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Abstract. We present a computational method for real-time, patient-
specific simulation of 2D ultrasound (US) images. The method uses a
large number of tracked ultrasound images to learn a function that maps
position and orientation of the transducer to ultrasound images. This is
a first step towards realistic patient-specific simulations that will enable
improved training and retrospective examination of complex cases. Our
models can simulate a 2D image in under 4ms (well within real-time
constraints), and produce simulated images that preserve the content
(anatomical structures and artefacts) of real ultrasound images.
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1 Introduction

US imaging is an inexpensive, portable and safe imaging technique. However,
it requires a high level of expertise and dexterity from the sonographer to cor-
rectly operate the transducer and acquire the standard views. Such expertise
is normally acquired through training on patients, which is costly and requires
supervision of an expert. This is particularly important in screening clinics, such
as fetal screening, because the time allocated for each examination is relatively
short and there is a very large patient throughput. The use of ultrasound simu-
lators can be used to support training, however the utility of simulators highly
depends on how realistic the resulting images are. Available simulators are not
realistic enough to be indistinguishable from real examinations, and particularly
lack of real-like non-linear artefacts, variability across patients, fetal motion, etc.
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In this paper, we introduce a novel framework towards real-like simulated
ultrasound images. Our proposed method learns the relation between the trans-
ducer position (from a tracker) and the resulting images, in a patient-wise fash-
ion. The main contribution of this paper is three fold: first, we introduce a
patient-wise learning framework to simulate patient specific images. Second, we
compare two different architectures that implement this framework in presence
of gaps in the training data. And third, we demonstrate the simulation capability
both in phantom and patient data.

2 Related Work

Current ultrasound simulators can be classified in three categories [1]: interpola-
tive simulators, generative image-based simulators, and generative model-based
simulators, as follows:

– Interpolative simulators: simulated images are interpolated from previ-
ously recorded 3D volumes [2,3,4]. These methods can be very fast (can
be operated in real time), but resulting images do not look realistic when
the slices are oblique to the volume, mainly because of view dependency of
ultrasound image features. Indeed, view dependent artefacts (i.e. shadows,
reverberation, etc.) and motion are difficult to simulate with these meth-
ods [5].

– Generative image-based simulators: simulated images are created from
existing images obtained from other modalities [6], such as MRI or CT; the
output is heavily dependent on the simulation method. Images are normally
not very realistic because MRI or CT images are maps of different physical
properties [7], and some structures that are visible in ultrasound are just
not captured with MRI or CT.

– Generative model-based simulators: this category includes two classes:
first, physics-based simulators, where a physics simulator is used to produce
ultrasound images from a virtual tissue model of anatomy with ultrasound-
relevant properties (elasticity, density, etc) [8,9,10,11]. Non-linear modelling
of ultrasound propagation through medium is a computationally expensive
process and these methods need to trade-off between accuracy and real-
timeness, hence are typically not suitable for interactive simulations. Second,
ultrasound models learnt from data, a very new field that was recently en-
abled by the advent of deep learning. The only related work that, to the best
of our knowledge has been published is [19], where a generative-adversarial
model is used to simulate fetal images from a phantom, which is rather ho-
mogeneous and does not produce artefacts such as shadows, mirroring and
reverberations typical from patient data. In this work, authors use a cali-
brated coordinate grid as input so accuracy of the simulation depends on
the accuracy of this grid, which in turn depends on tracker calibration.

None of the works described above has shown realistic simulations of ultra-
sound images that fully produce non-linear artefacts and image features such as
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those found in patient images. In this paper we propose a novel computational
framework to build such simulators and demonstrate real-time performance both
in phantom and patient data. The resulting simulations are patient-specific,
which can enable generating wide range of specific (maybe rare) cases to train
on, constituting an invaluable asset for the ultrasound clinic.

3 Methods

We propose two generative Convolutional Neural Networks (CNN) models to
produce simulated ultrasound images: first, a decoder (Fig. 1) to directly map
tracking data to images, and second an autoencoder (Fig. 2) where the latent
space is enforced to represent the tracking information. We also study a third
variant which is a decoder where the weights have been pre-trained using an au-
toencoder. In all cases, we assume that variation between images in the training
set depends exclusively on the tracker information (i.e. in this paper we assume
no fetal motion). In the following we describe these three architectures.

3.1 Deep Convolutional Decoder Model

We aim at producing simulated ultrasound images (IOUT ∈ RNx×Ny , with Nx
= Ny = 256 pixels) from user-provided 7D tracking data TIN ∈ R7 represent-
ing the transducer pose (4D quaternion + 3D position). We propose a decoder
CNN that taking a 7D vector and yielding a 2D image, hence implements the
function IOUT = Simulate(TIN ), with the architecture shown in Fig. 1: 5 Fully
Connected (FC) layers followed by a Rectified Linear Unit (ReLU) activation
function [18], that implement a highly non-linear mapping of the 7-D input vector
to a rough, low resolution representation of the simulated image, followed by 7
convolutional layers to generate a high resolution output image. The parameters
of the architecture are provided in Fig. 1.

The number of layers of each type was chosen by initially starting with a
very deep network (30 layers) and progressively reducing depth until there was
no over-fit. At that point, the network was trained with ±4 layers in the FC and
the CNN parts and the number of layers that provided lowest validation loss was
selected. The number of channels and size of kernels were empirically chosen
trying to minimise the number of parameters while maintaining performance.
Two unpooling methods were tested according to [15]; using strided transpose
convolutions worked better than using an upsampling interpolation followed by
a convolution and, interestingly, it produced minimal checkerboard-like patterns.
The first convolutional feature map with size 4x4 and 8x8 were tested and the
latter proved to give better results.

Given a training set with pairs {IIN , TIN} of real ultrasound images and
the transducer poses, the decoder was trained to minimise the loss Ldecoder =
MSE(IIN , Simulate(TIN )), where MSE stands for Mean Squared Error. Further
details on datasets and training are provided in Sec. 4.
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Fig. 1. Proposed Deep Convolutional Decoder architecture. The model has five fully
connected (FC) layers coupled with ReLU activation functions, followed by seven con-
volutional layers coupled with ReLU and Batch Normalization. All convolutional layers
except the last one have a kernel size of 4 and a stride of 2 and have been padded to
achieve a size expansion of 2. The last convolutional layer has kernel size 1 and stride
1 to condense the 32-channel information into 1 channel.

3.2 Deep Convolutional Autoencoder Model

Aiming at improving the model’s ability to assimilate image content and to inter-
polate between training samples, we investigate a multi-input convolutional au-
toencoder [13,14]. This autoencoder architecture consists of an encoder-decoder
that mirrors the model described in Sec. 3.1, and is illustrated in Fig. 2.

To implement the multi-input autoencoder, we restrict the latent space Z
to be of dimension 7 and enforce disentanglement of the latent space into the
components of the tracker data by adding a term in the loss function, as follows.
We define the term Ltracker = MSE(TIN , Z), and with the usual autoencoder
loss Lautoencoder = MSE(IIN , Autoencode(IIN )), the total loss function for the
proposed model is:

Lmulti−input = Lautoencoder +KLtracker (1)

where K is a non-negative scalar. We empirically found that K = 1 gave the best
results. Other aspects of the training process are provided in Sec. 4. At inference
time only the decoder part of the network is used, hence the only input during
inference is the tracking data, as for the decoder in Sec. 3.1. The number of
parameters doubled with respect to the decoder, however for the purpose of
inter-model comparison we have left the number of layers untouched.

3.3 Deep Decoder Model with Pre-trained Weights

The decoder module of the autoencoder is identical to the decoder-only model,
hence we propose to pre-train the autoencoder model with the usual Lautoencoder
loss (i.e. without any tracking data), and then use the resulting weights as ini-
tialization for the decoder model, which is in turn re-trained as described in
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Fig. 2. Autoencoder architecture, with the same parameters (kernel size etc.) as the
decoder architecture. All convolutional layers are coupled with ReLU and Batch Nor-
malization and all Linear layers are coupled with ReLU. The encoding convolutional
layers are standard convolutions, while the decoding layers are transpose convolutions.

Sec. 3.1. We hypothesize that this combines the representation learning power
of the autoencoder model (and therefore better interpolation capabilities) with
a simpler (fewer parameter) model.

4 Materials and Experiments

In this section all the experiments conducted to test the architectures described
in Sec. 3 will be explained, along with all the details needed to replicate them.

