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Abstract. The detection of overlapping communities in Social Net-
works has been successfully applied in several contexts. Taking into
account the high computational complexity of this problem as well as
the drawbacks of single-objective approaches, community detection has
been recently addressed as Multi-objective Optimization Evolutionary
Algorithms (MOEAs). One of the challenges is to attain a final solution
from the set of non-dominated solutions obtained by the MOEAs. In
this paper, an algorithm to build a covering of the network based on the
principles of the Rough Clustering is proposed. The experiments in a
synthetic networks showed that our proposal is promising and effective
for overlapping community detection in social networks.

Keywords: Social network analysis + Community detection -
Multi-objective Optimization - Rough clustering

1 Introduction

The Analysis of Social Networks has received a lot of attention due to its wide
range of applications in several contexts [1]. Specifically, in Social Network Anal-
ysis, the Community Detection Problem (CDP) plays an important role [5]. Com-
munity detection in social networks aims to organize the nodes of the network
in groups or communities such that nodes belonging to the same community are
densely interconnected but sparsely connected with the remaining nodes in the
network [2]. Even though most of the community detection algorithms assume
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that communities are disjoint, according to Palla et al. in [6], most real-world
networks have overlapping community structure, that is, a node can belong to
more than one community.

On the other hand, since the community detection problem has an NP-hard
nature, most reported approaches use heuristics to search for a set of nodes that
optimises an objective function which captures the intuition of community, these
single-objective optimization approaches face two main difficulties: a) the opti-
mization of only one function confines the solution to a particular community
structure, and b) returning one single partition may not be suitable when the net-
work has many potential structures. To overcome the aforementioned problems,
many community detection algorithms model the problem as a Multi-objective
Optimization Problem, and specifically, they use Multi-objective Optimization
Evolutionary Algorithms (MOEASs) to solve them.

Once the set of non-dominated solutions is obtained by the MOEAs, one
of the main challenges is to accomplish a final solution. Most of the proposed
algorithms [5,7-9] use the internal criteria (e.g., Modularity Index [10]) or the
external criteria (e.g., Normalized Mutual Information (NMI) [3]) to select the
final solution. The drawbacks of these approaches are that the internal criteria
does not often correspond to the objective function used by MOEAs and the
external criteria uses the ground truth of the network, which it is not always
known. Also, the selected final solutions obtained by both approaches do not use
the knowledge of the overlapping communities (Pareto set) obtained by MOEAs.

Rough Set Theory (RST) may be used to evaluate significance of attributes,
to deal with inconsistent data, and to describe dependencies among attributes,
to mention just some uses in machine learning and data mining [22].

The main advantage of Rough Set Theory in data analysis is that it does
not need any preliminary or additional information about data [17]. RST allows
to approximate a rough concept by a pair of exact concepts, called the lower
and upper approximations. The lower approximation is the set of objects defi-
nitely belonging to a vague concept, whereas the upper approximation is the set
of objects possibly belonging to the mentioned vague concept [17]. The upper
and lower approximations can be used in a broader context such as clustering,
denoted as Rough Clustering [13].

In our proposal, we focus on describing the relationship between the elements
of the network (vertices) only taking into consideration their belonging to the
communities of the Pareto Set. Then, we use Rough Clustering to obtain a final
covering of the network, that describes the communities with their lower and
upper approximations. The lower approximation is the set of vertices belonging
to the community without uncertainty, whereas the upper approximation is the
set of vertices possibly belonging to this community, therefore located at the
boundary of it. Hence, the selected final solution uses the knowledge of the
overlapping communities (Pareto set) obtained by MOEAs.

In this paper, we propose an Overlapping Community Detection Algorithm
using Multi-objective approach and Rough Clustering, denoted as MOOCD-
RC. Our algorithm allows selecting the final solution based on the subjective



418 D. H. Grass-Boada et al.

information as the number of vertices located in the cores or boundaries of the
communities. As a consequence, it helps decision-makers (DM) incorporate their
domain knowledge into the community detection process. Our main contribu-
tions are as follows:

1. We define an indiscernibility relationship between vertices of the network by
taking the number of communities in the Pareto Set where they match.

