Skip to main content

Autofocus Net: Auto-focused 3D CNN for Brain Tumour Segmentation

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2020)

Abstract

Several approaches based on convolutional neural networks (CNNs) are only able to process 2D images while most brain data consists of 3D volumes. Recent network architectures which have demonstrated promising results are able to process 3D images. In this work, we propose an adapted approach based on a CNN to process 3D contextual information in brain MRI scans for the challenging task of brain tumour segmentation. Our CNN is trained end-to-end on multi-modal MRI volumes and is able to predict segmentation for the binary case, which segments the whole tumour, and multi-class case, which segments the whole tumour (WT), tumour core (TC) and enhancing tumour (ET). Our network includes multiple layers of dilated convolutions and autofocus convolutions with residual connections to improve segmentation performance. Autofocus layers consist of multiple parallel convolutions each with a different dilation rate. We replaced standard convolutional layers with autofocus layers to adaptively change the size of the effective receptive field to generate more powerful features. Experiments with our autofocus settings on the BraTS 2018 glioma dataset show that the proposed method achieved average Dice scores of 83.92 for WT in the binary case and 66.88, 55.16, 64.13 for WT, TC and ET, respectively, in the multi-class case. We introduce the first publicly and freely available NiftyNet-based implementation of the autofocus convolutional layer for semantic image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://github.com/andreasstefani/autofocus-net.

References

  1. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  2. Blionas, A., Giakoumettis, D., Klonou, A., Neromyliotis, E., Karydakis, P., Themistocleous, M.S.: Paediatric gliomas: diagnosis, molecular biology and management. Ann. Transl. Med. 6(12), 251 (2018). https://doi.org/10.21037/atm.2018.05.11

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Davis, M.E.: Glioblastoma: overview of disease and treatment. Clin. J. Oncol. Nurs. (2016). https://doi.org/10.1188/16.CJON.S1.2-8

    Article  Google Scholar 

  5. Havaei, M., et al.: Brain tumor segmentation with Deep Neural Networks. Med. Image Anal. 35, 18–31 (2017). https://doi.org/10.1016/j.media.2016.05.004

    Article  Google Scholar 

  6. Isensee, F., et al.: Abstract: nnU-Net: self-adapting framework for U-net-based medical image segmentation. Bildverarbeitung für die Medizin 2019. I, p. 22. Springer, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25326-4_7

    Chapter  Google Scholar 

  7. Kamnitsas, K., et al.: DeepMedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2016. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10154, pp. 138–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_14

  8. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017). https://doi.org/10.1016/j.media.2016.10.004

    Article  Google Scholar 

  9. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic gradient descent. In: ICLR: International Conference on Learning Representations (2015)

    Google Scholar 

  10. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nat. Methods 13(1), 35 (2015). https://doi.org/10.1038/nmeth.3707

    Article  MathSciNet  Google Scholar 

  11. Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M.J., Vercauteren, T.: On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 348–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_28

    Chapter  Google Scholar 

  12. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. (2017). https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  13. Liu, J., Li, M., Wang, J., Wu, F., Liu, T., Pan, Y.: A survey of MRI-based brain tumor segmentation methods (2014). https://doi.org/10.1109/TST.2014.6961028

  14. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  15. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. J. Phys. E: Sci. Instrum. 6(9), 925–929 (2016). https://doi.org/10.1088/0022-3735/6/9/035

    Article  Google Scholar 

  16. National Health Service. https://www.nhs.uk/conditions/brain-tumours/. Accessed 21 Mar 2020

  17. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016). https://doi.org/10.1109/TMI.2016.2538465

    Article  Google Scholar 

  18. Qin, Y., et al.: Autofocus layer for semantic segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 603–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_69

    Chapter  Google Scholar 

  19. NiftyNet. http://www.niftynet.io/. Accessed 6 June 2019

  20. MICCAI BraTS’18 Challenge. https://www.med.upenn.edu/sbia/brats2018.html. Accessed 6 June 2019

  21. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017). https://doi.org/10.1146/annurev-bioeng-071516-044442

    Article  Google Scholar 

  23. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

  24. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 61–72. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_6

    Chapter  Google Scholar 

  25. Wirsching, H.G., Galanis, E.: Glioblastoma. In: Handbook of Clinical Neurology (2016). https://doi.org/10.1016/B978-0-12-802997-8.00023-2. Chapter 23

  26. Yan, Y., Guo, Z.W., Zhang, H.B., Wang, N., Xu, Y.: Precision radiotherapy for brain tumors: a 10-year bibliometric analysis. Neural Regeneration Res. (2012). https://doi.org/10.3969/j.issn.1673-5374

    Article  Google Scholar 

  27. Zikic, D., Ioannou, Y., Brown, M., Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS (2014). https://doi.org/10.1021/ol2032625

Download references

Acknowledgement

We would like to thank NVIDIA corporation, that donated a GPU to our group enabling this research. We would also like to thank the Engineering and Physical Sciences Research Council Impact Acceleration Impact Acceleration Account (EPSRC IAA) for supporting the initial stages of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Stefani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stefani, A., Rahmat, R., Harris-Birtill, D. (2020). Autofocus Net: Auto-focused 3D CNN for Brain Tumour Segmentation. In: Papież, B., Namburete, A., Yaqub, M., Noble, J. (eds) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol 1248. Springer, Cham. https://doi.org/10.1007/978-3-030-52791-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52791-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52790-7

  • Online ISBN: 978-3-030-52791-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics