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Abstract. The combination of datasets is vital for providing increased
statistical power, and is especially important for neurological conditions
where limited data is available. However, our ability to combine datasets
is limited by the addition of variance caused by factors such as differences
in acquisition protocol and hardware. We aim to create scanner-invariant
features using an iterative training scheme based on domain adaptation
techniques, whilst simultaneously completing the desired segmentation
task. We demonstrate the technique using an encoder-decoder architec-
ture similar to the U-Net but expect that the proposed training scheme
would be applicable to any feedforward network and task. We show that
the network can be used to harmonise two datasets and also show that
the network is applicable in the common scenario of limited available
training data, meaning that the network should be applicable for real-
world segmentation problems.
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1 Introduction

Although a few large neuroimaging projects new exist, such as the UK Biobank
[12], the majority of dataset sizes remain small; additionally, those with expert
manual segmentations are even more limited due to its time consuming nature.
Therefore, to achieve increased statistical power, it is vital to be able to combine
data from multiple sites and scanners. This, however, leads to an increase in
variance and bias in the data, driven by differences in acquisition protocol and
hardware [4]. Data harmonisation is therefore required to allow joint unbiased
analysis of data collected from different scanners at different sites.

ComBat [4] is a popular harmonisation method, which performs post-hoc
normalisation using a linear model, to allow the image-derived values to be com-
parable between sites. This has then been extended in several ways including
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in [10] which incorporates a nonlinear model, and in [13] where the model is
adapted explicitly to encode bias caused by nonbiological variance in the model.
The majority of the other MRI harmonisation methods focus on image genera-
tion: given an image from a scanner they generate a set of images that appear to
have been acquired from another scanner. Recent studies have used deep learning
methods for this. U-Net style networks have been used such as [3], which learns
features at different levels of abstraction to recreate images given paired training
data. CycleGANS [17] have also been used, for example as in [16], transforming
data between scanners in a cycle-consistent manner.

Rather than harmonising images, we propose to use a joint domain adapta-
tion framework to harmonise the features extracted by a deep learning network
where we consider each scanner to be a separate domain. If we consider the
case where we have a source domain Ds and a target domain Dt with the same
learning task T , then the success of the domain adaptation depends on the ex-
istence of a similarity between the two domains [14]. For harmonisation, we are
considering the case where Ds 6= Dt or in other words that the data have been
collected on distinct scanners. One of the most successful methods for domain
adaptation is DANN [6], which uses a gradient reversal layer [5] to allow ad-
versarial training of a discriminator. This creates a feature representation that
is discriminative for the main task but indiscriminate as to the domain from
which the data originates. There is, however, little exploration of the effect of
this domain adaptation on the network performance on the source domain data,
whereas for successful data harmonisation it is vital that we create a network
that performs well across all the source and target datasets.

In [7] a method is proposed for simultaneous domain and task adaptation.
Similarly to DANN, domain adaptation is completed adversarially but, rather
than using a gradient reversal layer to update the domain predictor in opposi-
tion to the task, they use an iterative training scheme, iterating between learning
the best domain classifier for a given feature representation and minimising a
confusion loss that aims to force the domain predictions to become closer to a
uniform distribution. In this way, the network maximally confuses the domain
classifier [7]. Compared to DANN-style networks, this method is better at ensur-
ing that we achieve a classifier which is equally uninformative across the domains
[2] because of the confusion loss, which is highly desirable for the harmonisation
scenario. This learning scheme is applied in [2] where the iterative unlearning
creates classifiers that are blind to spurious variations in the data - variations
which are not directly related to the task of interest - but only aims to do this
for a single dataset, whereas for harmonization it is vital to be able to consider
larger numbers of datasets. Together, these form the inspiration for this work.

In this work, we apply a framework similar to that introduced in [7] for
harmonisation within the setting of image segmentation. We do this by posing
the problem as a joint domain adaptation problem. We aim to create a feature
representation that is invariant to the scanner from which the data were acquired
and show that this network is still able to segment the images successfully. We
also explore the effect of our training scheme when very small amounts of labelled
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data are available, as this is a very realistic scenario for segmentation tasks. We
show that scanner information can successfully be ‘unlearned’, and thus is not
used to create the final segmentations, allowing us to harmonise data for the
segmentation task.

