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Abstract. Deep neural network (DNN) classifiers have attained remark-
able performance in diagnosing known diseases when the models are
trained on a large amount of data from known diseases. However, DNN
classifiers trained on known diseases usually fail when they confront new
diseases such as COVID-19. In this paper, we propose a new deep learn-
ing framework and pipeline for explainable medical imaging that can
classify known diseases as well as detect new/unknown diseases when
the models are only trained on known disease images. We first provide
in-depth mathematical analysis to explain the overconfidence phenom-
ena and present the calibrated confidence that can mitigate the over-
confidence. Using calibrated confidence, we design a decision engine to
determine if a medical image belongs to some known diseases or a new
disease. At last, we introduce a new visual explanation to further reveal
the suspected region inside each image. Using both Skin Lesion and Chest
X-Ray datasets, we validate that our framework significantly improves
the accuracy of new disease discovery, i.e., distinguish COVID-19 from
pneumonia without seeing any COVID-19 data during training. We also
qualitatively show that our visual explanations are highly consistent
with doctors’ ground truth. While our work was not designed to target
COVID-19, our experimental validation using the real world COVID-
19 cases/data demonstrates the general applicability of our pipeline for
different diseases based on medical imaging.

Keywords: New/unknown disease discovery · DNN confidence
calibration · Visual explanation · COVID-19

1 Introduction

Extensive AI-based research and attempts have been made on automated medi-
cal imaging. Recent researches have witnessed remarkable progress in diagnosing
known diseases when DNN classifier models are trained on a large number of
images on known diseases [7]. However, in real world, unknown/new diseases
continuously emerge, i.e., COVID-19. Unfortunately, since no training data for
the new/unknown diseases are available at training time, existing DNN classi-
fiers trained only on the known disease (in-domain data) oftentimes fail on the
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new/unknown disease (out-of-domain data) in open-world practice. This prob-
lem is challenging even for a human. When doctors see a new disease, they could
wrongly diagnose such a new disease as some other known diseases. In fact, at
the beginning of the COVID-19 outbreak, doctors mistook the new COVID-19
disease as Pneumonia/SARS/MERS which are known diseases from the past.

The detection of out-of-domain unknown diseases is currently a challenging
open research problem. Unknown diseases are theoretically unlimited. For each
unknown disease, again there are theoretically infinite variations. To make it
even harder, none of these data is available at model training and learning time.
Recent work [8] has shown that DNN classifiers oftentimes suffer from overfitting
and overconfidence issues, i.e., prediction accuracy is much lower than average
confidence scores for predictions. As a consequence, DNN classifiers mistake
unknown out-of-domain diseases as one of the known in-domain diseases.

On the other hand, deep learning models are black boxes. It is not clear why
it works when it works, and why it does not work when it fails. Blindly accepting
the decision from computer-aided diagnosis based on DNN classifiers can have
serious consequences on patients in practice. Thus, it is highly desirable for mod-
els to provide explanations that can assist doctors to think and make the right
decisions. To explain deep networks, several methods have been proposed based
on internal states of the network [15–17]. Recently, Selvaraju [14] proposed Grad-
CAM to compute neuron importance as part of a visual explanation. However,
these approaches are only designed to explain the decision for existing diseases
and cannot be applied to explain the decision when an unknown/new disease is
detected.

In this paper, we aim to develop a high-quality explainable automatic med-
ical imaging system that can accurately detect new/unknown diseases as well
as provide reliable visual explanations to doctors. Our Contributions can be
summarized as follows:

– We provide in-depth mathematical analysis to explain the overconfidence phe-
nomena that leads to misdiagnosis of new/unknown diseases and present the
calibrated confidence that can mitigate the overconfidence; We develop an
automatic unknown disease discovery capability via confidence calibration
for DNN classifiers trained only on known diseases data.

– We develop an automatic visual explanation into deep learning models to
reveal suspected evidence in medical images for potential unknown diseases.

– We propose a novel explainable deep learning framework and pipeline that
incorporates the above two automatic modules.

