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Abstract. In this work, we have proposed a simple overlapping commu-
nity detection algorithm based on a distributed neighbourhood threshold
method (DNTM). DNTM uses pre-partitioned disjoint communities and
then analyzes the neighbourhood distribution of boundary nodes in dis-
joint communities to detect overlapping communities. It is a form of
seed-based global method since boundary nodes are considered as seeds
and become the starting point for detecting overlapping communities.
Threshold value for each boundary node is used as minimum influence
by the neighbours of a node in order to determine its belongingness
to any community. The effectiveness of the DNTM algorithm has been
demonstrated by testing on fifteen real-world datasets and compared
with seven overlapping community detection algorithms. DNTM out-
performs comparable algorithms with 10 out of 15 datasets and gives
comparable results for the remaining 5 datasets in terms of the extended
modularity Qov measure. Experiments with various disjoint algorithms
on 15 datasets reveal that DNTM with tolerance community detection
(TCD) as a preprocessing algorithm gives the best result.

Keywords: Community detection · Social networks analysis ·
Overlapping communities · Graph clustering

1 Introduction

There are a plethora of methods for detecting overlapping communities in social
networks for both synthetic and real-world datasets starting from [19]. Clas-
sical strategies include: local expansion of seed nodes [20,22], label propaga-
tion [7,13,33], clique-based [26] and ensemble-based methods [3,4] to name a
few. In this paper, we propose a new method based on detecting overlapping
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communities by i) utilizing disjoint communities, and ii) analyzing the neigh-
bourhood distribution of boundary nodes in disjoint communities to detect over-
lapping clusters. Our method is akin to the more recent class of ensemble meth-
ods [3] that uses disjoint methods as a starting point for development of overlap-
ping method. In this paper, we propose a distributed neighbourhood threshold
method (DNTM) which depends on the neighbourhood distribution of boundary
nodes in disjoint communities. The threshold for each boundary node is used as
minimum neighbour influence for a node to belong in any community. DNTM
can be considered as global method since we are not performing any local expan-
sion on a set of initial seed nodes for generating overlapping clusters. Instead,
we are using boundary nodes and exploring the clusters external to the home
clusters of boundary nodes to generate overlapping clusters. It is also a form
of seed-based method since boundary nodes are considered as seeds and become
the starting point for detecting overlapping clusters. There is only a user-defined
maximum threshold (tolerance) criteria to form a neighbourbood. Four disjoint
methods have been considered in this work with the primary method based on
a tolerance community detection (TCD) [15]. The other partitioning methods
include: Louvain [1], Girvan-Newman [10] and Greedy Modularity [5]. Typical
metrics such as Overlapping Normalized Mutual Information (ONMI), Precision,
Recall, or F-measure require ground-truth communities. However, ground-truth
communities are readily available for large real networks. In their absence, com-
puter generated benchmark networks with built-in ground-truth communities,
called synthetic networks such as LFR [19] must be used, to first generate the
ground-truth communities. In this paper, DNTM uses an extended modularity
Qov measure introduced by Nicosia et al. [24] as a performance metric. The effec-
tiveness of the DNTM algorithm has been demonstrated by testing on fifteen
real-world datasets and compared with seven overlapping community detection
algorithms.

The contribution of this paper is a simple algorithm which outperforms com-
parable algorithms with 10 out of 15 datasets and gives comparable results for
the remaining 5 datasets in terms of extended modularity Qov measure. Another
noteworthy feature of DNTM is that no optimization strategy such as satisfying
some fitness function criteria has been used. Experiments with various parti-
tioning methods on 15 datasets reveal that: TCD gives the best result with 7
datasets, Greedy Modularity method gives the best result with 4 datasets and
both Louvain and Girvan-Newman methods with 4 datasets.

Our paper is organized as follows: In Sect. 2, we briefly review some repre-
sentative overlapping community detection algorithms. In Sect. 3, we give a brief
overview of definitions and cluster quality measure used in this paper. In Sect. 4,
we give details of the proposed DNTM algorithm and its complexity. In Sect. 5,
we present experimental results and analysis. Lastly, we give concluding remarks
in Sect. 6.
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2 Related Works

In this section, we briefly review some representative algorithms in terms of
general strategies used by these algorithms.

2.1 Local Expansion

The general strategy is to start with a set of initial nodes as seeds and then
expand to communities based on a fitness function criteria.

OSLOM [20]: Introduced in 2011 by Lancichinetti et al., this method was the
first that detected communities based on their statistical significance that takes
into account different types of graphs, edge direction, edge weights, overlap-
ping communities, network hierarchy and to recognize the absence of commu-
nity structure and/or the presence of randomness in graphs. It is based on a local
expansion and optimization strategy where community expansion is performed
by comparing the statistical significance of clusters defined with respect to a
global null model (which is the configuration model).

LEMON [22]: This algorithm proposed in 2018 by Li et al., is based on the
concepts of seed sets, local spectral diffusion, and local spectra. Here, a subspace
around the initial seed sets called local spectra is explored using a short random
walk also known as local spectral diffusion. Local spectra avoids computation
burden by replacing a large number of singular vectors with short random walks.
The running time of LEMON scales with the size of the community rather than
that of the entire graph and has been tested on large networks.

2.2 Label Propagation

The general strategy is to label every node with a unique value and replace the
node’s label value with that of its most commonly detected neighbour. Once this
process terminates, the nodes having the same label form a community.

COPRA [13]: Introduced in 2010, this method extends the label propagation
algorithm(LPA) method by Raghavan et al. [27] to detect overlapping communi-
ties with a novel termination condition. This method is dependent on parameters
such as node belonging coefficient and maximum number of communities a node
can belong to, and can handle weighted and bipartite graphs. COPRA usually
produces results that are better (in terms of modularity) for large networks.

SLPA [33]: This algorithm is based on speaker-listener mechanism to trans-
fer the information known as labels between the nodes. Each node in this
method maintains a list of labels and a randomly selected label from this list is
propagated further to the node under consideration presently for detecting com-
munities.

DEMON [7,8]: Label propagation algorithm is applied at the core of DEMON
method to merge the locally generated clusters using merging function to obtain
overlapping communities.
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2.3 Ensemble Based

The general strategy here is to leverage disjoint clusters produced by various dis-
joint community detection algorithms to discover the overlapping communities.

MEDOC [4]: Introduced in 2016 by Chakraborty et al., this is the first
ensemble based method for discovering overlapping communities by using meta-
communities created from combining various similar clusters produced by dis-
joint communities detection methods. Further an association matrix which
records the probability of a vertex belonging to a meta-community is utilized to
generate both non-overlapping and overlapping communities.

EnCoD [3]: This method uses various disjoint community detection algorithms
to generate disjoint clusters and further utilize the good qualities of these clusters
to create an ensemble solution. This algorithm uses node membership as a feature
and similarity of node pairs to form a network.

2.4 Others

CPM [26]: Introduce by Gergely Palla et al. in 2005, this classical algorithm is
the first method to detect overlapping communities based on clique-percolation
technique.

NECTAR [6]: It is a node-centric overlapping community detection algorithm
in which the best communities for a given node are found using objective function
and further this node is added to these communities to obtain the overlapping
communities. In this method, Louvain’s local search heuristic approach is gener-
alized to discover overlapping communities. This algorithm tries to maximize the
dynamically chosen objective function (i.e. WOCC and QE ) by testing every
possible existence of each node in it’s neighbouring cluster in order to generate
overlapping communities. All the clusters with a maximum value of objective
function are considered to obtain the overlapping communities.

IEDC [14]: This algorithm provides an integrated framework for discovering
both overlapping and non-overlapping communities. It uses a node-based crite-
ria with a probabilistic model. It includes computation of internal associations
(non-overlapping communities), computation of external associations (overlap-
ping communities) using interaction matrix and a community propagation prob-
ability of its neighbours.

3 Preliminaries

Here, we give a brief overview of definitions and cluster quality measure used in
this paper.

Undirected Graph: A graph G is defined as a pair of (V,E) where V is a
set consisting all the nodes and E is set consisting all the edges E ⊆ V × V .
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Undirected graphs are such graphs in which if an edge (x, y) ∈ E then edge
(y, x) must also be in E. The degree of a node v is defined as the number of
edges containing v. Two nodes are adjacent if they share a common edge.

Path: A path is composed of a series of nodes P = (v1, v2, . . . , vn) ∈ V n where
∀i, 1 ≤ i < n, vi is adjacent to vi+1. The path length of P is measured as
n − 1 where n is the total number of nodes in path P . It is also measured as
the number edge(s) in that path. The path with minimum length (or number of
edge(s)) from a source node s to a destination node d is called the shortest path
sp from s to d.

