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Abstract. Fuzzy cognitive maps are recurrent neural networks, where
the neurons have a well-defined meaning. In certain models, some neu-
rons receive outer input, while other neurons produce the output of the
system. According to this observation, some neurons are categorized as
input neurons and the others are the state neurons and output neurons.
The output of the system is provided as a limit of an iteration process,
which may converge to an equilibrium point, but limit cycles or chaotic
behaviour may also show up. In this paper, we examine the existence
and uniqueness of fixed points for two types of input-output fuzzy cog-
nitive maps. Moreover, we use network-based measures like in-degree,
out-degree and connectivity, to express conditions for the convergence of
the iteration process.

Keywords: Fuzzy cognitive map · Input-output fuzzy cognitive map ·
Stability · Convergence · Equilibrium point

1 Introduction

Fuzzy cognitive maps (FCMs) are decision support tools, based on the recurrent
neural network modelling method. The essence is that the neurons have well-
defined meaning, they represent specific factors or characteristics of the modelled
system [14]. The structure of a fuzzy cognitive map is a weighted, directed graph.
The weights are assigned to the edges from the interval [−1, 1] to express the
strength and direction of causal connections. The current states of the neurons
(which are called concepts in FCM literature) are also described by values from
the [0, 1] interval (or from the interval [−1, 1], see for example [15]). These are
the activation values of the concepts [12].

The system can be described by the set of concepts (C1, C2, . . . , Cn); the
current activation values of the concepts (A1, A2, . . . , An); the weight matrix
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W which assigns weight wij to each edge connecting the nodes Ci and Cj ,
expressing how strongly influenced is concept Ci by concept Cj . The sign of wij

indicates whether the relationship between Cj and Ci is direct or inverse. So
matrix W represents the weighted causal connections between the concepts. A
transformation (or transfer, or threshold) function f : R → [0, 1] calculates the
activation value of concepts at every time step of the iteration and keeps the
activation values in the allowed range (sometimes a function f : R → [−1, 1] is
applied).

The iteration rule which calculates the values of the concept at every step
may or may not include self-feedback. In general form it can be written as

Ai(k) = f

⎛
⎝

n∑
j=1,j �=i

wijAj(k − 1) + diAi(k − 1)

⎞
⎠ (1)

where Ai(k) is the value of concept Ci at discrete time k, wij is the weight of
the connection from concept Cj to concept Ci and 0 ≤ di ≤ 1 expresses the
possible self-feedback. If di = 0, then there is no self-feedback. If we include the
dis into the diagonal of weight matrix W , the iteration equation can be rewritten
in more compact style:

Ai(k + 1) = f

⎛
⎝

n∑
j=1

wijAj(k)

⎞
⎠ = f(wiA(k)), (2)

where wi = [wi1, . . . , win] is the ith row of W and A(k) = [A1(k), . . . , An(k)]T

is the concept vector after k iterations. We apply dot product between them, so
wiA

(k) is a real number.
Moreover, if we couple the coordinates of the concept vector together and

denote by G the mapping R
n → R

n that generates the concept vector A(k + 1)
from A(k), then we have that:

A(k + 1) =

⎡
⎢⎣

A1(k + 1)
...

An(k + 1)

⎤
⎥⎦ =

⎡
⎢⎣

f(w1A(k))
...

f(wnA(k))

⎤
⎥⎦ = G(A(k)). (3)

The iteration rule is repeated until either the FCM converges to an equilibrium
state (fixed point) or the maximal number of iterations is reached. Mathemat-
ically, the FCM may converge to a fixed point, may arrive to a limit cycle or
shows chaotic pattern [4,10,11].

Sufficient mathematical condition for the existence and uniqueness of fixed
points of a special class of FCMs has been introduced in [2], expressed by the sum
of the squared elements of W . This result was later generalized in [4]. In [7], the
authors examined the problem of unique fixed points taking into consideration
only the topology of the FCM, but not the weights. They pointed out that if the
parameter of the sigmoid transfer function is small enough, then the FCM has



Convergence of Input-Output FCMs 451

exactly one fixed point. In [8] the global asymptotic stability of FCMs has been
discussed via Lyapunov method.