2. We use the Rough Clustering foundation to build and describe the final cov-
ering of the network through the lower and upper approximations of the
communities.

This paper is arranged as follows. Section 2 briefly introduces the necessary
notions of multi-objective community detection problem and Rough Cluster-
ing. In Sect. 3, we introduce our proposal. Section4 presents the experimental
evaluation of our proposal and compared against other related state-of-the-art
algorithms over synthetic networks. Finally, Sect.5 gives the conclusions and
some ideas about future work.

2 Background

This section introduces the necessary background knowledge for understanding
the proposed method. First, the definition of multi-objective community detec-
tion problem and multi-objective algorithms of the related work are presented.
Next, we will give the basics about Rough Set Theory and Rough Clustering.

2.1 Multi-objective Community Detection Problem

Let G = (V, E) be a given network, where V' is the set of vertices and E is the
set of edges among the vertices. A multi-objective community detection problem
aims to search for a partition P* of G such that:

F(P*) = minpeq (f1(P), f2(P), ..., f+(P)), (1)

where P is a partition of G, §2 is the set of feasible partitions, r is the number of
objective functions, f; is the ith objective function and min(-) is the minimum
value obtained by a partition P taking into account all the objective functions.
With the introduction of the multiple objective functions, there is usually no
absolute optimal solution, thus, the goal is to find a set of Pareto optimal solu-
tions [2]. A commonly used way to solve a multi-objective community detection
problem is by using MOEAs [9)].

The first algorithm using MOEAs for detecting overlapping communities is
named Multiobjective Evolutionary Algorithm to solve CDP (MEA_CDP) [5].
MEA _CDP uses an undirected representation of the solution and the classical
Nondominated Sorting Genetic Algorithm II (NSGA-II) with the reverse oper-
ator to search for the solutions optimising the average community fitness, the
average community separation and the overlapping degree among communities.
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On the other hand, the Improved Multiobjective Evolutionary Algorithm to solve
CDP (iMEA_CDP) [7] uses the same representation and optimization framework
of MEA_CDP but it proposes to employ the PMX crossover operator and the
simple mutation operator as evolutionary operators. iMEA_CDPs employs the
Modularity function [10] and a combination of the average community separation
and overlapping degree as its objective functions.

The Overlapping Community Detection Algorithm based on MOEA (MOEA-
OCD) [9] uses the classical NSGA-II optimization framework and a represen-
tation based on adjacents among edges of the network. On the other hand,
MOEA-OCD uses the negative fitness sum and the unfitness sum as objective
functions. Unlike previously mentioned algorithms, in MOEA-OCD algorithm, a
local expansion strategy is introduced into the initialization process to improve
the quality of initial solutions.

Another algorithm is the Maximal Clique based on MOEA (MCMOEA) [§]
which first detects the set of maximal cliques of the network and then it builds
the maximal-clique graph. Starting from this transformation, MCMOEA uses a
representation based on labels and the Multiobjective Evolutionary Algorithm
based on Decomposition (MOEA /D) in order to detect the communities opti-
mising the Radio Cut (RC) and Kernel K-Means (KKM) objective functions
[11].

In [16] the authors combine Granular Computing and a multi-objective opti-
mization approach for discovering overlapping communities in social networks.
This algorithm, denoted as MOGR-OV, starts by building a set of seeds that
is afterwards processed for building overlapping communities, using three intro-
duced steps, named expansion, improving and merging.

Most of the exiting works focus on developing MOEAs to detect overlapping
communities but not addresses the problem of selecting a final solution from the
set of the obtained non-dominated solutions.

2.2 Foundations of Rough Clustering

The main components in the Rough Set Theory are an information system and
an indiscernibility relation [17]. The classical RST was originally proposed using
on a particular type of indiscernibility relations called equivalence relations (i.e.,
those that are symmetric, reflexive and transitive). Yao et al. [19] described
various generalizations of rough sets by relaxing the assumptions of an underlying
equivalence relation.

RST takes a pair of precise concepts to study the vagueness of a concept,
named the lower and upper approximations. The lower approximation composes
of all objects which surely belong to the concept, whereas the upper approxi-
mation contains all objects which perhaps belong to the concept. The boundary
region of the vague concept is the difference between the upper and the lower
approximations [18].