Neighbourhood of a Node: The neighbourhood of a node x for a graph
G = (V,E) is defined as:

Nr(x) =def {y ∈ V : dist(x, y) < ε} (1)

where

dist(x, y) =

{
∞ if no sp exists
|sp| else

(2)

ε is a user-defined positive real threshold value, sp is the shortest path from x
to y and |sp| is the number of edge(s) in sp. A breadth first search is used for
traversing the graph in order to find the neighbourhood of any given node.

Neighbourhood Cluster of a Node: Let C = {C1, C2, . . . Cn} be a set of
disjoint clusters that cover the graph G where Ci = {v1, v2, . . . vn} is a cluster
or community such that vi ∈ V . Let x ∈ Cj where Cj is the home cluster, then

NC(x) =def {Ci ∈ C \ Cj : ∃ y ∈ Ci ∧ y ∈ Nr(x)} (3)

In Fig. 1, the neighbourhood cluster(s) for the green node belonging to cluster
C1 are: clusters C2 and C3. Note, for the green node, cluster C1 is considered as
the home cluster.

Distributed Neighbourhood Threshold: Equaion 4 defines this threshold
as the ratio of total number of the neighbours of a given node v over the total
number of neighbourhood clusters of v plus the home cluster of v.

Dt(v) =def

⌊ |Nr(v)|
|NC(v)| + 1

⌋
(4)

Overlapping Candidate Node: Let v ∈ Cj , then v is a candidate overlapping
node if it satisfies the following equation:

Ocn(v) =def NC(v) 	= ∅ (5)

Overlapping Node: Node v is a overlapping node if for any Ci ∈ NC(v) it
satisfies the following equation:

ON(v) =def Ocn(v) ∧ (Dt(v) ≤ |{y : y ∈ Nr(v) ∧ y ∈ Ci}|) (6)
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Example 1. In Fig. 1, the green node in cluster C1 is an overlapping candidate
node since it has neighbours in clusters C2 and C3. All nodes that have neigh-
bours outside their home clusters are considered as overlapping candidate nodes.
Using Eq. 4, |Nr(green node)| = 8 and |NC(green node)| = 2, hence Dt(v) = 2.
In other words, Dt(v) is considered as the minimum threshold value for a node v
to be classified as overlapping node. As shown in Fig. 1 green node shares 3 edges
with C3 which also means |Nr(green node)| in C3 is 3. Since cluster C3 includes
neighbours of green node and Dt(green node) meets the threshold requirement,
the green node will be shared with C3 as shown in Fig. 2.

Fig. 1. Overlapping candidate node
(Color figure online)

Fig. 2. Sample overlapping clusters
(Color figure online)

Cluster Quality Measure: Extended Modularity: In this work we have
used the extended modularity Qov measure introduced by Nicosia in [24,25]
given in Eq. 7 where V is the set of nodes, |V | represents the number of nodes,
C represents the set of overlapping cluster, m is the total number of edges and
Ai,j is the adjacency matrix for the graph. We have chosen to use this measure
since it does not require the ground-truth to measure the quality of the generated
clusters. Generally, good quality overlapping clusters have higher Qov value. The
value of Qov will be 0 when only one cluster is obtained with all the nodes in it.
Details about various coefficients in Eq. 7 can also be found in [25].

Qov =
1
m

∑
c∈C

∑
i,j∈V

[
βl(i,j),cAi,j −

βout
l(i,j),ck

out
i βin

l(i,j),ck
in
j

m

]
(7)

βin
l(i,j),c =

∑
i∈V F (αi,c, αj,c)

|V | (8)

βout
l(i,j),c =

∑
j∈V F (αi,c, αj,c)

|V | (9)

In overlapping communities, each node can belong to multiple communities
but with different strengths of belonging. An array of such belonging factor
[αi,1, αi,1, αi,1, .......αi,|C|] is calculated and allotted to each node i in the graph G.
The strength of node i belonging to community c is depicted by coefficient αi,c.
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Since the belonging coefficient for each node is already defined, it is also possible
to define the belonging coefficient to each community for edges incoming to or
outgoing from a node. Belonging coefficient of edge l = (i, j) with source node i
and target node j to community c is represented by function βl,c . Further, the
belonging coefficient for link l(i, j) pointing to a node going into the community
c is represented by βin

l(i,j),c and given by Eq. 8 similarly the belonging coefficient
for link l(i, j) pointing to a node going out of the community c is obtained by
using Eq. 9 and is represented by βout

l(i,j),c. Extended Modularity measures for
overlapping cluster depends on F (αi,c, αj,c) which is defined in the Eq. 10

