a =↖a as follows:

x&a y =

⎧
⎪⎪⎨
⎪⎪⎩

a if x � nP(y)

0 if x ≤ nP(y)
z↙a y =

⎧
⎪⎪⎨
⎪⎪⎩

nP(y) if a � z

1 if a ≤ z

In particular, these triples are incomparable with the adjoint triples previously defined
(&P,↙P,↖P), (&2

nP
,�nP2 ,�nP2 ) and (&3

nP
,�nP3 ,�nP3 ). Considering a = 0.45, then the

adjoint triple (&0.45,↙0.45,↖0.45) verifies that:

0.8 &0.45 0.6 = 0.45 ≤ 0.48 = 0.8 &P 0.6
0.5 &P 0.6 = 0.3 ≤ 0.45 = 0.5 &0.45 0.6

}

then (&P,↙P,↖P)||(&0.45,↙0.45,↖0.45)

0.5 &0.45 0.6 = 0.45 ≤ 0.5 = 0.5 &2
nP

0.6
0.7 &2

nP
0.4 = 0.4 ≤ 0.45 = 0.7 &0.45 0.4

}

then (&2
nP
,�nP2 ,�nP2 )||(&0.45,↙0.45,↖0.45)

0.7 &0.45 0.4 = 0.45 ≤ 0.7 = 0.7 &3
nP

0.4
0.5 &3

nP
0.3 = 0.3 ≤ 0.45 = 0.5 &0.45 0.3

}

then (&3
nP
,�nP3 ,�nP3 )||(&0.45,↙0.45,↖0.45)
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Thus, when the weak negation nP is considered, a proper non linear complete join-
semilattice arises. Moreover, (TnP ,�) is not a complete lattice since the infimum of
the subset

{
(&a,↙a,↖a) | a ∈ (0, 1]

} ⊆ TnP is the adjoint triple whose conjunctor is
constantly zero, which is not an adjoint conjunctor of an adjoint triple in TnP .

4 Conclusions and Future Work

We have extended the studied carried out in [14], providing different procedures to
determine adjoint triples on the unit interval, whose adjoint negations are actually a
previously fixed weak negation. We have also defined an ordering on which the set of
these adjoint triples forms a complete join-semilattice. In addition, we have charac-
terized the maximum element of the mentioned complete join-semilattice. In order to
clarify the developed theory in this paper, we have included some illustrative examples.

As a future work, we will apply the developed theoretical results to different frame-
works such as formal concept analysis, fuzzy relation equations and rough set theory.
For example, these results will be fundamental for studying families of adjoint triples
for defining preferences on objects or/and attributes in relational datasets [16,28,37].
This fact will allow us to address real problems related to image processing and digital
forensic analysis.
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