Lingras et al. [15] define another generalization of the approximate sets, see-
ing them as interval sets. The authors propose the rough k-means algorithm,
where the concept of k-means is extended by viewing each cluster as an interval
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or rough set. The core idea is to separate discernible from indiscernible objects
and to assign objects to lower A(X) and upper A(X) approximations of a set
X. This proposal allows overlaps between clusters [20]. The upper and lower
approximation concepts require to follow some of the basic rough set properties
such as [14]:

1. An object v can be part of at most one lower approximation. This implies
that any two lower approximations do not overlap.

2. An object v that is member of a lower approximation of a set is also part of
its upper approximation. This implies that a lower approximation of a set is
a subset of its corresponding upper approximation.

3. If an object v is not part of any lower approximation it belongs to two or
more upper approximations. This implies that an object cannot only belong
to a single boundary region.

The way to incorporate rough sets into k-means clustering requires adapting
the calculation of the centroids and deciding whether an object is assigned to a
lower or upper approximation of a cluster. In the first moment, the centroids of
clusters are calculated including the effects of lower as well as upper approxima-
tions. Next, an object is assigned to the lower approximation of a cluster when
the distance (similarity) between the object and the particular cluster center is
smaller than the distances to the remaining other cluster centers [14].

3 Proposal

The proposed algorithm obtains a final covering through two steps. It starts
building sets of indiscernible (similar) objects that form basic granules of knowl-
edge on the network G = (V| E), where V represents the set of nodes and E
represents the set of edges which connect nodes. Thus, a partition of the set V'
is obtained allowing us to define an equivalence relation in V. From our point
of view, two vertices should be related if they share many communities at the
Pareto Set. Next, through the Rough Clustering foundations, specifically the
rough k-means algorithm ideas [15], we build the final covering of the network
by viewing each community as a rough set, which allows us to obtain overlapping
communities.

3.1 First Step: Build the Granules of Indiscernible Objects

In this step, we build a set of granules which represents a partition of V. First of
all, we describe a series of useful concepts that we are applying in our proposal.

Definition 1 (Thresholded similarity graph). Let V = {vj,vq,...,v,} be
the set of vertices of the network G = (V, E), B a user-defined parameter and
S(vs,v5) @ symmetric similarity function between vertices v; and v;, a thresholded
similarity graph is an undirected graph Gg = (V, Eg) where (v;,v;) € Eg if and
only if S(vs,v;) > B.
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Definition 2 (Subgraph). Let G; = (Vi,E;) and Go = (Va,Es) be two
graphs. G1 = (V1, Ey) is a subgraph of Go = (Va, E3), denoted as G1 C G,
if and only if V1 C Vo and E; C Es.

Definition 3 (Induced subgraph). Let V' C V be a set of vertices, the
subgraph of G induced by V' is G = (V ,E'), such that E = {(v;,v;) € E |
Vi, V5 € Vl}

Definition 4 (3-Connected component). Let Gg = (V, Eg) be a thresholded
similarity graph and G = (V,,El) a subgraph of Gz. The subgraph G is a (-
connected component in Gg if and only if satisfies the following conditions:

1. Yu,v € V/,u # v, erists v, V2, ...,V € V,, such thatVi=1...q, (v;,vi41) €
E' and also vy = u and vy = v or vy = v and v, = u.

2. do not exist another subgraph of Gz, G1 = (V1, Ey) with G # G/, that pleases
the condition 1 and also G C G1.

Let S, (v;,vj) be the similarity function between v; and v;. S, (v;,v;)
employs the solutions in the Pareto Set, denoted as PS. Let C'V; be a solution
of PS and G,, the set of communities where v; belongs. Let mc(v;,v;) be the
number of matching clusters between v; and v; in C'V;. The function S, (v;, vy)
is defined as follows:

> match(v;, vj)
S, (vi,vj) = ——=2 (2)
ps
where ps is the number of solutions in PS and match(v;,v;) = %
v G,

We build the thresholded similarity graph Gz = (V, Eg) based on Eq. 2 and
the user-defined parameter 3 (8 € [0,1]). Let G, = {G;l,G/Tz, . .,G;q} be the
(B-connected component set. By definition, the connected component set in a
graph constitutes a partition of the set of vertices.

