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Abstract. In this paper authors propose a new algorithm for linguistic data
summarization based on hybridization of rough sets and fuzzy sets techniques.
The new algorithm applies rough sets theory for feature selection in early stages
of linguistic summaries’ generation. The rough sets theory was used to reduce
on significant way, the amount on summaries obtained by others algorithms.
The algorithm combines lower approximation, k grade dependency and fuzzy
sets to get linguistic summaries. The results of proposed algorithm are compared
with association rules approach. In order to validate the algorithm proposed,
authors apply both qualitative and quantitative methods. Authors used two
databases in order to validate the algorithm; theses databases belong to
“Repository of Project Management Research”. The first database is associated
to personality traits and human performance in software projects. The second
database is associated to analysis of revenue assurance in different organization.
Considering quantitative approach, the algorithm proposed, obtains better results
than the algorithm based on association rules; while regards execution time, the
best algorithm was the algorithm based on association rules, because rough sets
theory was high time-consuming technique.
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1 Introduction

Linguistic data summarization was first introduced by Yager in 1982’s [1] and it has
been applied in real scenarios such as: autonomy of things, medicine and others real
scenarios. Different investigations associated to this technique have been developed in
the last two decades following three main work lines:

• Conceptualization of linguistic summaries and its structure.
• Indicators to evaluate the quality of linguistic summaries.
• Algorithms to generate linguistic summaries from data.

About the structure, the summaries are classified considering different “protoforms”
[2, 3]:

• Classic protoforms, to summarize attributes [1, 4].
• Time series protoforms [5].
• Events representation protoforms [6].

But the most used are protoforms with the following syntax:

• Overviews whose structure is Qy’s are S, which describe relationships such as the
following:
T(Most employees have low pay) = 0.7.

• Summaries structured as QRy´s are S, describing relationships such as:
T(Most young employees have low pay) = 0.7.

Kacprzyk and Zadrożny classified in [7] six protoforms that described the structure
of summaries and the queries for their search, see Table 1.

About the indicators to measure the quality of the summary, several authors have
been proposed different T indicators. For example, in [1] Yager proposed six indicators,
called as T values T1, T2, T3, T4, T5, T6, as follows:

Table 1. Classification of protoforms of LDS [7].

Type Protoform Given Sought

0 QRy’s are S All Validity T
1 Qy’s are S S Q
2 QRy’s are S S and R Q
3 Qy’s are S Q and structure of S Linguistic values in S
4 QRy’s are S Q, R and structure of S Linguistic values in S
5 QRy’s are S Nothing S, R and Q
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• Degree of truth (T1): called the measure of validity of the summary, provides an
indication of how compatible the linguistic summary is with the database.

• Degree of imprecision (T2): is important validity criterion, measure of both
uncertainty and vagueness concepts. This indicator depends on the form of the
summary, not on the database.

• The degree of coverage (T3): measures how many objects in database are supported
for linguistic summary.

• Degree of appropriateness (T4): This degree describes how characteristic is the
summary for the particular database. It degree permits to distinguish between trivial
summaries, having full validity (truth), and really important summaries. The sum-
mary found reflects an interesting, not fully excepted relation in our data [8].

• The length of an overview (T5) measure of the length or summaries, how many
elements conform the summary.

• An indicator for resume the quality evaluation of a particular linguistic overview
(T6), is defined as the weighted average of the previous 5° of validity.

There are other measures, for example in [5] Kacprzyk and Wilbik proposed a set
of indicators specifically for time series scenarios. In [9], the authors proposed a set of
indicators to extend the Yager’s indicators based on degree of indeterminacy infor-
mation in summaries. About the algorithms to generate summaries there are different
trends too, such as:

• Linguistic summaries generated form sql queries [10].
• Generation of summaries by using association rules [11, 12].
• Generation of summaries through meta-heuristics [13].
• Generation of summaries by using clustering techniques [6].
• Other approaches that combine previous works [14–17].

But most of algorithms, to generate summaries reported in bibliography, not use
appropriately, the information associated to the attributes relationships. In order to
improve the summaries’ generation methods, authors of this work proposed a new
algorithm for linguistic data summarization based on hybridization of rough sets and
fuzzy sets.

This work is organized in the following sections. The second section presents a
brief analysis of rough sets concepts and its adoption in the algorithm proposed. The
third section presents the results of algorithm in a human resource problem. Finally, the
conclusions of the work are presented.

2 A New Algorithm for Linguistic Data Summarization

In linguistic summaries generation is very important to discover the attributes rela-
tionships. The linguistic summaries consist on filters and summarizers, in general these
components can be represented from an information system S = (U, A [ D), where
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filters belong to set A while summarizers belong to decision attributes D. In this sense,
the authors of this paper propose the application of rough sets theory to discover the
attributes relationships. The authors adopted some concepts of rough sets theory in the
new algorithm, in the next paragraphs we explain main concepts of this theory.

The rough sets theory was proposed in 1986 by Pawlak for application in data
inconsistency. Usually, rough sets are used in two alternatives: to discreet data [18]
based on equivalence relationships or to extended indiscernibility relationships [19,
20]. Different extensions of rough sets applications were reported in [18, 21, 22].

Given an information system S = (U, A [ D), let X � U a set of objects and B � A,
a selected set of attributes, from the information contain in B, X can be approximate like
following:

• The lower approximation of X with respect to B is:

B� Xð Þ ¼ fx 2 U : B xð Þ�Xg ð1Þ

• The upper approximation of X respect to B is:

B� Xð Þ ¼ fx 2 U : B xð Þ \X ¼ Ug ð2Þ

• The boundary region we can define as:

BNB Xð Þ ¼ B � Xð Þ � B � Xð Þ ð3Þ

• The negative region of decision d with respect to B is:

NEGB Xð Þ ¼ U�B � Xð Þ ð4Þ

• Indiscernibility relation: defines an equivalence relation INDB [23, 24], and this
relation is denoted by:

IND Bð ÞB ¼ f x; yð Þ 2 U � U : a xð Þ ¼ a yð Þ for every a 2 Bg ð5Þ

• The positive region of decision d with respect to B is:

POSB dð Þ ¼ [ fB� Xð Þ : X 2 U=IND dð Þ; d 2 Dg ð6Þ

Other useful concept useful is k grade dependency, that we explain in next
paragraph.
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Definition 1: Intuitively, a set of decision attributes D, depends totally on a set of
B attributes, denoted by B ) D, if all the values of the D attributes are univocally
determined by the values of the attribute in B. In other words, D depends totally on B, if
there is a functional dependency between the values of D and B [23]. D depends on
B in a k grade where k 2 [0,1], and denoted by B )k D, see Eq. (7). If k = 1 then
D depends totally on B, while if k < 1 then D depends partially on B.

k ¼ POSB Dð Þj j
Uj j ð7Þ

Where:

POSB Dð Þ ¼
[

X2U
D

B� Xð Þ ð8Þ

2.1 LDS_RoughSet Algorithm

In this section we propose an algorithm for the construction of linguistic summaries of
data, generating them from hybridization of rough sets and association rules. The
authors established a linguistic variable associated to quantifiers for the construction of
the summaries, see Fig. 1:

Fig. 1. Linguistic variable associated to quantifiers.

Linguistic Summaries Generation with Hybridization Method 389



The proposed algorithm and its parameters are presented below.

Inputs:
Information system S = (U, A ∪ D)
U: dataset for analysis. 
A, D: attributes in the information system. 
Fuzzifiers
for each attribute ai ∈ A ∪ D.

αk: alpha cut k to limit the low
dependency. 

Q: linguistic variable that represent
of the summaries.

Begin
1. Transform S = (U, A ∪ D)

considering fuzzifiers set and
principles.