4.1 Materials

We carried out experiments both using a phantom (Kyotokagu Space-fan CT)
and data from a fetal patient (24 weeks GA). The phantom consisted of 10697
tracked 2D ultrasound images acquired in a single session, plus 11288 untracked
2D ultrasound images that were additionally used for pre-training as described
in Sec. 3.3. The patient dataset consisted of 15819 tracked 2D ultrasound images,
from a single patient during a single scanning session. The ultrasound system
used for both datasets was a Philips EPIQ V7 with a X6-1 transducer, with
sector width and depth chosen to acquire at 25 Hz (typical in clinical settings).
Tracking was done using a NDI Aurora electromagnetic tracker. Images and
tracking information were recorded continuously using in-house software. Data
was split into training and validation sets with a 95% to 5% proportion. All
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models were implemented using Pytorch (PyTorch version: 1.1.0, CUDA 8) using
a NVidia Quadro M4000 GPU.

Images were pre-processed as follows: first, images were resampled to 0.5mm
isotropic resolution and then cropped around the centre to 256x256 pixels using
bilinear interpolation. Then, image intensities were rescaled to the interval (0, 1)
by dividing by 255 (as opposed to using the dynamic range, which may cause ab-
normally bright images and may alter the user-defined gain settings). To ensure
balanced loss terms, the tracking data was scaled dividing x, y, z coordinates
by the maximum values of the NDI tracker, respectively: 250, 250 and 500 mm.
Quaternion representation of angles is already normalised to unit vector.

The parameters used for training all models were: batch size 64 (training)
and 16 (validation) , dataset randomly shuffled for training, max epochs 200, 40
pre-training epochs, Adam optimizer with a learning rate of 0.0002.

4.2 Experiments

We carried out four types of experiments: first, quantitative quality measure-
ments commonly used to assess image quality. Second, qualitative evaluation of
simulation accuracy by a survey to human observers. Third, the impact of low
sample-density areas (i.e. holes) in the training set. And fourth, we measure the
inference time for each model.

All experiments are carried out using phantom and patient data except for
the third experiment (carried out with phantom data only, where we could obtain
as many samples as desired). Details of the experiments are provided next.

Quantitative Measurement of Image Quality We use three quantitative
measures: MSE Loss between the original and simulated image; Structural Simi-
larity (SSIM); and Peak Signal to Noise Ratio (PSNR) [16]. These measurements
are widely used to asses quality of ultrasound images and are defined as follows:

MSE(IIN , Isim) = 1
Npixels

∑
i |IIN (i)− Isim(i)|2

SSIM(IIN , Isim) =
(2µIIN

µIsim
+c1)(2σIIN ,Isim+c2)

(µ2
IIN

+µ2
Isim

+c1)(σ2
IIN

+σ2
Isim

+c2)

PSNR(Isim) = 10 log10( max2(Isim)
MSE(IIN ,Isim) )

(2)

where IIN and Isim are the original and the simulated images respectively and
Npixels is the total number of pixels in the image. In the second equation, µIIN
and µIsim are the mean values of the original and simulated images and σIIN and
σIsim are the standard deviations of the original and simulated images. Lastly,
c1 = (k1L)2 and c2 = (k2L)2 are two variables to stabilise the division with weak
denominator, where L is the dynamic range of pixel intensities. k1 and k2 are
scalar constants with default value k1 = 0.01 and k2 = 0.03.
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Qualitative Measurement of Image Quality The quantitative measures
from previous section need to be complemented by user-rated quality measure-
ments, for which we conducted a survey. We asked six experts specialists (3 fetal
sonographers, 3 imaging with expertise in ultrasound) to choose the best qual-
ity image from three simulated images corresponding to the proposed models,
randomly shuffled. The simulation was carried out at a transducer pose from
the validation set and the corresponding real ultrasound image was shown for
reference. This was done by 6 users for 100 sets of images each. We report the
frequency at which each model was chosen to produce the best image. In the
cases where there was a max-vote tie between models, then all were considered
best. As a result, the sum of the frequencies over all models may exceed 100%.