Recently, various generalizations of FCMs have been introduced [1,3,9],
where some concepts (neurons, nodes of the graph) are considered as inputs
to the system, while some other (or all of the remaining) concepts form the out-
put of the system. This article aims to provide sufficient converge conditions for
these models, based on the weight structure and the parameter(s) of the transfer
(threshold) function(s).

The rest of the paper is organized as follows. In Sect. 2 we recall the most
important mathematical tools and notions applied in the proofs of our findings.
In Sect. 3, we examine the behaviour of the generalized FCM model introduced in
[1] and [3]: sufficient conditions for the existence and uniqueness of fixed points
are provided. Moreover, we show that under certain mathematical conditions
different input values may produce different steady-state concept vectors and
different output values. In Sect. 4, sufficient condition for the convergence of
FCM model introduced in [9] is given, and finally in Sect. 5 we summarize the
main contributions of the paper.

2 Mathematical Background

In this section, we recall the most important definitions and results applied in the
subsequent sections. First we recall the definition of contraction mapping [13]:

Definition 1. Let (X, d) be a metric space. A mapping G : X → X is a con-
traction mapping or contraction if there exists a constant c (independent from
x and y), with 0 ≤ c < 1, such that

d (G(x), G(y)) ≤ cd(x, y). (4)

The notion of contraction is related to the distance metric d applied. It may
happen that a function is a contraction w.r.t. one distance metric, but not a
contraction w.r.t. another distance metric. The iterative process of an FCM may
end at an equilibrium point, which is a so-called fixed point.

Let G : X → X, then a point x∗ ∈ X such that G(x∗) = x∗ is a fixed
point of G. The following theorem provides sufficient condition for the existence
and uniqueness of a fixed point [13]. Moreover, if mapping that generates the
iteration is a contraction, it ensures the stability of the iteration.

Theorem 1 (Banach’s fixed point theorem). If G : X → X is a contraction
mapping on a nonempty complete metric space (X, d), then G has only one fixed
point x∗. Moreover, x∗ can be found as follows: start with an arbitrary x0 ∈ X
and define the sequence xn+1 = G(xn), then limn→∞ xn = x∗.

Definition 2. Let x∗ be a fixed point of the iteration xn+1 = G(xn). x∗ is
locally asymptotically stable if there exist a neighborhood U of x∗, such that for
each starting value x0 ∈ U we get that

lim
n→∞ xn = x∗. (5)
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If this neighborhood U is the entire domain of G, then x∗ is a globally asymp-
totically stable fixed point.

Corollary 1. If G : X → X is a contraction mapping on a nonempty com-
plete metric space (X, d), then its unique fixed point x∗ is globally asymptotically
stable.

The following property of the sigmoid function will be applied: The derivative
of the sigmoid function f : R → R, f(x) = 1/(1 + e−λx), (λ > 0) is bounded by
λ/4. Moreover, for every x, y ∈ R the following inequality holds

|f(x) − f(y)| ≤ λ/4 · |x − y| . (6)

Basic properties of the spectral radius of a matrix M [6]:

– The spectral radius of matrix M ∈ R
n×n is given by

ρ(M) = max {|λi| : λi eigenvalue of M} (7)

We should note that the spectral radius itself is not a norm.
– ρ(M) = inf {‖M‖ : ‖ ∗ ‖ is a matrix norm on R

n×n}
– Let matrix M have spectral radius ρ(M). If ε > 0 is any positive number,

then there exists a matrix norm ‖ · ‖, such that ρ(M) ≤ ‖M‖ ≤ ρ(M) + ε.
– If for matrices M1, M2 the entry-wise inequality 0 ≤ M1 ≤ M2 holds, then

ρ(M1) ≤ ρ(M2).