– Based on our proposed new pipeline, we conduct comprehensive experimen-
tal evaluations showing that our system achieves significant performance
improvement on both quantitatively (unknown disease detection) and quali-
tatively (visual explanation) on Skin Lesion and Chest X-Ray datasets.

2 Our New Framework

In this section, we propose a novel framework and pipeline for explainable auto-
mated medical imaging. Figure 1 shows the whole framework including both



348 C. Tang

in-domain known disease diagnosis and out-of-domain unknown disease discov-
ery. Next, we will present both training and testing processes with the focus of
out-of-domain unknown disease discovery.

Fig. 1. Explainable automated diagnosis framework

Training Process: The components inside the dotted box in Fig. 1 indicate
the training process. That said, DNN Classifier and Confidence Calibration for
Unknown disease discovery will learn their parameters during training and later
be used during testing. In the training, a DNN classifier is first trained only on
known disease training images with class labels. Then, our confidence calibration
component is to further adjust the confidence scores from DNN classifier output.
This will largely mitigate the DNN overconfidence and avoid misdiagnosing a
new disease as some known diseases.

To make our setting practical, our training process only takes the images
of known diseases as inputs. We assume that new/unknown disease images are
not available during model training time. In addition, our visual explanation
component can automatically generate visual explanations only using the trained
DNN classifier without needing to train a separate image segmentation model.

Testing Process (Diagnose Known and Unknown Diseases): The trained
components in the dotted box are used in the testing process. Given an input
image, it first goes through DNN classifier and confidence calibration compo-
nents to generate the calibrated confidences. Next, we compare the calibrated
confidence of the input image with a given threshold. If it is smaller than the
threshold, we decide that this is a new/unknown disease; and we use our new
visual explanation to show the potential suspected regions that have led to our
detection of “new/unknown”. Otherwise, we directly use the trained DNN classi-
fier model to automatically diagnose to be one of the known diseases and provide
its visual explanation [17] for doctors to review and confirm.
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In the rest of our paper, we will focus on introducing our novel designs for
the two blue components in Fig. 1.

3 Confidence Calibration for New Disease Discovery

Overconfidence phenomenon has been observed empirically in literature [8]. In
this section, we propose a mathematical explanation of why overconfidence hap-
pens in deep neural networks (DNN) classifiers that lead to misdiagnosis of
new/unknown diseases. Motivated by our mathematical logic, we shall present
calibration solutions.

3.1 Mathematical Explanation of Overconfidence Observation

DNN classifiers implicitly assume all data are in-domain. Thus, they model:

p̂(yin|d = 1,x) for a random variable d =

{

1 if x is an in-domain sample

0 if x is an out-of-domain sample

In open world settings, one needs to learn:

p̂(yin ∪ yout|x) =
∑

d∈{0,1}
p̂(yin ∪ yout|d,x)p̂(d|x) (1)

Since unknown data is not available during training, we can only model the
following based on training data:

p̂(yin|x) =
∑

d∈{0,1}
p̂(yin|d,x)p̂(d|x) (2)

Then, we hope to indirectly model out-of-domain probability:

p̂(yout|x) = g(p̂(yin|x)) (3)

Thus, the combination of p̂(yin|x) and p̂(yout|x) forms a probability distribution.

Proposition 1. For an unknown image x, we have p̂(yin|d = 1,x) ≈ p̂(yin|x)
p̂(d=1|x) .