We will say that a vertex v; € V is related with a vertex v; € V, denoted as
v; R v, if and only if ElG/n_ € G/r such that v;,v; € G;m being I, a equivalence
relation. The set built from all the vertices related to a vertex v; forms the so
called equivalence class of v;, denoted as [v;] R, Therefore, [v;] R, 18 the set of

v; € V such that share the same connected component G; This means that the
vertices belonging to the same connected component have a strong relationship
in terms of sharing the equal communities of PS. This strong relationship is
measured by S _(vi,v;).

Let EC = {[vl]Rw , ['UQ]RPS e [U‘I]Rpg} be a set of equivalence classes under
the indiscernibility relation R ,. The elements of EC' are disjoint sets. Let G, =
{Gr,,Gry,y ..., Gy} be the set of subgraphs induced by EC on G = (V,E).
Hence, G,, is a subgraph on G = (V, E) induced from [v;] R, Therefore, G,
is viewed as granules of indistinguishable elements which do not share vertices.
These granules constitutes our initial granularity criterion [21], and also we will
use them to build the final covering of the network.
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3.2 Second Step: Build the Final Covering of G = (V, E)

We take the k biggest granules, G, € G, according to the number of vertices, as
prototypes of clusters and the remaining of them are assigned to those selected
ones. Therefore, the foundation is to initially covering the network with those
granules of indistinguishable vertices that give greater coverage of the network.
The variable k,1 < k < ¢ receives the median value of the number of clusters
that form the solutions at the Pareto Set. For this purpose, we define a similarity
function between any two granules G,,,Gy; € G,. This function is defined as

follows:
Z’Ui eGT'i Z’Uj EG,.]. Sps (Ui, U])
IGH ‘ ' |GTj |

As described in Sect. 2, the use of k-means clustering in Rough Clustering
requires adapting the calculation of the centroids (cluster prototype) and decides
whether an object is assigned to a lower or upper approximation of a cluster.
In our case, we selected as prototypes of communities the k biggest granules,
according to their number of vertices. Next, the remaining granules are assigned
to those selected ones. A granule G,, is assigned to the lower approximation
of a community when the similarity between G,, and the particular prototype
of the community G,;,1 < j < k, is much greater than the similarity to the
remaining other prototypes. In this case, the similarity function defined in the
Eq. 3 is used for deciding whether the remained granules are assigned to a lower
or upper approximation of the selected k granules.

Worth noting that in this step, the assignation process uses the granules
obtained in the previous step, G = {G.,,Gy,,...,Gr,}. The selected k biggest
granules represent the initial communities of network and also the lower approx-
imations of them. The remaining granules G,,,k < i < ¢ will be part of the
lower or upper approximations of the communities according to the similarity
S, and the v user-defined parameter (v € [0,1]).

The pseudocode of MOOCD-RC is shown in Algorithm 1. It is important to
notice that the used Pareto Set is the result of using the MOGR-OV algorithm
[16]. In MOOCD-RC, initially the cover CV is formed by the k greatest gran-
ules in G,., which ones represent the lower approximations of the communities.
These k selected granules represent the prototypes of communities to be built.
Afterly, the remaining granules are included in the lower or upper approxima-
tions of the communities in C'V" according to S, . Worth noting that the lower
approximation of those communities are formed by the vertices that definitely
belong to them, whereas the upper approximations are formed by the vertices
that are located at the boundary of the communities. These vertices represent
the overlapping in themselves.

