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Abstract. We propose a simple SQL-based decision tree induction algorithm
which makes its heuristic choices how to split the data basing on the results of
automatically generated analytical queries. We run this algorithm using standard
SQL and the approximate SQL engine which works on granulated data sum-
maries.We compare the accuracy of trees obtained in these twomodes on the real-
world dataset provided to participants of the Suspicious Network Event Recogni-
tion competition organized at IEEE BigData 2019. We investigate whether trees
induced using approximate SQL queries – although execution of such queries is
incomparably faster – may yield poorer accuracy than in the standard scenario.
Next, we investigate features – inputs to the decision tree induction algorithm –
derived using SQL from a bigger associated data table which was provided in the
aforementioned competition too. As before, we run standard and approximate
SQL, although again, that latter mode needs to be checked with respect to the
accuracy of trees learnt over the data with approximately extracted features.

Keywords: SQL-based decision tree induction · SQL-based feature
engineering · Approximate SQL engines · Granulated data summarization · Big
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1 Introduction

Every typical KDD process consists of several stages, such as data preparation, attribute
construction and selection, decision model induction and more [8,21]. Given the grow-
ing sizes of data required to be mined, there are a number of approaches attempting
to utilize higher-level interfaces to data storage and data processing systems instead
of operating directly on raw data sources. With this respect, employment of relational
database systems and SQL is one of intensively examined opportunities [13,22].

In our research, we often refer to KDD methods based on standard SQL queries
supported by most of database vendors. We rewrite some of algorithms which are well-
known in the KDD domain to illustrate how basic SQL procedures can replace lower-
level computations. This way KDD solutions can gain important data management and
computational scalability features of modern database systems. Moreover, users who
are familiar with SQL can easily introduce changes into previous implementations, at
the level which is specific to declarative rather than imperative languages.
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In this paper, for the purpose of illustrating the role that database systems can play
in KDD, we introduce a very simple new version of SQL-based decision tree induction
algorithm. This particular algorithm is dedicated to datasets with numeric attributes and
binary decisions. It makes its heuristic “attribute greater/lower than value” split choices
by basing on the results of automatically generated aggregate queries. Such approach
is surely not novel [7,10]. Still, our contribution is twofold. First, we run our algorithm
using one of approximate SQL engines available in the market [17], in order to verify
whether decision trees constructed using approximate queries may yield poorer accu-
racy than while basing on classical exact SQL. Second, given the multi-table character-
istics of the considered real-world dataset [5], we investigate whether newly engineered
attributes – added to the main training table by executing analytical SQL statements
over another available data table – could be derived using approximate queries instead
of exact ones, with no harm to the efficiency of further learning mechanisms.

Both above aspects reflect the same challenge, although they refer to different KDD
stages – attribute engineering (exemplified by SQL-based usage of one-to-many relation
between data tables) and decision model construction (exemplified by our decision tree
induction algorithm). The question is whether approximate SQL – which can be orders
of magnitude faster than exact SQL over big datasets – is able to drive KDD processes
accurately enough, so acceleration is achieved without losing too much quality. Indeed,
one could suspect that the quality of the aforementioned splits made during decision tree
construction is potentially worse if their heuristic evaluation relies on not-fully-precise
calculations over the training data. Analogously, one may be afraid of using impre-
cisely derived values of newly created attributes as the input to any machine learning
algorithm, no matter whether that algorithm itself is based on exact or approximate
computations. Our goal is to illustrate to what extent such worries are justified.

The rest of the paper is structured as follows. Section 2 refers to some related works.
Section 3 describes the dataset used in our studies. Section 4 outlines the proposed deci-
sion tree induction algorithm. Section 5 reports our experimental results in four modes:
running our algorithm using classical or approximate SQL, over the data derived using
classical or approximate SQL. Section 6 concludes our work.

2 Related Work

Let us begin with the literature on SQL-based machine learning/data mining. We have
already cited papers [13,22] (related to SVM and k-NN methods) and [7,10] (related to
decision tree induction). For further research in this field we refer to [3,11,14,15] (fea-
ture selection, data clustering, association rules and more details about decision trees).
An interesting additional aspect of applying SQL in KDD corresponds to relational –
single-table or multi-table – feature/attribute engineering [6,20].