Proof: In this case, p̂(yin|d = 0,x)p̂(d = 0|x) is small given the small value of
p̂(yin|d = 0,x) in open world (since yin is a label for in-domain samples). Thus,
Eq. 2 can be rewritten as follows:

p̂(yin|x) =
∑

d∈{0,1}
p̂(yin|d,x)p̂(d|x)

= p̂(yin|d = 1,x)p̂(d = 1|x) +
���������0
p̂(yin|d = 0,x) p̂(d = 0|x)

≈ p̂(yin|d = 1,x)p̂(d = 1|x)

Thus, we reorganize the formula:

p̂(yin|d = 1,x) ≈ p̂(yin|x)
p̂(d = 1|x)

(4)
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Hypothesis 1. Let fc be the unnormalized probability p̂(yin|x) and fd be the
unnormalized probability p̂(d = 1|x), i.e., p̂(yin|x) = norm(fc(x)), p̂(d = 1|x) =
norm(fd(x)). We call the unnormalized probability “logits”. We hypothesize the
following:

norm
( fc(x)

fd(x)

)

≈ norm(fc(x))
norm(fd(x))

Mathematical Explanation of Overconfidence Observation [8]: Assuming
that Hypothesis 1 holds, we show the explanation via Eq. 4. Given Hypothesis 1,
we can rewrite Eq. 4 as follows:

p̂(yin|d = 1,x) ≈ p̂(yin|x)
p̂(d = 1|x)

≈ norm(fc(x))
norm(fd(x))

≈ norm
( fc(x)

fd(x)

)

Then, we use the following “softmax function” [7] to normalize the logits to
be a probability distribution:

p̂(yin|d = 1,x) ≈ softmax
( fc(x)

fd(x)

)

=
exp( fc

i (x)

fd
i (x)

)
∑C

j=1 exp(
fc
j (x)

fd
j (x)

)

Fig. 2. Overconfidence explanation for an
unknown image (Color figure online)

We illustrate our overconfidence
explanation in Fig. 2 using an exam-
ple: Assuming there are two in-
domain classes in our classifier.
For an out-of-domain x, it is
expected that fc(x) (the unnormal-
ized p̂(yin|x)) (blue points in Fig. 2)
for both classes are small, e.g., 0.5
and 0.8. The normalization function
maps fc(x) to probabilities 43% and
57%. However, for an out-of-domain
x, fd(x) ((the unnormalized p̂(d =
1|x)) is a very small number, e.g., 0.1.
After fc(x) is divided by the small
fd(x), the final model logits (red points in Fig. 2) for both classes become 5 and
8. The softmax normalization maps them to probabilities 5% and 95%. With
that, the model will conclude that x is classified into class #2 with a confidence
level of 95%. This shows how a wrong decision can be made with overconfidence
for out-of-domain images.

3.2 Confidence Calibration Without Overconfidence

Based on the above mathematical explanation of overconfidence, an intuitive
solution to mitigate overconfidence is temperature scaling [11], i.e., scale fd(x)



Discovering Unknown Diseases with Explainable AI 351

with a large temperature T to compute the calibrated confidence score.

Sc(x) = softmax (fc(x)) ≈ softmax

(

fc(x)
fd(x)T

)

=
exp( fc

i (x)

fd
i (x)T

)
∑C

j=1 exp(
fc
j (x)

fd
j (x)T

)

where Sc is calibrated confidence score for each class c. Unfortunately, since this
temperature T is not trainable, it is hard to determine the right temperature for
any case. In our experiments, T is simply set as a large number.

Thus, we present another confidence calibration approach using Mahalanobis
distance based on a generative classifier layer to replace with the softmax layer
[10]. According to a simple theoretical connection, the pretrained softmax classi-
fier is likely to follow class-conditional Gaussian distribution. That said, we can
parameterize the class-conditional Gaussian distribution with class mean μi and
covariance matrix Σ as follows:

μ̂c =
1

Nc

∑

i:yi=c

f(xi), Σ̂ =
1
N

∑

c

∑

i:yi=c

(f(xi) − μ̂c)(f(xi) − μ̂c)T

During testing, given an input image, we can compute its confidence score
based on Mahalanobis distance (distance between a point and a probability
distribution) as follows:

Sc(x) = −(f(x) − μc)T Σ−1(f(x) − μc) (5)

where Sc is the same for each class c. f(x) represents the output features at the
penultimate layer of DNN classifier models. Since all Sc does not have to form a
probability distribution, we will introduce how these scores are matched to the
final decision engine in the next section.