F (αi,c, αj,c) =
1

(1 + e−f(αi,c))(1 + e−f(αj,c))
(10)

where f(αi,c) is a simple linear scaling function given in Eq. 11 . The value of p
is set to 30 in [25]. Generally, good quality overlapping clusters have higher Qov

value. The value of Qov will be 0 when only one cluster is obtained with all the
nodes in it.

f(x) = 2px − p, p ∈ R (11)

Datasets: Various sized real-world datasets were used in this study: Karate [34],
Dolphin [23], Lesmis [16], Football [10], Polbooks [17], Jazz [11], Power grid [31],
Durgnet [32], Highschool [18], Netscience [29], C.elegans [9], Bible-names [18],
Protein [18], Internet-Route [21] and PGP [2].

4 Overlapping Community Detection Algorithm: DNTM

In Fig. 3, the flow of the DNTM algorithm is given where DNTM takes crisp
partitioned clusters as input irrespective of the algorithm used. We first generate
non-overlapping clusters and use these clusters to examine all such nodes which
have neighbours in other clusters to find overlapping nodes. Once an overlapping
node is found, we update the respective clusters by including this overlapping
node to obtain the resultant overlapping clusters.

Fig. 3. Flow diagram of DNTM Algorithm

The main steps of DNTM algorithm are as follows: i) generate non-
overlapping clusters, ii) find candidate overlapping nodes using Eq. 5, iii) cal-
culate distributed neighbourhood threshold using Eq. 4, iv) filter overlapping
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Algorithm 1: Find Overlapping Clusters
Input: G // Input graph.

L // List of non-overlapping clusters.
ε // Distance Threshold.

Output: {OC1,OC2,OC3,......OCn} // List of Overlapping clusters

1 procedure findOverlapCluster(G, L, ε)
2 NCdic ← ∅
3 Ldic ← ∅
4 Lo ← ∅
5 cid ← 0
6 for each cluster C ∈ L do
7 cid ← cid + 1
8 for each node v ∈ C do
9 NCdic[v] ← cid

10 Ldic[cid] ← C
11 CoNdic ← ∅
12 NrNdic ← ∅
13 for each cluster C ∈ L do
14 for each node v ∈ C do
15 Nr(v) ← BFS(G, v, ε)
16 NrNdic[v] ← Nr(v)
17 Nr(v) ← Nr(v) − C
18 if Nr(v) �= ∅ then
19 CoNdic[v] ← Nr(v)
20 for each v ∈CoNdic.keys() do
21 NrCdic ← ∅
22 Nr(v) ← CoNdic[v]
23 for each vertex vn ∈ Nr(v) do
24 cid ← NCdic[vn]
25 NrCdic[cid] ← {vn}
26 NC(v) ← NrCdic.keys()

27 Dt(v) ← |NrNdic[v]|−1
|NC(v)|+1

28 for each clusterId cid ∈ NC(v) do
29 if Size(NrCdic[cid]) ≥ Dt(v) then
30 Ldic[cid] ← Ldic[cid] ∪ v
31 for each clusterId cid ∈ Ldic.keys() do
32 Lo.append(Ldic[cid])
33 return Lo

nodes using Eq. 6, and v) update the clusters with overlapping nodes to obtain
the resultant overlapping clusters. Note, DNTM takes crisp partitioned clusters
as input, irrespective of the algorithm used (see Fig. 6 and 7).

Algorithm 1 includes the following data structures: list of overlapping clus-
ters Lo is used to store generated overlapping clusters, Node-Cluster Dictionary
NCdic to store cluster id of each node, Cluster-Node Dictionary Ldic to store nodes
in each cluster, Neighbour Node-Cluster Dictionary NrCdic to store cluster id of
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neighbourhood nodes, Overlapping-Candidate-Node Dictionary CoNdic to store
overlapping candidate nodes and its neighbours Nr from neighbourhood cluster
NC, Node-Neighbour Dictionary NrNdic to store node and its neighbours.