We refer also to approximate query engines which become popular because of big
data analytics challenges [9,12]. We work with the first-ever engine based entirely on
the concept of data summarization [16,17], which was successfully deployed in indus-
try1. This engine, whereby query execution operations are designed as transformations
of granulated data summaries, can be used as if it was standard PostgreSQL. It delivers

1 securityondemand.com/solutions/superscale-analytics-threat-detection/.

http://securityondemand.com/solutions/superscale-analytics-threat-detection/
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Table 1. SQL-based features. ‘x’ identifies a record for which a new feature value is calculated.

accurate results even for highly selective queries involving combinations of numeric and
alphanumeric columns, such as those in Table 1. We will apply it for both SQL-based
decision tree induction and the above-mentioned attribute engineering.

As we run our experiments on the data disclosed in an online machine learning
competition, let us emphasize the importance of such events for development of both
academic and commercial research. The most widely recognized platform in this area
is Kaggle2, although there are also others, such as KnowledgePit3. The reader can find
more details about machine learning competitions held on KnowledgePit in [4,5].

3 The Data from the IEEE BigData 2019 Competition

We conduct experiments on the dataset made available at one of machine learning com-
petitions held at IEEE BigData 2019. This competition was organized jointly by Secu-
rity On-Demand (SOD)4 and QED Software5, at aforementioned KnowledgePit6.

The data was provided by SOD in three tables. The first one contains nearly 60,000
records corresponding to so-called threatwatch alerts investigated by the security team
at SOD in Q4 of 2018 and Q1 of 2019. Alerts are described by 61 columns and represent
information that is available to security analysts during their decision-making processes.
For each record, it is indicated whether the given alert was considered as serious by an
analyst and therefore, whether the given SOD’s client was notified about it.

The second table includes so-called localized alerts registered by SOD. For each
record in the first table, there is a series of associated localized alerts. This table con-
tains about 8,700,000 records described by a mixture of 20 numeric and symbolic fea-
tures. It provides more detailed information about the network traffic and devices related

2 www.kaggle.com.
3 www.knowledgepit.ml.
4 www.securityondemand.com.
5 www.qed.pl.
6 www.knowledgepit.ml/suspicious-network-event-recognition/.
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to threatwatch alerts evaluated by security analysts. In particular, the severity of each
localized alert is automatically assessed by expert-made heuristics designed by SOD.

The third table is an extract from raw network event logs that are continually cap-
tured by SOD using so-called collectors. This table is considerably larger than the
previous ones. Its fragment disclosed to competition participants consisted of nearly
9,000,000,000 anonymized records described by 26 features. More information about
this data source can be found in [16]. For more information about the discussed machine
learning competition and its results we refer to [5].

In this paper, we concentrate on the two first tables. During the competition, partic-
ipants did their best to utilize localized alerts to extract new attributes describing threat-
watch alerts. The task was to learn – basing on the historical data labeled by SOD’s
analysts – how to distinguish between threatwatch alerts requiring and not requiring
client notifications. Thus, aggregations derived for threatwatch alerts from their associ-
ated collections of localized alerts could be helpful.

For our experiments, we selected 8 numeric features from the first table and 17 new
features generated from the second one. Our selection was based on SOD’s expertise
and on some of successful competition solutions. Given one-to-many relation between
tables, all new features were derived using SELECT COUNT or COUNT DISTINCT
queries, so they can be treated as numeric too. As a result, we obtain a dataset with
nearly 60,000 records, 25 numeric columns, and the binary decision attribute (which
can be referred also as the target variable) corresponding to client notifications.

The 8 original features are: parentcategory, overallseverity, correlatedcount, isip-
trusted, untrustscore, trustscore, flowscore, enforcementscore. The 17 derived features
are listed in Table 1 together with SQL statements executed to compute them. The
meanings of columns in considered data tables are quite typical for the area of cyberse-
curity [1,19], although SOD’s way of calculating their values is unique.

4 Naïve SQL-Based Decision Tree Induction

The aim of the algorithm introduced below is to establish a framework for investigat-
ing the quality-related differences between decision models derived using classical and
approximate SQL statements. The algorithm itself is extremely simplified and we refer
the reader to other aforementioned publications for more sophisticated ideas how to
take advantage of relational database systems in decision tree induction [7,10,15,21].
We actually wanted to keep it so simple to concentrate mainly on the classical ver-
sus approximate SQL comparison. In future, analogous comparisons can be studied for
other SQL-based machine learning implementations as well.