3.3 Decision Engine

In this section, our goal is to use the confidence scores to derive the final prob-
ability distribution, i.e., both p̂(yin|x) and p̂(yout|x).

Consider the calibrated confidences Sc for any class c. Accordingly, since
yout has only one unknown class, i.e., yout equivalent to d = 0. We consider the
following threshold-based function to derive the probability of out-of-domain
probability:

p̂(yout|x) = p̂(d = 0|x) =

{

1 if s ≤ δ

0 otherwise

where s = maxc Sc meaning the largest confidence scores among all in-domain
classes. δ is the threshold based on the true positive rate requirement. Note that
the in-domain images (s > δ) will be further diagnosed as one of the unknown
diseases using the conventional softmax layer in DNN classifiers. When an image
x is detected as in-domain, we directly compute its classification probability as:

p̂(yin|x) = p̂(yin|d = 1,x)
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4 Visual Explanation of Suspected Regions (DisCAM)

Existing work tried to provide visual explanations for the in-domain classification
decision [17]. It produces heat maps to visualize the most indicative regions in the
image regarding the diagnosed disease using class activation mappings (CAM).
To generate CAM Mc for an input image with diagnosed in-domain class c, the
DNN model extracts the all k feature maps fk that are output by the final
convolutional layer.

Mc =
∑

k

wc,kfk

where wc,k the weight in the final classification layer for feature map k for in-
domain class c.

However, CAM cannot be directly used to discover unknown regions since
none of the in-domain disease classes is diagnosed. Thus, we devise the Discovery
CAM (DisCAM) based on the original CAM. We use the calibrated confidence
to combine the weights in the final classification layer as follows:

M =
∑

k

∑

i

Si
∑C

j=1 Sj

wi,kfk

At last, we follow CAM to generate a heat map based on the neuron impor-
tance weights M by upscaling M to the dimensions of the image and overlaying
the image for each pixel.

5 Experimental Evaluation

5.1 Datasets

We have conducted experimental evaluations based on our proposed new deep
learning pipeline. We use two medical datasets in our experiment. For each
dataset, we discuss its in-domain and out-of-domain data respectively.

Skin Lesion Dataset
For in-domain images, we use the latest ISIC2019 Skin Lesion Challenge Dataset
[1]. It contains 25,331 training images and each image is labeled as one of 8
categories/classes, including 7 different diseases and 1 benign. The task is to
classify an image into one of these eight classes. Since the class ground truth of
testing images are not available, we evaluate our approaches via 10-fold cross-
validation on training data and report the average results. For out-of-domain
images, we download the images in the “unknown” category from Gallery in
ISIC archive website [2]. Dermatologists have determined these images do not
belong to any of the above 8 categories. In addition, each image is provided with
segmentation ground truth by dermatologists.

Chest X-Ray Dataset
For in-domain images, we use the Chest X-Ray dataset [3] from Kaggle. It con-
tains 5,863 training images and 624 validation images. Each image is labeled
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Fig. 3. COVID-19 data example

as either Pneumonia or Normal. For out-of-domain images, we collect the chest
X-ray images of on-going spreading new disease COVID-19 from three online
resources [4,5], and [6]. Since the in-domain data only have frontal chest X-ray,
we only keep frontal X-ray out-of-domain COVID-19 images for our testing pur-
pose. Each COVID-19 data sample consists of a chest X-ray image, a patient’s
basic information, and clinical notes from doctors. Figure 3 shows a sample chest
X-ray images including in-domain normal and pneumonia as well as a new out-
of-domain COVID-19 image.

COVID-19 started in late 2019 and is caused by a new virus, a.k.a. severe
acute respiratory syndrome coronavirus 2, or Sars-CoV-2. The infection may
result in severe pneumonia with clusters of illness onsets. Its impacts on public
health make it paramount to clarify the clinical features with other pneumo-
nia. Thus, the computer-aided discovery of COVID-19 is challenging but in the
meanwhile practically very useful.