In the first step, the building of the equivalence classes is tightly bound to
the thresholded similarity graph Gg = (V, Ej), which in turn depends on the g
user-defined parameter. The higher the value of 3 the smaller granules will be
obtained and vice versa. On the other hand, in the second step the dimensions of
the lower and upper approximations of the communities depend on 7y user-defined

SGT (Gma Grj) =

3)
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Algorithm 1: MOOCD-RC algorithm

Input: G = (V, E), Pareto Set with overlapping communities (PSetOC')
Output: Covering of the network CV = {CV1,CVa,...,CV;}
First Step: build the granules of indiscernible objects
for v;,v; € V do
| Take PSetOC and compute S,,, (vi,v;);
Build a thresholded similarity graph Gg = (V, Eg);
Identify a B-connected component in Gg;
Compute [vi]Rps for each v; € V;
Build the set G, = {Gr,,Gry, ..., Gr, }, subgraphs induced by each
[w]Rm v €V
Second Step: build the final covering of G = (V, E)
Sort descending Gr by number of vertices;
Select the first k granules G, € Gr as prototypes of communities C'V; € CV;;

fori=1 to k do
L CVie Gy

for j =k+1 to g do
Determine the most similarity between GT]. and the k granules G, € Gr:
Grae < man SGT (GT'j s Gri)§

1<i<

T—{}

for i =1 to k do

if S, (Gr;,Gr;)/ S, (Gr;, Gry,) <y then
| Add G,, to T}

if |T| > 1 then
VG, € T take the community C'V; associated;
L Add GTj to CV;;

else
Take take the community C'V; associate to G
L Add G,; to CV; and CV;;

Tmax)

re:turn Ccv

parameter. In the way of this parameter changes we will obtain boundaries of
communities more or less tight.

The parameters 8 and  allow decision-makers to obtain a final covering of
the network by adjusting the cores or boundaries of the communities. In our
experiments, we set 0 = 0.75 and v = 0.1. We chose these values according to
the related works [13,14,20].

4 Experimental Results

In this section, we conduct several experiments for evaluating the effectiveness of
our proposal. Since the built-in communities in benchmark networks are already
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known, we use the Normalized Mutual Information external evaluation measure
to test the performances of different community detection algorithms.

Hence, the experiments were focused on evaluating the accuracy attained by
our proposal in terms of the NMI value. Our algorithm was applied to synthetic
networks generated from the Lancichinetti-Fortunato—Radicchi (LFR) bench-
mark dataset [4]. Its performances were compared against the one attained by
MEA_CDP [5], iMEA_CDP [7], MCMOEA [8] and MOEA-OCD [9] algorithms,
described in Sect. 2.

The algorithms of the related works do not build a final covering from the
communities of the Pareto Set. Thus, we choose the best solution in the Pareto
Set, according to the NMI, and compare this solution with respect to the ones
obtained by our algorithm.

The NMI takes values in [0, 1] and it evaluates a set of communities based
on how much these communities resemble a set of communities manually labeled
by experts, where 1 means identical results and 0 completely different results.

In LFR benchmark networks, both node degrees and community sizes follow
the power-law distribution and they are regulated using the parameters 7 and
To. Besides, the significance of the community structure is controlled by a mix-
ing parameter p, which denotes the average fraction of edges each vertex has
with others from other communities in the network. The smaller the value of
1, the more significant community structure the LFR benchmark network has.
The parameter O,, is specially defined for controlling the overlapping rate of
communities in the network. O,, is the number of overlapping nodes, evaluating
overlapping density among communities. Similar to p, the higher the value of
O,,, the more ambiguous the community structure is.

In the first part of the experiment, we set the network size to N = 1000,
71 = 2, 72 = 1, the node degree is in [0, 50] with an average value of 20, whilst the
community sizes vary from 10 to 50 elements. Using previous parameter values
we vary u from 0.1 to 0.6 with an increment of 0.05. After, we set u = 0.1 and
© = 0.5, and we vary the percent of overlapping nodes existing in the network
(parameter O,, of LFR Benchmark) from 0.1N to 0.5N with an increment of
0.1; the other parameters remain the same as the first experiment.

The average NMI value attained for each algorithm over the LFR benchmark
when  varies from 0.1 to 0.6 with an increment of 0.05, as show in Fig. 1. As the
value of p increases the performance of each algorithm deteriorates, being both
MOEA-OCD and MOOCD-RC those that performing the best. As the mixing
parameter p exceeds 0.5, the MOEA-OCD algorithm begins to decline in its
performance and it is outperformed by MOOCD-RC. Figure 1 shows the good
performance of our method.