2 Method

2.1 Standard Supervised Training

Fig. 1: Network architecture for segmentation task. Xp and Xu represent the
input data for the network, where Xp is the input data used for training the
main task and Xu is the input data for the unlearning iterations. These can
either be the same data, subsets of each other, or different datasets, dependent
on the labels that are available. For Xp the labels yp are the main task labels -
the segmentation labels - and for Xu the labels are the domain labels du. Θrepr

are the parameters of the convolutional layers in the encoder and decoder which
form the U-Net architecture, Θp are the parameters of the final convolutional
layers that produce the segmentation, and Θd are the parameters of the domain
predictor layers. Unlearning is completed either from location A, location B or
locations A and B in combination - that is the domain predictor is attached in
these locations. If unlearning is completed from A and B together, the first fully
connected layers are concatenated to produce a single feature representation.

Consider the training regime for which we have segmentation labels available
for the data from all scanners and that the segmentation tasks are all the same.
In this case Xp and Xu form a singular dataset X which can be used to evaluate
all the loss functions used in training.
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The aim of the 2D network shown in Fig 1 is to find a representation Θrepr

that maximises the performance on the primary segmentation task while min-
imising the performance of a discriminator, which aims to predict the site of
origin of the data. Although in this work we focus on segmentation, the training
scheme should generalise to any feedforward architecture and task. Θrepr rep-
resents the features of the encoder-decoder network which are shared between
the two output branches. Θp are then the parameters for the primary segmen-
tation task and Θd are the parameters associated with the domain predictor
branch. We consider trying to segment two datasets, each with input images
X ∈ RW×H×D×1 and task labels y ∈ RW×H×D×C where C is the number of
labels, with different domains d, representing scans acquired from two different
distinct scanners.

To train the network, three loss functions are minimised iteratively. The first
loss is the loss function for the main task and is conditioned on each domain -
that is, evaluated separately for the data from each scanner:

Lp(X,y,d;Θrepr,Θp) =

N∑
n=1

1

Sn

Sn∑
j=1

Ln(yj,n, ŷj,n) (1)

where N is the number of domains and Sn is the number of subjects from domain
n such that yj,n is the true label for the jth subject from the nth domain. This
loss takes the form of the Sorensen-Dice loss function. The loss is calculated for
each domain in turn, preventing the performance being driven by one dataset.
This is especially vital if one dataset is significantly larger than the other. The
domain information is then unlearned using a combination of two loss functions,
which work in opposition to each other. The first is the domain loss, which is
simply the categorical cross-entropy:

Ld(X,d,Θrepr;Θd) = −
N∑

n=1

1[d = n]log(pn) (2)

which assesses how much information remains in Θrepr about the domains. pn
are the softmax outputs of the domain classifier and also used by the confusion
loss to remove information. This is done by penalising deviations from a uniform
distribution:

Lconf (X,d,Θd;Θrepr) = −
N∑

n=1

1

N
log(pn) (3)

Therefore, the overall method minimises the total loss function:

L(X,y,d,Θrepr,Θp,Θd) = Lp(X,y,d;Θrepr,Θp)

+ αLd(X,d,Θrepr;Θd)

+ βLconf (X,d,Θd;Θrepr)

(4)

where α and β represent weights of the relative contributions of the different loss
functions. Equations (2) and (3) cannot be optimised in a single step because
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they act in direct opposition to each other: therefore, we update the loss functions
iteratively. This results in three forward passes per batch.

L(Xp,Xu,yp,dp,du,Θrepr,Θp,Θd) = Lp(Xp,yp,dp;Θrepr,Θp)

+ αLd(Xu,du,Θrepr;Θd)

+ βLconf (Xu,du,Θd;Θrepr)

(5)

2.2 Semi Supervised Learning

We here consider the case where we have limited access to manual annotations
for one of the scanners; this is a very likely scenario for segmentation, where
manual labels are expensive to obtain. In addition to the small set of labelled
data points, we assume access to more unlabelled examples which can be used
for the domain unlearning. In most cases, domain labels are trivial and nearly
always available.

No changes to the architecture are necessary: rather, we simply evaluate the
equations for different subsets of the data. Equation (1) is now only evaluated
for Xp and yp where these are the data points for which we have main task
labels. Equations (2) and (3) can still be evaluated for the full dataset and so
the overall method minimises:

L(X,y,d,Θrepr,Θp,Θd) = Lp(Xp,yp,d;Θrepr,Θp)

+ αLd(X,d,Θrepr;Θd)

+ βLconf (X,d,Θd;Θrepr)

(6)

where Xp and yp are subsets of X and y.