5.2 Implementation and Model Training

We implement our code using the PyTorch 1.1.0 framework. The experiment is
run on 8 NVIDIA GPUs (Tesla V100 16 GB GPU).

Our first step is to train state-of-the-art based CNN models for both datasets.
We first normalized both datasets using the mean and standard deviation cal-
culated on the statistics of all training images. The skin lesion dataset has mean
(0.679, 0.526, 0.519) and standard deviation (0.181, 0.185, 0.198), and chest X-
ray dataset has mean (0.480, 0.480, 0.480) and standard deviation (0.232, 0.232,
0.232). Note that the gray-scale chest X-ray images have the same values for all
RGB channels. For each image, we first resize it to be 256 × 256. We performed
dynamic in-memory augmentation by randomly cropping to 224 × 224, horizon-
tal & vertical flips, and zooming by appropriate transformations in the PyTorch
data loader. Following the previous work [12], we conduct transfer learning with
ResNet-50, ResNet-101 and ResNet-152 pre-trained on the ImageNet [13]. We
also use batch size 64 and use the same approach in [12] to choose the optimal
learning rate. Using this learning rate, we continue following the two-step model
training in [12].

To validate our model training, we first evaluate the performance of in-
domain classification on all trained models. We use Top-1 accuracy and AUC
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Table 1. In-domain classification evaluation results

Dataset Skin Lesion Chest X-Ray

Metrics ACC AUC ACC AUC

ResNet-50 85.44 86.78 92.95 91.03

ResNet-101 85.81 86.79 93.30 92.34

ResNet-152 86.41 86.88 94.12 93.53

metrics for image classification. AUC stands for Area under the Receiver Oper-
ating Characteristic (ROC) Curve, which the ROC curve is a graph plotting
TPR against the FPR = FP/(FP + TN) by varying a threshold. Table 1 shows
the in-domain performance. Since our out-of-domain detection will not retrain
the model, the in-domain classification performance will not be impacted in our
new deep learning pipeline.

5.3 New/Unknown Disease (Out-of-Domain) Detection Evaluation

We follow the evaluation metrics in the literature [9]. Let TP, TN, FP, and FN
denote true positive, true negative, false positive, and false negative, respectively.
We use the following out-of-domain evaluation metrics:

– TNRkTPR (high) (True Negative Rate (TNR) at k% True Positive Rate
(TPR)): can be interpreted as the probability that an out-of-domain image is
classified correctly when the true positive rate (TPR) for in-domain data is
as high as k%, where TPR = TP/(TP + FN). In our experiment, we choose
k to be 85.

– Detection Error (low): measures the misclassification probability when
TPR is k%. Detection error is defined as follows:

min
δ

{PIND(s ≤ δ)p(x ∈ PIND) + POOD(s > δ)p(x ∈ POOD)}

where s is a confidence score. We follow the same assumption that both IND
and OOD examples have an equal probability of appearing in the test set.

– AUROC (high) (Area under the Receiver Operating Characteristic Curve):
The ROC curve is a graph plotting TPR against the FPR = FP/(FP + TN)
by varying a threshold.

– AUPR (high) (Area under the Precision-Recall Curve): The PR curve is
a graph plotting the precision (TP/(TP + FP)) against recall (TP/(TP +
FN)) by varying a threshold.

Table 2 and Table 3 show the unknown disease detection results on Skin
Lesion and Chest X-Ray diseases respectively. As one can see, the baseline suf-
fers from failure due to overconfidence. Temperature Scaling (TS) improves the
performance but still not satisfactory due to the untrainable temperature T . Gen-
erative Classifier (GC), after removing the source of overconfidence by replacing
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Table 2. OOD detection results for Skin Lesion dataset