4.1 Time Complexity

In DNTM algorithm for a graph G(V,E), the time taken for pre-processing the
disjoint clusters is O(|L|.|C|) which is less than or equal to O(|V |) where |L| is the
number of disjoint clusters, |C| represents the number of nodes in a cluster C and
|V | represent total number of nodes in graph G. Running time of BFS is O(bd)
where b is branching factor and d is maximum depth. In DNTM, we consider
neighbours at depth 1, so time taken is O(b). To find overlapping candidate
nodes, the time consumed is O(|L|.|C|).O(b) = O(|V |.b). To filter overlapping
nodes, computation time is O(|OCN |).O(|Nr| + |NrCdic|) where |OCN | is the
number of overlapping candidate nodes, |Nr| is the number of neighbourhoods
in other clusters and |NrCdic| is the number of neighbourhood clusters. Since
|Nr| ≥ |NrCdic|, so the computation time will be O(|OCN |.|Nr|). Finally it
takes O(|L|) time to generate overlapping clusters. So the obtained final time
complexity is O(|V |.b + |OCN |.|Nr|)

5 Experiments and Results

To examine the performance of DNTM, 15 real world data-sets were used and
compared with the following overlapping communities detection algorithms:
CPM [26], OSLOM [20], COPRA [13], SLPA [33], Node Perception [30],
DEMON [7,8] and CONGO [12] with h = 2 and h = 3. Except for OSLOM
and COPRA, all other algorithms were taken from CDlib [28] Python pack-
age. Table 1 gives the results of our experiments where DNTM (TCD) is the
proposed algorithm which uses TCD method to generate non-overlapping clus-
ters with ε = 2 with source code made available by the authors. TCD method
relies on a tolerance relation where a tolerance class represents members of the
same community and uses an objective function based on two well-known quality
functions, modularity and coverage.

Since most of the algorithms have a non-unique output for Qov for each
execution, hence these algorithms were executed 10 times and the average of the
5 best scores for Qov was used in our reporting shown in Table 1 and bold values
represent the best score for each dataset. In additon, the number of clusters
generated by majority of the algorithms is used as input for those algorithms
that require number of clusters as input.

Based on the results in Table 1 and Fig. 4 and Fig. 5, we can observe that
the proposed DNTM algorithm outperforms comparable algorithms with 10 out
of 15 datasets and gives comparable results for the remaining 5 datasets. The
quality of generated overlapping clusters from DNTM is greatly affected by the
number of disjoint clusters passed as input, generated by the initial disjoint
algorithm. From Eq. 4 it can be observed that Dt has an inverse relation with
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Table 1. Extended Modularity (Qov) values

Datasets CPM OSLOM COPRA SLPA NodePer. DEMON CONGO CONGO DNTM

h = 2 h = 3 (TCD)