2.3 The Location of the Domain Predictor

In addition to the effect of available data, we also need to consider the effect of the
location of the domain predictor. It was hypothesised that the domain predictor
at least needed to be connected after the last cross connection, otherwise the
network might be able to learn features where domain information is present
again, due to the skip connections from before the unlearning was completed. In
[8] the effect of the location of domain adaptation is explored with relation to the
quality of the segmentation. They suggest that by having the domain adaptation
too early in the network, if the domain information is not entirely unlearned,
the network is able to learn how to use the remaining information by the end of
the network. Conversely, they argue that adapting layers to make them invariant
to variations may lead to a reduction in performance because of the constraints
on the features which are being learnt. For segmentation, later layers learn fine
details which are vital to the performance of the segmentation and so it may be
detrimental to performance to constrain these features too strongly.
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We therefore compare the performance of the network and the degree of
unlearning achieved by unlearning just after the final cross connection, at the
bottleneck, and a combination of the two, as shown in Fig. 1. The domain pre-
dictor takes the form of a chain of convolutional blocks and max pooling layers
until the dimensions match those of the bottleneck layer, at which point they
are then connected to two fully connected layers to produce the final prediction.
In the case of unlearning from two locations, the first fully connected layers
are concatenated to produce a single shared set of features and a single domain
prediction.

3 Experimental Setup

For the experiments in this work, T1 weighted MRI scans from two datasets
were used. The first dataset was the UK Biobank dataset [12] which had been
processed using the UK Biobank Pipeline [1] (2095 training, 937 testing); the
other dataset comprised of the healthy subjects from the OASIS dataset [9]
dataset (813 training, 217 testing), at multiple time points, split into training
and test sets at subject level. The input images for both of the datasets were
resized to 128 × 128 × 128, normalised to have zero mean and unit standard
deviation, and then split into slices in the third dimension. The labels were
obtained using FSL FAST [15] as a proxy for manual annotations and were
converted into one-hot labels.

The network was implemented using Python 3.6 and PyTorch (1.0.1) and
is based on the U-Net architecture [11]. The training regime should be applica-
ble to any feedfoward network but we chose to investigate use with the U-Net
as it is the most frequently used for medical image segmentation and has the
added complication of the cross connections. The network has four downsampling
and upsampling layers with each layer being formed of a convolutional layer, a
ReLU activation function and a batch normalisation layer with the number of
convolutions increasing as 8f where f is the depth. A batch size of 5 was used
throughout, with each batch constrained to contain at least one example from
each dataset, increasing training stability. To achieve this, the smaller dataset
was oversampled. The parameters α and β were set experimentally using ten
fold cross validation for the different experiments and took values of between 1
and 20.

4 Results

4.1 Supervised Unlearning

We compared our method - with the domain predictor simply in location A - to
standard training on both datasets individually and on the combination of the
two datasets. The results can be seen in Table 1. Scanner classification accuracy
was found by fixing the feature representation Θrepr and then training a domain
predictor to classify the resulting features. A classifier with accuracy near random
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Training Data Biobank OASIS Scanner Classification
Accuracy (%)

Biobank Only 0.910 ± 0.022 0.836 ± 0.043 -
OASIS Only 0.874 ± 0.032 0.917 ± 0.020 -
Both (Normal Training) 0.906 ± 0.024 0.915 ± 0.020 100 (50)
Both (Unlearning) 0.910 ± 0.023 0.916 ± 0.021 51 (50)

Table 1: Dice scores comparing unlearning to training the network in different
combinations on the datasets averaged across the tissue types. Scanner accuracy
is the accuracy achieved by a domain predictor given the fixed feature represen-
tation at convergence. The number in brackets indicates random chance.

(a) Biobank (b) OASIS

Fig. 2: Dice scores for the different training methods split by tissue within
dataset. CSF = Cerebral Spinal Fluid, WM = White Matter, GM = Grey Mat-
ter.

chance indicates that information about the scanner has been removed from the
feature representation.