Model Method TNR85TPR Det. error AUROC AUPR

ResNet50 Baseline 25.16 41.91 64.34 96.84

TS 45.24 29.29 75.90 97.59

GC 61.35 23.40 83.72 98.47

ResNet101 Baseline 26.55 39.44 65.60 96.89

TS 48.99 28.48 76.37 97.35

GC 64.59 23.31 84.32 98.53

ResNet152 Baseline 28.18 37.74 66.34 97.01

TS 51.39 28.04 77.34 97.34

GC 65.25 22.88 84.45 98.99

Table 3. OOD detection results for Chest X-Ray dataset

Model Method TNR85TPR Det. error AUROC AUPR

ResNet50 Baseline 9.65 49.54 38.84 84.19

TS 37.24 47.83 50.77 87.64

GC 90.49 12.96 94.02 98.21

ResNet101 Baseline 8.04 47.48 47.09 88.20

TS 42.98 34.02 65.80 93.37

GC 90.98 12.15 94.38 98.61

ResNet152 Baseline 14.94 46.71 52.35 88.40

TS 48.04 29.73 71.55 94.84

GC 91.92 11.22 94.63 99.11

the softmax layer, achieves significant performance improvement for all metrics.
The GC performance on the Skin Lesion dataset is slightly lower since it con-
tains colorful images and there are many varieties of noises on the images such
as color, illumination, skin hair, etc. GC improved baseline performance by over
6 times on Chest X-Ray to detect new out-of-domain COVID-19 disease using
the model trained on known pneumonia and normal images. In fact, we achieved
almost perfect detection of COVID-19 when tested on a small dataset.

5.4 Case Study: Visual Explanation for Suspected Regions

Next, we conduct some case study of visual explanation on new/unknown dis-
eases to (1) qualitatively validate our visual explanation method by comparing
with ground truth doctor explanation, and (2) visually elaborate the underlying
reason why our unknown disease detection method works well. Each Skin Lesion
unknown image has a doctor provided segmentation ground truth (green lines).
Each Chest X-Ray COVID-19 image has clinic notes which explain the suspected
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Fig. 4. Case 1: CAM looks at wrong regions

Fig. 5. Case 2: CAM looks at too broad regions

Fig. 6. Case 3: CAM looks at too narrow regions
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regions in X-Ray that indicate COVID-19 diagnosis. It is important to note that
the left and right sides are flipped over in conventional X-Ray images.

Figure 4, Fig. 5 and Fig. 6 show three different types of wrong regions baseline
CAM method looks at, which leads to all wrong decisions. In Fig. 4, CAM looks
at completely wrong regions which no doubt leads to wrong predictions. Figure 5
and Fig. 6 are more interesting. In Fig. 5, although the regions CAM looks at
include the correct region, it also looks at other distracting regions. For example,
the hair on the skin and white abdomen area in Chest X-Ray possibly confused
the decision engine. On the other hand, Fig. 6 shows that cases where CAM looks
at too narrow regions and missed the holistic view of the disease. Meanwhile,
our DisCAM looks at correct regions in all these three cases and also correctly
detects all these unknown disease images.

Fig. 7. Case 4: DisCAM does not find any evidence

Figure 7 shows another interesting visual explanation in which our DisCAM
method shows no particular suspected region in the image. That said, our trained
model does not discover any suspected regions based on the learned knowledge
of known diseases and therefore also concludes this is a new/unknown disease. In
contrast, CAM identifies completely wrong regions and mistakes the unknown
disease as a known disease.

6 Conclusion and Future Work

We proposed a framework for explainable automatic medical imaging that can
discover unknown diseases and provide a visual explanation for that decision. We
first mathematically analyzed and explained why existing models oftentimes fail
to classify new/unknown data correctly. We then showed calibration methods
that can mitigate the overconfidence. We validated the new calibration method
with multiple datasets and demonstrated its effectiveness for unknown data
detection via quantitative evaluations. We successfully detected COVID-19 with
our new deep learning pipeline trained with only known Pneumonia data. We
provided visual explanations of our new/unknown detection decisions based on
the calibrated confidence methods. Our explanations are consistent with doctors’
ground truth and clinical notes. For future work, we will continue to validate our
work by evaluating more and larger datasets. As a natural next step, we also plan
to continue working on few-shot learning using a small amount of new disease
data to efficiently learn the new diseases for future predictions/classifications.
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