3 Input-Output Fuzzy Cognitive Maps

In classical fuzzy cognitive map modelling, the concepts have their initial acti-
vation values and the final activation values are computed as the limit of the
iteration (if the limit exists). In some cases, few features of the modelled system
should not change during the simulation. From the FCM point of view, it means
that values of some concepts should not change, but must remain the same for
all steps of the iteration. This fact requires the re-thinking of the FCM-based
modelling.

Based on the well-known discrete time linear time-invariant model:

x(k + 1) = Ax(k) + Bu(k)
y(k + 1) = Cx(k) + Du(k) (8)

Groumpos, Anninou et al. introduced the following FCM model [1,3]:

x(k + 1) = f (WAx(k) + WBu(k))
y(k + 1) = f (WCx(k) + WDu(k)) (9)

where u ∈ R
r, x ∈ R

p, y ∈ R
m. The matrices are extracted from the weight

structure of the FCM:
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– WA describes the dynamics between the states (x);
– WB describes the role of the inputs (u);
– WC describes the role of x in the output (y);
– WD describes the contribution of u to the output.

The following block scheme defines the weight matrix. The order of concepts:
input, state, output (vertically and horizontally). Of course it is a bit redundant
modell, since a state neuron can have input and state can be an output, too, but
for the analogy with discrete linear systems we preserve these categories.

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

WB WA 0

WD WC 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

The activation vector A ∈ R
r+p+m then A = [u, x, y]T . The updating process

is determined by the mapping A(k+1) = G(A(k)), where G : Rr+p+m → R
r+p+m

is defined elementwise:

– Input variables: if 1 ≤ i ≤ r, then Ai = ui (constant input signal for every
input channel);

– State variables: if r + 1 ≤ i ≤ r + p, then

Ai(k + 1) = f(wAix(k) + wBiu) = f(wiA(k))

– Output variables: if r + p + 1 ≤ i ≤ r + p + n, then

Ai(k + 1) = f(wCix(k) + wDiu) = f(wiA(k))

Consequently,

A(k + 1) = [A1, . . . , Ar︸ ︷︷ ︸
input

, Ar+1, . . . , Ar+p︸ ︷︷ ︸
state

, Ar+p+1, . . . , Ar+p+m︸ ︷︷ ︸
output

]T

= [A1, . . . , Ar︸ ︷︷ ︸
u

, f(wAix(k) + wBiu)︸ ︷︷ ︸
r+1≤i≤r+p

, f(wCix(k) + wDiu)︸ ︷︷ ︸
r+p+1≤i≤r+p+m

]T (11)

3.1 Convergence Condition for the Input-Output FCM

In this subsection, a sufficient condition for the existence and uniqueness of fixed
points of input-output FCMs will be stated. The fixed point is unique in the
sense that for a given input, the FCM reaches the same fixed point (activation
vector) regardless of the initial values of the other (state and output) concepts.
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The condition is based on the Jacobian matrix (matrix of the partial derivatives)
of the mapping G generating the iteration and the on the tight upper bound of
the derivative of the sigmoid function.

The Jacobian of mapping G is the matrix JG(i, j) = ∂Gi

∂Aj
, namely

– for input variables (u):

JG(i, j) =
{

1 if i = j
0 otherwise

– for state variables (x):

JG(i, j) =
{

λ · wBijf(wiA)(1 − f(wiA)) , if (i, j) ∈ (state, input)
λ · wAijf(wiA)(1 − f(wiA)) , if (i, j) ∈ (state, state)

– for output variables (y):

JG(i, j) =
{

λ · wDijf(wiA)(1 − f(wiA)) , if (i, j) ∈ (output, input)
λ · wCijf(wiA)(1 − f(wiA)) , if (i, j) ∈ (output, state)

Since the input terms are constant values (do not change during the itera-
tion), the iteration is convergent if and only if the dynamical terms generate a
convergent sequence. The dynamics of this part is governed by the submatrix