It can be seen, as would be expected, that training on both datasets gives
the best overall performance for normal training compared to training on just a
single dataset. It can also be seen that the performance of the network does not
change significantly with the introduction of the unlearning. This is despite the
fact that the domain predictor accuracy, given the frozen feature representation
Θrepr, has decreased from 100% before unlearning to 51% after unlearning where
random chance is 50%. This shows that nearly all of the information about the
scanner has been removed and the features which remain are almost entirely
invariant to the scanner on which the data was acquired.
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Fig. 3: Representative segmentation from the OASIS dataset. From L-R: T1 slice,
FAST segmentation used as a proxy to a manual segmentation, output segmen-
tation after unlearning.

The results are broken down by tissue type in Fig. 2. It can be seen that the
pattern is the same across tissue types. A representative example segmentation
can be seen in Fig. 3.

4.2 Semi Supervised Results

To explore the effect of training the network with low numbers of labelled data
points, the network was trained both with normal learning and with unlearn-
ing for increasing numbers of OASIS datapoints. It can be seen that unlearning
gives large improvement in segmentation performance with low numbers of data
points, not only in terms of average performance but also in terms of the consis-
tency of the segmentation. The amount of improvement decreases as the number
of training examples increases, as would be expected, but the unlearning never
decreases the overall performance of the network. Therefore, it is evident that the
network is effective in a likely scenario for medical image segmentation, where
low amounts of labelled training data are available. The scanner classification
accuracy was 100% for all cases of normal training and between 50 and 55% for
the unlearning cases.

Considering the unsupervised case - where there are no training examples for
OASIS - it can be seen that unlearning gives the biggest improvement in this
scenario. This is because the method is in essence a domain adaptation approach,
and so, a positive side effect of the harmonisation is that the network is able to
learn features from the Biobank data which are generally useful and apply them
to the OASIS data. The unlearning forces the features learnt not just to specialise
to the Biobank data but to be more general to the two datasets. Therefore, the
training regime could be applied for harmonisation of segmentation tasks even
when there are no available labels for one of the datasets.
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Fig. 4: Dice scores for the three different tissue types for the OASIS data with
increasing numbers of OASIS training slices, comparing both normal training
and unlearning. Note that for clarity of plotting the x axis is not to scale. The
full Biobank dataset was used throughout.

Location of Domain Biobank OASIS Scanner Classification
Predictor Accuracy (%)

Final Convolution (A) 0.910 ± 0.023 0.916 ± 0.021 51 (50)
Bottleneck (B) 0.871 ± 0.046 0.882 ± 0.030 100 (50)
Both (A + B) 0.903 ± 0.025 0.912 ± 0.021 55 (50)

Table 2: Dice scores comparing unlearning at different locations in the network:
A) At the final convolutional layer, B) At the bottleneck, A+B) Combination of
the two, as shown in Fig. 1. The scanner classification accuracy was the accuracy
achieved by a separate domain predictor using the fixed feature representation
at the final convolutional layer. Random chance is given in brackets.

4.3 The Effect of the Location of the Domain Predictor

The domain predictor was attached to the bottleneck (B) and after the final
convolution (A). The effect of unlearning from these two locations and the com-
bination was considered. The results can be seen in Table 2.

Firstly, it can be seen that unlearning only at the bottleneck (B) does not af-
fect the ability of a separate domain predictor located after the final convolution,
which has access to the features that are used to create the final segmentations,
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to predict the scanner the data came from. This is as would be expected because
the skip connections will mean that all the domain information is still available
to the domain predictor. Adding the unlearning branch to the bottleneck also
has a detrimental effect on the performance of the segmenter, indicating that
it constrains the features too much, so that the network is not able to perform
well. It also caused the training of the network to be much less stable. The com-
bination of the bottleneck and the final convolution (A + B) allows the network
to create far more scanner-invariant features but the increased constraint on the
features that the network can learn still leads to a decrease in performance. Sim-
ply unlearning at the end of the network seems to be sufficient to unlearn scanner
information whilst limiting the constraint on the features that the network can
learn to complete the segmentation task.

5 Discussion

In this work, we have shown that an iterative training scheme can be used to
‘unlearn’ scanner information, allowing us to create features from which we have
removed most scanner information whilst successfully completing the segmenta-
tion task. We have also shown that the training scheme not only works but also
gives us improved performance when we have low amounts of available training
data. The training regime is flexible and applicable to any feedforward network
and so could be applied to many segmentation tasks, even when there is limited
manual segmentation for a site. We have also shown that for the most com-
monly used segmentation network architecture, the domain unlearning should
be completed from the end of the network, not the bottleneck as might have
been expected.
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