Impact of Low Density of Samples in the Training Set Some regions of
the fetal anatomy will be sampled more densely, because sonographers focus on
specific regions throughout the exam. As such, we are interested in analysing the
impact of regions with low density of training samples, i.e. holes in the training
set, in the simulated images inside and outside the hole, for each model. To this
end, we selectively remove training samples within a spherical region arbitrarily
located in the phantom dataset, and report the validation loss over the surface
of the phantom (shaped as the tummy of a pregnant woman, i.e. half ellipsoid),
projected onto a flat plane for easier visualization as illustrated in Fig. 3.

Fig. 3. Training data distribution over the half ellipsoidal surface of the fetal phan-
tom, projected onto the ‘bed plane’ for ease of visualization. Data has been randomly
downsampled to see individual data points. Each point represents the location of the
transducer on the surface of the phantom for an acquired image. From left to right:
the complete real-patient dataset, the complete phatom dataset, phantom dataset with
a spherical region removed (synthetically created hole with radius=30mm), data re-
moved from the hole. The removed points represented a 12.2% of the total. Patient
data was shown as a proof of the existence of low density of samples regions.

We trained all three models with the complete training set (Fig. 3 second
from left) and with the training set minus a small region (Fig. 3 third from left),
and report the performance loss when removing training samples in a localised
manner as a relative increase in the validation loss.
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Inference Time We measured the time to simulate an image with all models.
To obtain reliable timing results, we measured the time to make 500 inferences
and divided by 500, to estimate the per-inference time; and we repeated this
process 20 times per model to report average and standard deviation of the
inference time.

5 Results

Table 1 shows the quantitative results obtained from the experiments described
in Sec. 4.2. Numbers in bold are best for the row, which in all cases corresponds
to the decoder architecture.

Table 1. Quantitative measures of quality for the simulated images: Average MSE
Loss (ideal value: 0.0), SSIM Loss (ideal value: 1) and PSNR (in DeciBel (dB), the
larger the better). For each model we report the validation (V) and the training (T)
losses. The values highlighted in bold indicate the best validation and training results
for each row.

Quality Measure Decoder Autoencoder Pretrained Decoder
V T V T V T

P
h
a
n
t. Average MSE 0.012 0.008 0.0240 0.0233 0.0150 0.0146

Average SSIM 0.455 0.480 0.453 0.456 0.422 0.425
Average PSNR 19.19 20.85 16.23 16.50 18.12 18.42

P
a
ti

en
t Average MSE 0.0061 0.0055 0.0107 0.0101 0.0068 0.0065

Average SSIM 0.656 0.660 0.638 0.643 0.641 0.644
Average PSNR 22.93 23.81 20.10 20.90 22.19 22.76

The qualitative results, from the experiment described in Sec. 4.2, are illus-
trated in Fig. 4. The bars show the proportion of the cases (in %) where each
model was voted best by the 6 scorers. It can be observed that results are con-
sistent accross datasets, with the autoencoder being perceived as best closely
followed by the decoder. In all cases the pretrained decoder was found to have
poor perceptual quality compared to the other two.

The results of the experiment on low density of training samples within a
region, as described in Sec. 4.2, are shown in Fig. 5. The first column shows
the points left out from the training set in blue. The second column shows the
loss using the entire dataset. The third column shows the loss using the training
set without the blue region from the first column. The last column shows the
relative increase in loss (in %) when removing a region of the training set. The
decoder architecture shows a very localised reduction of performance, while the
architectures that use an autoencoder seem to maintain a more homogeneous
loss.

Results on inference time are the following, given in average ± standard
deviation; Decoder: 3.6ms ± 0.53ms. Autoencoder: 3.7ms ± 0.56ms; and pre-
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Fig. 4. Bar plot showing the proportion of the cases (in %) where each model was
voted best by all raters. When two models tied at having maximum votes, both were
considered best hence sum of bars may exceed 100%.

trained Decoder 3.7ms ± 0.52ms. These values are all largely within real-time
constrains, which for 25 Hz requires an inference time of up to 40ms.