The algorithm works with standard tabular data input, i.e., each attribute corre-
sponds to a separate column. The decision attribute (target variable) is declared as the
binary column DECISION. Conditional attributes (dependent variables) are assumed
to be numeric, although there is also an interesting interpretation of our algorithm for
binary columns. We denote attributes-columns as a1,...,an, where n is the number of
conditional attributes in the training set. The algorithm can be triggered with parameter
K > 0 which stands for the maximum depth of decision tree induced from the data.
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Let us recall that the considered approximate engine can be queried as if it was
a typical instance of PostgreSQL, where the only difference is that results of analyti-
cal SELECT statements are not guaranteed to be fully precise (and on the other hand,
one obtains those results incomparably faster than in the case of any standard engine
because of the ability to work entirely on granulated data summaries) [16,17]. There-
fore, we scripted our algorithm in standard PL/pgSQL. Moreover, it is straightforward
to run it in the same way on the considered approximate engine and on classical Post-
greSQL.

The algorithm is constructing a tree in a typical greedy way, whereby the heuristic
binary split evaluation function is triggered recursively for every current leaf unless it
satisfies one of three stop conditions illustrated in Fig. 1. At the beginning the following
statement is executed:

SELECT DECISION, COUNT(*), AVG(a1)...AVG(an) FROM DATA GROUP BY DECISION;

Then, ai with the highest difference between its average values on records dropping
into decision classes 0 and 1 is selected. Precisely, using notation in Fig. 1, we choose
ai with the maximum ratio | AVG0(ai) − AVG1(ai) | / ( |AVG0(ai)| + |AVG1(ai)| ), where
denominator is used to compare more fairly between attributes with varying scales.
New nodes are created with the cut ( AVG0(ai) + AVG1(ai) ) / 2, i.e., records satisfying
conditions ai < ( AVG0(ai) + AVG1(ai) ) / 2 and ai ≥ ( AVG0(ai) + AVG1(ai) ) / 2 are
assigned to left and right nodes, respectively. The procedure is repeated with each of
these nodes independently, whereby the only difference is that the previously chosen ai

Fig. 1. High-level illustration of our naïve decision tree induction algorithm, with the maximum
tree depth fixed as K = 3. The node statuses: Green – ready for further splits; Red – the maximum
depth reached; Blue – deterministic leaf pointing at a single decision, no further splits needed;
Black – available attributes do not provide sufficient discrimination between decisions, no further
splits make sense. Left-side green/red statuses reflect whether particular numeric attributes have
been already used in the given tree path (our naïve implementation does not allow to reuse an
attribute in a path). Quantities AVG0(ai) and AVG1(ai) refer to SELECT ... GROUP BY ... results
– they denote the average value of the i-th attribute in the given node, for decisions 0 and 1,
respectively. The COUNT(*) component is used to derive decision class distributions. (Color
figure online)



Approximate Decision Tree Induction over Approximately Engineered Data Features 381

does not occur on the SELECT list any longer while the WHERE part is extended by
the above-specified inequality conditions over column ai.

Surely, removing once chosen ai from SELECT lists in subsequent phases of split-
ting nodes is a simplification. Another simplification corresponds to one of the stop
criteria – the black one in Fig. 1. The fact that quantities AVG0(ai) and AVG1(ai) are
the same does not always mean that it is impossible to set up a useful condition on ai,
although indeed attributes yielding larger differences between AVG0 and AVG1 can be
regarded as more informative. Nevertheless, the whole algorithm is quite efficient, as it
executes only a single SQL query per node. The blue stop criterion in Fig. 1 is particu-
larly elegant, as a single-tuple output of the considered SELECT statement means that
the corresponding node drops fully into one of decision classes.

Let us also note that the attribute choice criterion driven by the above queries
neglects probabilities of decision classes in particular tree nodes. Indeed, quantities
AVG0(ai) and AVG1(ai) are simply compared to each other, no matter howmany records
were taken into account while deriving them. It may happen that AVG0(ai) is the aver-
age value of attribute ai calculated on, e.g., 100 records with DECISION = 0 while
there is only one record satisfying condition DECISION = 1. Then, the “greater/lower
than value” split on ai is fixed as a completely non-weighted mean of AVG0(ai) and
AVG1(ai). This kind of Bayesian approach to decision tree induction was first pro-
posed in [2] (whereby yet another SQL-based data mining methodology was employed)
and further formalized with respect to arbitrary feature-based data partitions in [18]
(whereby a decision tree induces a special case of data partition).