For summarizing the above results, we evaluated the statistical significance of
the NMI values using the Friedman test as Non-Parametric Statistic Procedure
included in the KEEL Software Tool. Also, we used the Holms and Finner as
post hoc methods. Table 1 shows the average ranks obtained by each method in
the Friedman test. Our method ranks second, however, Table 2 shows the overall
performance of MOEA-OCD with respect to the remaining algorithms, where
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0.1 0.15 0.2 0.25 03 035 0.4 0.45 0.5 0.55 0.6
Parameter On in LFR Benchmark

—— MOOC-RC —4—iMEACDPs —#&—MCMOEA MOEAOCD

Fig. 1. Average NMI value attained by each algorithm on LFR benchmark networks
when p varies from 0.1 to 0.6 with an increment of 0.05.

Table 1. LFR benchmark networks when p varies from 0.1 to 0.6. Average Rankings
of the algorithms (Friedman).

Algorithm Ranking
MOOCD-RC | 1.5455
iMEACDPs |3.6364
MCMOEA |3.3636
MOEAOCD |1.4545

Table 2. LFR benchmark networks when p varies from 0.1 to 0.6. Post Hoc comparison
where oo = 0.05 (Friedman).

i | Algorithm z=(Ro— R;)/SE |p Holm Finner
3 |iIMEACDPs |3.96347 0.000074 | 0.000222 | 0.000222
2| MCMOEA | 3.468036 0.000524 | 0.001049 | 0.000786
1| MOOCD-RC | 0.165145 0.86883 | 0.86883 |0.86883

there is not statistically significance between our proposal and MOEA-OCD. The
Friedman statistic value distributed according to chi-square with three degrees
of freedom is 26.6727. Besides, the p-value computed by the Friedman test is
0.000007.

The structures of the networks are well defined in the second part of the
experiment, as shown in Fig.2. Our proposal and MOEA-OCD have a per-
formance almost stable, independently of the number of overlapping nodes in
the network, being MOEA-OCD the one that performs the best. On the other
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hand, when the structure of the communities is uncertain, the performance of the
MOEA-OCD algorithm drops off when the overlapping in the network increases,
being our proposal the one that performs better, as shown in Fig. 3.

Similar to the previous experiment, we evaluated the statistical significance
of the NMI values. Table 3 shows the average ranks obtained by each algorithm
in the Friedman test. The Friedman statistic value distributed according to chi-
square with three degrees of freedom is 25.92. Besides, the p-value computed
by the Friedman test is 0.00001. Our algorithm ranks second, however, like the
previous experiment, Table 4 shows the overall performance of MOEA-OCD with
respect to the remaining algorithms, where there is not statistically significance
between our proposal and MOEA-OCD.

Ave. NMI

100 200 300 400 500
Parameter On in LFR Benchmark

—&— MOOC-RC —&—iMEACDPs —#&— MCMOEA MOEAOCD

Fig. 2. Average NMI value attained by each algorithm on LFR benchmark networks
when g = 0.1 and O, varies from 100 to 500 with an increment of 100.

100 200 300 400 500
Parameter On in LFR Benchmark

—8—MOOC-RC ——iMEACDPs —#&—MCMOEA MOEAOCD

Fig. 3. Average NMI value attained by each algorithm on LFR benchmark networks
when p = 0.5 and O,, varies from 100 to 500 with an increment of 100.
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Table 3. LFR benchmark networks when g = 0.1, u = 0.5, and O,, varies from 100 to
500. Average Rankings of the algorithms (Friedman).

Algorithm Ranking
MOOCD-RC | 1.5
iMEA-CDPs | 3.1
MCMOEA 3.9
MOEA-OCD | 1.5

Table 4. LFR benchmark networks when p = 0.1, u = 0.5, and O,, varies from 100 to
500. Post Hoc comparison where o = 0.05 (Friedman).

i | Algorithm z=(Ro— R;)/SE |p Holm Finner

3| MCMOEA | 4.156922 0.000032 | 0.000097 | 0.000097
2 |iMEA-CDPs |2.771281 0.005584 | 0.011167 | 0.008364
1 MOOCD-RC |0 1 1 1

From the above experimental results, we can conclude that MOEA-OCD
and our proposal have outstanding performances on LFR benchmark networks
in most cases. However, our algorithm employs the information contained in the
communities of Pareto Set to build a final covering of the network. Although
the solutions of Pareto Set do not have overlapping communities, our proposal
does not depend on this for building the final communities. Thus, our algorithm
can be used by multi-objective evolutionary algorithms which build disjoint or
overlapping community structures.