W ′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

WB WA

WD WC

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

The Jacobian of G belonging to this submatrix is

J ′
G = λ · diag[f(wiA)(1 − f(wiA))] · W ′ (13)

Since for any A and wi, f(wiA)(1 − f(wiA)) ≤ 1/4, the spectral radius of the
Jacobian at any point:

ρ(J ′
G) ≤ ρ

(
λ

4
W ′

)
=

λ

4
ρ(W ′) (14)

If the spectral radius over the whole space is less than one, then the iteration
converges to a unique fixed point. So we can conclude the following theorem:

Theorem 2. Consider the input-output FCM model described by Eq. 9 with
a constant input vector u. Let W ′ be the matrix constructed by matrices
WA,WB ,WC and WD, according to Eq. 12. If

ρ(W ′) <
4
λ

(15)

then the iteration converges to a unique fixed point, regardless of the initial acti-
vation values of the state and output concepts.
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The spectral radius of a matrix is less than any norm of this matrix, i.e.
ρ(W ′) ≤ ‖W ′‖. It means that if we express a condition for convergence to a
unique stable equlibrium point using any norm of W ′, then we get weaker theo-
rem. Nevertheless, in some cases a weaker a condition gives more comprehensible
explanation.

Remark 1. We have concluded that if ρ(W ′) < 4
λ , then the FCM has exactly

one fixed point, i.e. the limit of the iteration process is the same, regardless to
the initial values of non-input variables. It also means that this fixed point is
globally asymptotically stable.

3.2 Further Convergence Conditions

In this subsection, we prove other conditions for the convergence of input-output
FCMs. Although these conditions are weaker, they might be useful, since they
are directly based on the weight structure of the FCM. First, we recall some
definitions about the structure of the network.

Definition 3. The weighted in-degree of concept Cj equals the sum of the abso-
lute values of the weights of in-coming edges:

degin
j =

n∑
i=1

|wij | (16)

which is the sum of the absolute values of the entries of the jth column of W .

Definition 4. The weighted out-degree of concept Ci equals the sum of the abso-
lute values of the weights of out-going edges:

degout
i =

n∑
j=1

|wij | (17)

which is the sum of the absolute values of the entries of the ith row of W .

Although usually not considered graphically as a real edge, but self-feedback
means self-loop in the graph. So if self-feedbacks are applied in the iteration,
then the weights of the feedback are counted in the in-degree and the out-degree,
too. It is the reason that we did not exclude i = j from the summations above.

Definition 5. The connectivity of an FCM is the ratio of the number of con-
nections between concepts to the maximum number of such possible connections.

In some sense, connectivity measures the ‘density’ of the network. If self-feedback
is allowed, then the maximum number of connections is n2, if not, then the
maximum number of connections is n(n − 1).

Definition 6. The weighted connectivity of an FCM is the ratio of the sum
of absolute values of weights of connections between concepts to the maximum
number of such possible connections.
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If self-feedback is allowed, then the weighted connectivity is

Conw =

∑n
i=1

∑n
j=1 |wij |

n2
(18)

If self-feedback is not allowed, then the weighted connectivity is

Conw =

∑n
i=1

∑n
j=1 |wij |

n(n − 1)
(19)

Theorem 3. Let λ be the parameter of the sigmoid threshold function applied for
every concept. If the maximal in-degree of the FCM (including possible feedback)
is less than 4/λ, then the FCM has one and only one fixed point.

Proof. Using the definition of in-degree:

max
1≤j≤n

degin
j = max

1≤j≤n

n∑
i=1

|wij | = ‖W‖1 (20)

Since ‖W‖1 ≥ ρ(W ), if ‖W‖1 < 4/λ, then ρ(W ) < 4/λ, which ensures the
convergence to a unique fixed point.

Theorem 4. Let λ be the parameter of the sigmoid threshold function applied for
every concept. If the maximal out-degree of the FCM (including possible feedback)
is less than 4/λ, then the FCM has one and only one fixed point.