2. A_ItemSet = attributes_to_sets(A∪D)
3. D_ItemSet = A_ItemSet
4. Stackset.push(A_ItemSet) 
5. CS = {}
6. while not Stackset.empty
6.1. A_ItemSet = Stackset.pop
6.2. for each B ⊆ A_ItemSet
6.3. for each X ⊆ D_ItemSet: B ∩ X = ∅
6.4. ( ) ( )

D
UX

BPOS
∈

= *
,

U
DPOS

k B= , B ⇒k D, k ≥

6.5. for each Ot(B,X)∈ POSB(D)
6.6. if (there is total dependency

B⇒k=1X in Ot(B,X)) 
6.7. CS = CS ∪ Ot(B,X)
6.8. else
6.9. Stackset.push({B ∪ X}) 
6.10. end

end
end

end
end while

7. LSUM = BuildSummaries(CS, Q) 
8. Calculate T values for each summary s ∈ LSUM
9. Reorder LSUM considering T values

XBD
)(
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In step 2, each element a 2 A [ D it is transformed in a set {a} and insert into
set, example: .

In step 4, a stack called Stackset is used for working with item sets to build the
summaries.

In step 5, CS variable is a set to storage the candidate summaries.
In step 6.4 the positive region POSB(D) is calculated according to Definition 1 and

Eqs. (7), (8). The k � ak condition, help to find summaries between partial depen-
dency attributes, but considering the sets of attributes that have minimum relationship
level. Later, in 6.6 step, Ot 2 U, Ot(B,X) represents the values of attributes a 2 B [ X
in Ot object; if there is total dependency in Ot context, then Ot(B, X) attributes values
will be used as candidates summaries.

Afterward, in 6.9 step the algorithm searches other attributes combination to
generate summaries with more filters. But no superset attributes of any low dependency
attributes set, should be considered for summary generation. In order to prune the
attributes combination, just must be consider the Ot objects that Ot 2 POSB(D).

Finally, the summaries are sorted according to T values and then, submitted for
evaluation of an experts group in this thematic area. The active learning method is used
to identify and validate the best summaries from semantic point of view. This step is
important in the final selection of summaries for decision-making.

3 Results

In order to validate the algorithm, authors applied qualitative and quantitative methods
as follow in this section. Authors consider project management scenarios because
projects are practically organized in all areas of society with a high social and economic
impact [26, 27]. The demonstration of linguistic summaries applicability in project
management help to show the high applicability of these algorithm in wide areas of
human activity.

The qualitative evaluation of the algorithm was based on discovering of relation-
ships between personality traits and human performance in software projects, see
Sect. 3.1. Particularly in software projects, human resources are the main resource
because these projects depend in large extent on professional skills, creativity and
motivation of their resources.

The quantitative evaluation of the algorithm was based on the comparison of
LDS_RoughSet algorithm with an algorithm to generate linguistic summaries based on
association rules (LDS_AssociationRules), see Sect. 3.2.

3.1 Qualitative Evaluation Based on Real Case Study Application

In this section authors present the application of algorithm to discovering of relation-
ships between personality traits and human performance in software projects. The
principal motivations were:
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• In order to achieve an adequate selection and conformation of teams, it is important
to elaborate a personality profile according to the daily situations of the personnel.
Personality is composed of several cognitive characteristics and behavioral trends
that determine the similarities and differences in thoughts, feelings and behaviors of
individuals [11].

• There are several tests that are used extensively and for multiple purposes. Most of
these tests were standardized in correspondence with different populations and,
there is some consensus on the application and interpretation of results that they
provide.

• In order to acquire human resources for software project, authors consider the
combination of: sociological, technical and quality of life test, is very important.

• In general, it is considered that, the characterization of these resources with respect
to learning styles and personality traits, is essential for the formation of balanced
teams, for the increase of efficiency and effectiveness in the development of pro-
jects. But most research only focuses on explaining the importance of psychological
characteristics´ analysis, but does not establish mechanisms to identify relationships
between personality traits and job performance in projects.

The experiment was applied to a population with 62 professionals for whom
information on job performance is available in different roles and projects over a period
of 3 years. Each person in the experiment population complete four questionnaires to
known about its personality traits [28]:

• Instrument: Questionnaire on Leadership Styles.
• Instrument: Questionnaire on leadership styles using word computation.
• Instrument: Personality Inventory 16 PF Form C [29].
• Instrument: BFQ, Big Five Questionnaire [30].