Karate 0.51 0.7099 0.7228 0.5405 0.1944 0.38 0.3423 0.488 0.7282

Dolphins 0.66 0.7426 0.7434 0.7231 0.1947 0.457 0.4085 0.134 0.734

Lesmis 0.586 0.6908 0.7156 0.7772 0.3259 0.385 0.315 0.6586 0.755

Football 0.44 0.6674 0.6962 0.7052 0.072 0.353 0.4332 0.4955 0.75

Polbooks 0.786 0.8263 0.8226 0.8286 0.142 0.279 0.3468 0.4945 0.81

Jazz 0.096 0.5142 0.6626 0.7401 0.0438 0.382 0.24 0.22 0.6904

Power 0.15 0.3887 0.4842 0.6363 0.0970 0.077 0.8312 0.7878 0.90

Durgnet 0.207 0.1697 0.7664 0.6255 0.1355 0.155 0.235 0.235 0.7853

Highschool 0.056 0.6762 0.7064 0.6581 0.144 0.056 0.4612 0.7015 0.755

Netscience 0.0 0.7862 0.8444 0.8353 0.512 0.436 0.7547 0.7314 0.953

C.elegans 0.217 0.4551 0.212 0.4346 0.080 0.0279 0.07426 0.10357 0.61

Bible names 0.425 0.2965 0.4025 0.3657 0.0938 0.013 0.19 0.160 0.6424

Protein 0.16 0.1784 0.363 0.7402 0.1015 0.140 0.57221 0.5858 0.7958

Internet route 0.245 0.3475 0.102 0.63 0.0213 0.0045 0.1467 0.25482 0.5273

PGP 0.568 0.5364 0.775 0.737 0.2523 0.2024 0.5607 0.5563 0.7963

Fig. 4. Part 1: Qov results with 7
datasets

Fig. 5. Part 2: Qov results with 8
datasets

number of communities. Dt is highly sensitive and dependent on the number
of communities. As a result, increasing number of communities, will decrease
the value of Dt, which will in turn affect the overlap between the communities.
In our experiments, the number of communities, range from 2 to 109. We also
observed that in general, for the datasets, where the number of communities is
greater than 4, DNTM achieves the best result. Also, DNTM depends on the
boundary nodes in the disjoint clusters as well their internal and external links
(edges). If the number of external links of a node is extremely less as compared
to its internal links, this node is less likely to qualify the condition in Eq. 6 to be
classified as an overlapping node. Most algorithms use an internal objective func-
tion to obtain good quality clusters which entails parameter selection. DNTM
does not have this limitation as it does not use an internal objective function
and the major computation is done for overlapping candidate nodes which is
comparatively less than |V |. Hence DNTM is computationally efficient. Table 2
gives comparative results for Qov with the proposed DNTM algorithm where the
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input (disjoint clusters) was obtained using Louvain [1] DNTM (LN), Girvan-
Newman [10] DNTM (GN) and Greedy Modularity [5] DNTM (GD) methods
on all the datasets. It can be observed that DNTM (TCD) is giving best results
in 7 out of 15 datasets and comparable with the other data sets (either second
best or third best).

Table 2. DNTM results with different partitioning methods

Datasets DNTM (TCD) DNTM (LN) DNTM (GN) DNTM (GD) Best in DNTM

Karate 0.7282 0.615 0.7185 0.5861 TCD

Dolphins 0.734 0.6193 0.7232 0.7359 GD

Lesmis 0.755 0.6644 0.2689 0.7034 TCD

Football 0.75 0.6563 0.7777 0.6493 GN

Polbooks 0.81 0.8138 0.8090 0.825 GD

Jazz 0.6904 0.7064 0.0379 0.7016 LN

Power 0.90 0.9513 0.8709 0.9511 LN

Durgnet 0.7853 0.7299 0.8654 0.7907 GN

Highschool 0.755 0.5909 0.5964 0.7329 TCD

Netscience 0.953 0.9154 0.8674 0.9256 TCD

C.elegans 0.61 0.3473 0.0756 0.5035 TCD

Bible names 0.6424 0.4156 0.1 0.5815 TCD

Protein 0.7958 0.8076 0.6095 0.8171 GD

Internet route 0.5273 0.4305 0.01519 0.4375 TCD

PGP 0.7963 0.8975 0.2042 0.9082 GD

Fig. 6. DNTM clustering using dis-
joint clusters generated from Girvan-
Newman method on the Karate dataset

Fig. 7. DNTM clustering using dis-
joint clusters generated from Louvain
method on the Karate dataset

Figure 6 and 7 show overlapping clusters generated with the proposed DNTM
algorithm where the input (disjoint clusters) was obtained using Louvain [1] and
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Girvan-Newman [10] methods on the Karate dataset. In Fig. 6, three overlap-
ping nodes [3, 14, 20] were detected, whereas using TCD as input method, five
overlapping nodes [9, 10, 20, 29, 31] were detected. In Fig. 7, 12 overlapping nodes
were detected including a hierarchical cluster where nodes [28, 29] are present in
3 clusters.

6 Conclusion and Future Work

In this paper, we have proposed a new overlapping community detection algo-
rithm (DNTM) based on: i) utilizing disjoint communities produced by commu-
nity detection algorithm(s), and ii) analyzing the neighbourhood distribution of
boundary nodes of discovered disjoint communities to detect overlapping clus-
ters. The effectiveness of the DNTM algorithm has been demonstrated by testing
on fifteen real-world datasets and compared with seven overlapping community
detection algorithms in terms of an extended modularity Qov measure. Three
other well-known disjoint methods have been considered in this work with the
primary method based on a tolerance community detection. DNTM outperforms
comparable algorithms with 10 out of 15 datasets and gives comparable results
for the remaining 5 datasets. Experiments with various disjoint algorithms on
15 datasets reveal that DNTM with TCD as a preprocessing algorithm gives the
best result. Another noteworthy feature of DNTM is that no any optimization
strategy has been used during or after the clustering process. Future work with
DNTM will include: i) considering an ensemble mechanism to use various dis-
joint methods to select the best disjoint clusters in terms of quality and number
of clusters as a preprocessing step to the DNTM algorithm, ii) defining an inter-
nal objective function to obtain good quality clusters, iii) testing and analyzing
the behavior of DNTM on synthetic networks and iv) implementing a parallel
DNTM to be able to handle datasets with larger nodes and communities.
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