Proof. The proof goes similarly to the previous one, but instead of 1-norm we
use the infinity norm.

max
1≤i≤n

degout
i = max

1≤i≤n

n∑
j=1

|wij | = ‖W‖∞ (21)

As in the previous case, if ‖W‖∞ < 4/λ, then ρ(W ) < 4/λ, which ensures the
convergence to a unique fixed point.

Theorem 5. Let λ be the parameter of the sigmoid threshold function applied
for every concept. If the weighted connectivity (Conw) of the FCM small enough,
namely

1. if self-feedback is allowed:

Conw <
4

λn2
, (22)

2. if self-feedback is not allowed:

Conw <
4

λn(n − 1)
, (23)

then the FCM has one and only one fixed point.
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Proof. Consider the following entry-wise matrix norm:

n∑
i=1

n∑
j=1

|wij | (24)

(Unfortunately, the usual notation of this norm is ‖∗‖1, which is confusing, since
the 1-norm has the same notation.) We know that

ρ(W ) ≤
n∑

i=1

n∑
j=1

|wij | (25)

So, if
∑n

i=1

∑n
j=1 |wij | < 4/λ, then ρ(W ) < 4/λ.

Consequently, if
λ

4

n∑
i=1

n∑
j=1

wij < 1, then the mapping is a contraction. It means

that the iteration converges to a unique fixed point, regardless to the initial
value. Rearranging this inequality and division both sides by n2 ( or n(n − 1))
completes the proof.

The direct practical usability of this result is very limited, since it gives very weak
condition. Nevertheless, it has an important mathematical statement: extremely
weakly connected fuzzy cognitive maps always produce simple behaviour. Of
course, the notion ‘weakly’ depends on n and λ.

3.3 Different Input - Different Output?

Under certain circumstances, classical FCMs may converge to the same equi-
librium state (fixed point) from completely different initial values. This prop-
erty is advantageous in some applications, for example, it ensures the system’s
robustness against noise, while it is not useful for example in pattern recognition
problems. In this subsection, we examine input-output FCMs from this point of
view.

Let us assume that the inputs are u1 and u2, and the iteration converges
to a fixed point in both cases. Let’s denote these fixed points by A∗

1 and A∗
2,

respectively. According to our assumption, both scenario lead to a steady state,
i.e.:

A∗
1 = [u1, x

∗
1, y

∗
1 ]

T ∈ R
r+p+m

A∗
2 = [u2, x

∗
2, y

∗
2 ]

T ∈ R
r+p+m (26)

Consequently, the steady state equations hold for [u1, x
∗
1, y

∗
1 ]

T and [u2, x
∗
2, y

∗
2 ]

T :

x∗
1 = f (WAx∗

1 + WBu1) x∗
2 = f (WAx∗

2 + WBu2)
y∗
1 = f (WCx∗

1 + WDu1) y∗
2 = f (WCx∗

2 + WDu2) (27)
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Let’s assume, that u1 �= u2, but x∗
1 = x∗

2. From the equations and from the
monotonicity of f we have

WAx∗
1 + WBu1 = WAx∗

2 + WBu2 (28)

Rearranging the equation yields:

WA(x∗
1 − x∗

2) = WB(u2 − u1) (29)

According to our assumption, the left hand side is zero:

0 = WB(u2 − u1) (30)

Since u1 �= u2, this equality holds if and only if u2 − u1 lies in the null-space of
WB . If WB is of full rank, then dimKerWB = 0, so every different input value
generates different steady-state values (KerWB denotes the null-space, a.k.a.
kernel of WB). When dim KerWB �= 0, and u1 − u2 ∈ KerWB , then u1 and u2

generate the same equilibrium state. Else, when u1−u2 /∈ KerWB , they produce
different x∗

1 and x∗
2. Similar arguments hold for y∗

1 and y∗
2 . y∗

1 = y∗
2 implies that

u2 −u1 lies in the null-space of WD, but there are infinite number of cases when
u1 − u2 /∈ KerWD, and in these cases u1 �= u2 yields y∗

1 �= y∗
2 .