The information obtained for each test was extended with the performance eval-
uations of the respondents and authors conform four datasets [31]. Finally, the algo-
rithm was applied to each dataset and the following linguistic summaries were
obtained:

Results in analysis of dataset “An Instrument Questionnaire on Leadership Styles”:

1. The specialists with high performance in programmer role are characterized by
being passive and task oriented. In addition, they can perform tasks in architect role.

2. The project members with high performance in a third role as implementer are
characterized as passive people in normal conditions and can perform tasks in
programmer role.

3. The specialists with an average performance in a second role as analyst are people-
oriented under normal conditions and can perform tasks in programmer role.

Results in analysis of dataset “B Instrument: Questionnaire on leadership styles
using word computation”:
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1. Programmers with high performance are characterized by being passive and people-
oriented under both normal and stressful conditions. Under normal conditions, they
have a technical mix, so they consider themselves to be exact, precise, calm and
logical people, they complete important tasks following proven methods and do not
like to take risks.

2. The specialists who work in second role as architects, with high performance, are
characterized by being passive in stressful conditions, and can perform tasks in
programmer role.

3. The specialists who work in second role as analysts, with average performance,
under normal conditions are passive and people-oriented. Under stress conditions
they are also passive. They can perform tasks as programmers.

4. The specialists who work in a third role as implanter, with a medium performance,
are people-oriented under normal conditions and tasks-oriented under stress
conditions.

5. The specialists who work in quality with high performance are people-oriented
under normal conditions and tasks-oriented under stressed conditions.

Results in analysis of dataset “C Instrument: Personality Inventory 16 PF Form C”.

1. The specialists with high performance in programmer role work in group and
strengthen their ego. In a group, they consider themselves suspicious, complicate
themselves and they act with premeditation. In addition, they have a lot of strength
in their ego, so they are characterized by being emotionally stable, calm, mature,
realistic, balanced and able to maintain solid group morale.

2. The specialists who work in quality with high performance, agreed as group on
normal values in animation, sensitivity, abstraction and socialization.

3. High implanter: They point to cunning, are considered cunning, calculating,
insightful, subtle and lucid people. His approach is intellectual and unsentimental.

4. The specialists with an average performance in a second role as analysts, agreed as
group on normal values in animation, apprehension or security and socialization.

5. The specialists with high performance in a second role as architect, agreed as group
on normal values in perfectionism and attention to standards.

Results in analysis of dataset “D Instrument: BFQ, Big Five Questionnaire”:

1. The specialists with high performance in programmer role, are characterized by
being moderately meticulous, precise, responsible, orderly and able to master their
emotions. They are also unsympathetic and tolerant.

2. The specialists with high performance in quality tasks are characterized by being
moderately creative, informed and open to cultural interests. Also they are quite
responsible, orderly, cooperative and affectionate.

3. Professionals with a high degree of implanting competence are considered
responsible and orderly people and can take on programmer role.

4. The specialists with high performance in a second role as architects are charac-
terized by being moderately responsible, orderly and diligent. With little peace and
quiet and patience. In addition, they are very inactive and can perform tasks in
programmer role.
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5. The specialists with high performance in a second role as analysts are characterized
by being moderately creative, knowledgeable, understanding and tolerant. In
addition, they have some positive bias in their responses, so they tend to deny their
personal shortcomings or they are particularly naive.

6. Specialists with average performance in a second role as analysts are characterized
by being moderately creative, informed, meticulous, precise, open to new ideas and
values different from their own. Also, they are unsympathetic, tolerant and
affectionate.

From the analysis of the summaries obtained, it is identified that the runs carried out
on the different databases yielded the following common results:

1. The specialists with high performance in programmer role, agreed as group on
normal values in animation, security, self-sufficiency and extroversion. In addition,
they are passive people under normal conditions.