5 Experimental Results

As mentioned in Sect. 1, we report experiments conducted in four (two times two) fol-
lowing modes: running our naïve decision tree induction algorithm using two variants of
SQL, i.e., classical PostgreSQL versus approximate engine [16,17], and over two ver-
sions of the considered dataset, whereby features displayed in Table 1 were computed
using – again – classical or approximate SELECT statements.

More precisely, in its both versions, the dataset discussed in the end of Sect. 3 has
nearly 60,000 records (corresponding to the same set of threatwatch alerts investigated
by SOD’s analysts), 25 numeric attributes and the same binary decision. The only differ-
ence between these two versions is the way of creating 17 new features from the asso-
ciated data table that stores localized alerts. That table was actually loaded both into
PostgreSQL and the considered approximate query engine, which internally replaced
its 8,700,000 records with far lower number of multidimensional data summaries.

Experimental results are summarized in Table 2. The difference between two above
data versions is indicated by the column new columns. Both those datasets were loaded
into both PostgreSQL and our approximate engine, in order to run two considered vari-
ants of decision tree induction – indicated by column tree induction. For example, com-
bination approximate-exact means that a tree was learnt using classical SQL but on the
dataset with 17 features calculated using approximate SQL.
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Outcomes for three different maximum tree depth levels K are presented. The num-
ber of leaves grows when longer root-to-leaf paths are allowed, although it can be
noticed that the algorithm introduced in Sect. 4 tends to produce more compact trees
when working with approximate SQL (for both approximate and exact versions of new
features). The last two columns of Table 2 report additionally average intensities of
occurrence of original and derived attributes in tree paths.

Table 2. Characteristics of decision trees induced using different settings of our procedure.

New columns Tree induction K level R score # of nodes Derived Original

Exact Exact 5 0.251 45 0.195 0.102

Exact Approximate 5 0.324 63 0.063 0.492

Approximate Exact 5 0.181 59 0.162 0.266

Approximate Approximate 5 0.288 63 0.080 0.469

Exact Exact 10 0.408 473 0.259 0.153

Exact Approximate 10 0.394 875 0.190 0.586

Approximate Exact 10 0.369 771 0.276 0.324

Approximate Approximate 10 0.332 805 0.195 0.553

Exact Exact 15 0.559 2573 0.271 0.165

Exact Approximate 15 0.454 3339 0.210 0.595

Approximate Exact 15 0.421 2793 0.295 0.334

Approximate Approximate 15 0.349 2599 0.210 0.561

It is also important to evaluate the quality of induced trees. Herein, we follow
the aforementioned approach which was developed in [2,18] to assess data partitions
(induced by subsets of attributes or collections of root-to-leaf tree paths) with respect to
the level of information that they provide about decisions. The considered methodology
is based on the following relative information gain measure R(tree) =

∑
leaves maxj

# of records in leaf with DECISION = j
# of records in dataset with DECISION = j − 1 (1)

Measure R has values ranging from 0 to 1, whereby equality R(tree) = 1 holds, if and
only if all tree leaves are deterministic (i.e. they support single decision classes). More-
over, R is monotonic – splitting any leaf onto two new leaves cannot decrease its value
– and it is generally perceived as a good indicator in the case of analyzing highly imbal-
anced datasets, such as the one disclosed in the considered machine learning competi-
tion at the IEEE BigData 2019 conference.

6 Conclusions

We introduced a naïve SQL-based decision tree induction algorithm, with the aim to
compare classical PostgreSQL and the approximate query engine working on gran-
ulated data summaries with respect to the quality of trees derived from the data.
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Our experiments focused on real-world dataset made publicly available in frame of
the Suspicious Network Event Recognition competition held at the IEEE BigData 2019
conference. In particular, we studied two out of three data tables disclosed in the com-
petition and additionally, we utilized the considered approximate engine to investigate
opportunities of approximate-SQL-driven feature engineering.

In future, besides improvements of the above-mentioned algorithm, we intend to
extend our decision-tree-related research onto the third data source associated with the
discussed machine learning competition. Given its huge volume, this data source needs
approximate analytical methods to the highest extent. Let us also point out that the
experimental framework developed in this paper can serve as a useful environment for
testing enhancements of our approximate engine and other analogous solutions.
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