4 Hybrid Fuzzy Cognitive Maps

An other input-output model has been introduced by Napoles et al. [9] under the
name hybrid FCM, with the following more general and highly flexible sigmoid
threshold function defined for the ith concept :

fi(x) = li +
ui − li

1 + e−λi(x−hi)
(31)

The topology of the proposed neural system is comprised of r input neurons
and m output neurons, so there are no distinct inner state neurons. The weight
matrix W is composed of two submatrices WI and WO. The first one contains
the connections between the input concepts, while the second one contains the
weights connecting the input neurons with the output ones. There are no con-
nections from output neurons to input neurons.

Comparing this model to the previous one, we can observe that

– here is no difference between input and state concepts;
– inputs do not act directly on the output;
– the transfer functions fi are highly customized to each neuron, ensuring more

flexibility in modelling.

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

WI 0

WO 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(32)
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The dynamics of the system is determined by the input part WI (but don’t
forget that in this model there is no difference between input and state concepts).

The general term of the Jacobian of the mapping that generates the updating
process is the following:

JG(i, j) =
∂Gi

∂Aj
= wijλi(ui − li)

1
1 + e−λi(wiA−hi)

(
1 − 1

1 + e−λi(wiA−hi)

)
(33)

With the shorthand gi = 1
1+e−λi(wiA−hi)

, the Jacobian is

JG = diag[λi(ui − li)]diag[gi(1 − gi)] · W (34)

Since gi(1 − gi) ≤ 1/4, the following inequality holds for the spectral radius of
the Jacobian at any point:

ρ(JG) ≤ 1
4
ρ
(
diag[λi(ui − li)] · W

)
(35)

Moreover, because of the block structure of W , the spectral radius (largest abso-
lute value of the eigenvalues) of W equals the spectral radius of WI (it also proves
that the dynamics of the system is determined by the input neurons and their
weight structure). Consequently,

ρ(JG) ≤ 1
4
ρ
(
diag[λi(ui − li)] · WI

)
(36)

Similarly to the previous section, we get the following theorem:

Theorem 6. Consider an FCM with weight structure described by Eq. 32 and
transfer functions defined by Eq. 31. If

1
4
ρ
(
diag[λi(ui − li)] · WI

)
< 1, (37)

then the FCM has exactly one fixed point. This fixed point is the limit of the
iteration from any starting point.

Remark 2. In a special case, when li = −ui and hi ≡ 0, the concept vector
A = [0, . . . , 0]T is always a fixed point, but not always a fixed point attractor. If
the inequality in Theorem 6 holds, then this point is a globally asymptotically
stable equilibrium point. On the other hand, when the inequality does not hold,
the iteration may lead to this fixed point from certain starting point(s) (these
are the elements of KerW ), but this fixed point is not stable. This problem was
discussed for the case of hyperbolic tangent threshold function in [5].

5 Summary

In this paper, the input-output fuzzy cognitive map model has been exam-
ined from the viewpoint of unique fixed points. Based on the spectral radius
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of the weight matrix and with various matrix norms, several convergence condi-
tions have been proved. Although the conditions expressed by matrix norms are
weaker, they are might more understandable for the users of FCMs.

Classical FCMs may produce the same output for totally different initial
activation values. Although this property is useful in some models, since it means
a kind of robustness concerning noise, there are many applications (for example
pattern recognition or classification problems), where this is a disadvantageous
feature. As we have seen, the input-output model does not have this drawback,
it can produce different fixed points for different outputs. On the other hand,
there are cases when different input values yield the same output values.

Finally, convergence condition for another type of input-output FCM was
introduced, expressed by the spectral radius of the submatrix containing the
weight structure between the input neurons.
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