2. The specialists with average performance in a second role as analysts, agreed as
group on normal values in animation, safety, extroversion and attention to
standards.

These results were presented to the respondents, and they were asked to evaluate
them without specifying the test that generated them. It was concluded that the majority
of respondents considered the Big Five test to be the most appropriate for their personal
characteristics. On the other hand, the Management Styles Test, that use computer with
words techniques for the evaluation, gave better results than the variant using discrete
variables. This research results were used in processes of acquisition and formation of
software development teams in the organization where this research was applied.

In this investigation, it was possible to identify the characteristics associated to
personality traits, as well their relationship with high performance in a given role; that
is why we can predict, with some certainty, from the results of a personality analysis
test, in which position a new employee will have better results. However, we
emphasize that these results must be combined with professional skills for the correct
assignment of roles.

3.2 Quantitative Evaluation from Comparison with Other Algorithm

In this section authors compare LDS_RoughSet algorithm and LDS_AssociationRules
algorithm based on association rules techniques. Authors apply the two algorithms to
database “200226_gp_eval_proyfinal” from “Repository of Project Management
Research” [31]. This database contains 202 records and 8 attributes: 4 nominal attri-
butes and 4 numeric attributes. Each record represents an organization with information
about province location, economical affectation types and amount of economical
affectation in several moneys.

For comparison, authors propose the following metrics: number of summaries
obtained, execution time and a set of statistical metrics for each T value. For each
T value (T1, T2, T3, T4 T5) of linguistic summaries authors calculate: mean, standard
deviation, minimum and maximum values.
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Table 2 shows that the algorithm proposed obtains better results than the algorithm
based on association rules regards the following metrics: summaries’ amount, T1, T3,
T4 and T5. But the algorithm based on association rule is better in execution time;
because rough sets theory is high time-consuming. There are not significant differences
between algorithms regards T2 indicator.

The analysis of T indicators revel that in future works traditional T indicators could
be extended by considering other elements like indeterminacy and falsity.

4 Conclusions

The proposed procedure allows the identification of relationships between personality
traits and the performance evaluation index in the roles assigned in software projects.
This method has been tested in software projects, but its conception allows its appli-
cation in several scenarios.

In the application of personality instruments, participants reported Big Five ques-
tionnaire as suitable instrument for their characteristics.

In the experiment it was found that specialists with high performance in pro-
grammer role, is characterized by being moderately meticulous, accurate, responsible,
orderly and able to master their emotions. However, they are not very tolerant and
project managers need to be aware of these characteristics in order to facilitate com-
munication within the project and avoid interpersonal conflicts.

The research results allow the identification of personal characteristics of profes-
sionals that facilitate the communication with them of managers and avoid conflicts in
work teams.

It is also identified that personality traits suitable for analyst role are creative,
informed, meticulous, precise, open to new things, ideas and values different from their
own and these characteristics help their work performance and exchange with clients.

Considering quantitative analysis, the proposed algorithm obtains better results than
the algorithm based on association rules in the most of the indicators. In particular,
LDS_RoughSet algorithm was superior regards indicators: summaries’ amount, T1, T3,
T4 and T5. While, the algorithm based on association rules was the best considering
execution time, because of rough sets theory is high time-consuming. There are not
significant differences between algorithms regards T2 indicator.

Table 2. Linguistic summaries evaluation using T indicators.

Algorithm T1 T2 T3 T4 T5

LDS_RoughSets Min 0.968 0.027 0.833 0.005 0.25
Max 0.99 0.067 1 0.97 0.5

Execution time 2.6987 ms
Summaries amount 46

StdDev 0.0058 0.011 0.029 0.31 0.062
Mean 0.987 0.031 0.99 0.72 0.48

LDS_AssociationRules Min 0.775 0.027 0.338 0 0.063
Max 0.99 0.257 1 0.88 0.5

Execution time 2.2607 ms
Summaries amount 76

StdDev 0.053 0.068 0.14 0.31 0.147
Mean 0.96 0.057 0.94 0.56 0.409
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