It should be noted that our proposal depends on the obtained non-dominated
solutions. In these experiments we used the algorithm MOGR-OV [16] to gen-
erate the Pareto Set. On the other hand, the settings of 8 and ~ have a nar-
row relationship over the obtained final covering. Following, we will give a brief
description about this.

4.1 Community Structure Under Different Lower and Upper
Approximation Scales

In the above experiments, the parameters 8 and  are fixed to 0.75 and 0.1,
respectively. We will have as results boundaries of communities more or less
tight, depending on the way we change those parameters. Hence, both of them
allow decision-makers to analyze the network according to the domain problem.

Using the synthetic network generated above with the parameters values
@ =0.1and O,, = 0.1 N, we will show the overlapping communities with different
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lower and upper approximation scales. For that, we change the v parameter and
keep the same [ value used in the experiments. The parameter v allows to tune
the boundaries of communities. Thus, the higher the value of ~ is, the wider the
boundaries are and vice versa, which means that there is going to be more or
less overlapping vertices, respectively.

Furthermore, we build two coverings of the obtained synthetic network by
considering v = 0.1 and v = 0.25. For a better comprehension of the studied
network we used the graph analysis tool Gephi. It employs both the network
properties (e.g., vertex degree) and also the identified communities in the net-
work in the visualization process. Figures4 and 5 showed next were obtained
using the Force Atlas 2 [23] method belonging to Gephi.!

As shown in Figs. 4 and 5, the covering obtained using v = 0.25 shows bound-
aries of communities wider than the covering obtained with v = 0.1. Thus, the
communities showed in Fig.5 have more overlapping vertices than communi-
ties showed in Fig. 4. The overlapped vertices are bigger visualized than others
and they are placed in the boundaries of communities. As described before, the
parameter 7y allows the DM from its own knowledge to tight or wide the bound-
aries of communities. In this way, the decision maker has a mechanism to weigh
the importance of lower and upper approximations in the obtained communities.
However, the adjustment of 3 and v has a direct control over the final cover-
ing. Worth noting that our algorithm builds the final covering only using the
information about the communities of the Pareto Set.

Fig. 4. Covering obtained over the obtained synthetic network based on the parameter
values p = 0.1, O, = 0.1N and v =0.1.

! http://gephi.github.io/.
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Fig. 5. Covering obtained over the obtained synthetic network based on the parameter
values ¢ = 0.1, O, = 0.1N and v = 0.25.

5 Conclusions

In this paper, we proposed a new algorithm, named MOOCD-RC, for discovering
overlapped communities through a combination of a multi-objective approach
and Rough Clustering. It is composed of two steps: (a) build the granules of the
indiscernible objects, and (b) build the final covering of network.

In the fist step, MOOCD-RC defined an equivalence relation between each
pair of vertices of the network through the thresholded similarity graph. The
obtained equivalence classes under the indiscernibility relation induce a granule
set which constitutes our initial granularity criterion. We will also use them
to build the final covering of the network. Afterward, in the second steps, the
algorithm built the resulting communities through the Rough Clustering, taking
the k greatest granules as prototypes of the communities; they also represent the
lower approximations inside their own communities.

The MOOCD-RC algorithm was evaluated over synthetic networks in terms
of its accuracy and it was compared against four algorithms of the related work.
From the above experimental results, we can draw the conclusion that MOEA-
OCD and our algorithm have outstanding performances on LFR benchmark
networks in most cases. Moreover, this evaluation showed that MOOCD-RC is
promising and effective for overlapping community detection in complex net-
works. As future work, we would like to make a more automatic adjustment to
the 0 and v parameters.
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