Finally, for illustrative purposes, we show examples of simulated images pro-
duced at 10 randomly picked locations of the validation set. The simulations from
the phantom dataset are shown in Fig. 6, and the simulations from the patient
dataset are shown in Fig. 7. In both cases, the top row shows the original images,
and the rows 2, 3 and 4 show the simulations using the decoder, the autoencoder,
and the pre-trained decoder, respectively. Three columns have been highlighted
in Fig. 6, with a dashed blue contour indicating the main image features in the
original image and where they are shown in the simulated images. These images
exemplify cases where the autoencoder architecture sometimes shows high qual-
ity images but different from the original image, hence not good for simulation.
This suggests overfitting to the training set, probably because this architecture
has twice as many parameters as the decoder. Similarly, three columns have been
highlighted in the patient results in Fig. 7, where features of the original images
have been indicated with dashed blue lines and arrows. Column three shows an
example where the autoencoder is the only architecture able to produce a good
simulation. The other two highlighted columns show the same effect found in
patient data (high image quality but low simulation quality with the autoen-
coder). The purple dashed lines indicate how artefacts (reverberation in column
2 and shadowing in column 7) are simulated. This has not been reflected in the
phantom dataset because the phantom does not present large enough differences
between the tissue properties and hence does not show any of these artefacts.
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Fig. 5. A diagram showing the MSE Loss between real and simulated images for each
sample in the validation set. Column 1 is showing the two different datasets used;
according to Section 4.2 the model was trained on the full dataset, with results depicted
in column 2, and on an incomplete dataset, with results shown in column 3. Column
4 shows the percentage difference in the MSE Losses of the two previous scenarios,
allowing for easier interpretation. Top row shows results for Architecture 3.1, middle
row shows results for Architecture 3.2, bottom row shows results for Architecture 3.3

6 Discussion

We have presented a method to simulate real-time, patient-specific 2D ultra-
sound images by training deep convolutional models with data from a single pa-
tient consisting of paired tracking data and corresponding images. Our method
does not require any tracker calibration (as long as the entire dataset for a
patient has been acquired without moving the tracker with respect to the trans-
ducer) and, at inference time, takes as input a 7D vector corresponding to the
position and orientation of the tracking device. As opposed to the work in [19],
our framework uses the tracking data directly as input, and as such extending
this work to moving organs could be achieved by adding temporal dimensions
to the tracking vector. This hypothesis will be verified in future work.

Of the three proposed architectures, the quantitative results in Table 1 sug-
gest that the decoder model performs best. This is also supported by the visual
results show in Figs. 6, 7, where it seems that often the autoencoder shows an
image that has good quality but does not correspond to the original image. This
may be due to over-fitting on the training set because this model has twice as
many parameters as the decoder. The fact that this was less of an issue with
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Fig. 6. 10 examples of simulated images on phantom data for each architecture, using
tracking data from the validation set. The top row shows the original images, The
second row from the top shows images simulated with the decoder (Sec. 3.1), the third
row shows images simulated with the autoencoder (Sec. 3.2) and the bottom row shows
images simulated by the pre-trained decoder (Sec. 3.3).

Fig. 7. 10 examples of simulated images on real patient data for each architecture,
using tracking data from the validation set. The top row shows the original images,
The second row from the top shows images simulated with the decoder (Sec. 3.1), the
third row shows images simulated with the autoencoder (Sec. 3.2) and the bottom row
shows images simulated by the pre-trained decoder (Sec. 3.3). Dashed lines highlight the
difference in performance among the different methods: the blue dashed lines roughly
indicate where the main image features are on the original images and how they are
reproduced in the simulated images; the purple dashed lines do the same for artefact
features (reverberation on the left, and shadow on the right).

patient data, where we used more images, further supports this hypothesis. Inter-
estingly, the user survey shows a slightly better performance of the autoencoder;
we believe that this perception could be due to the fact that the quality of
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the images simulated by the autoencoder is actually higher, which made raters
believe that the simulation was better too.

The quantitative results with the pre-trained decoder are surprisingly poor,
and this is reflected visually by images that resemble the decoder simulations
in terms of image features but are consistently more blurry. Incorporation of
quality improvement mechanisms in the pipeline, e.g. adversarial training such
as [19] will be investigated in future work. We also plan to study interactive
simulation to test suitability of the proposed method for training.

Our results also suggest that when there are ‘holes’ in the training set, simu-
lation within these holes may still be possible, although with a loss of accuracy.
Our holes were simulated by filtering out the position of the transducer, so fur-
ther investigation involving the orientation of the transducer is required.

7 Conclusion

We presented a novel framework to simulate patient-specific 2D US images in
real-time. Of three proposed models, a deep decoder was the best simulator for
phantom and fetal patient data, with a simulation time under 4ms per frame.
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