
Engineering an Optimized Instruction Set
Architecture for AMIDAR Processors

Alexander Schwarz(B) and Christian Hochberger

Technische Universität Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
{schwarz,hochberger}@rs.tu-darmstadt.de

Abstract. Newly developed instruction set architectures are nowadays
typically based on the RISC principle. Yet, more abstract instruction
sets also have their advantages. In the AMIDAR project Java Bytecode
was used as the instruction set. Instructions are realized as composi-
tions of micro instructions that are distributed to specialized functional
units. An explicit timing of these micro instructions is not necessary in
AMIDAR processors. This simplifies the conversion of compute intense
instruction sequences into hardware structures while the system is run-
ning. The relatively high abstraction level of the Bytecode facilitates the
analysis and synthesis remarkably. Yet, the native execution of the Byte-
code comes with a number of drawbacks. In this contribution, we show a
new instruction set architecture that preserves the high abstraction level
of Bytecode while at the same time avoiding inefficient data transports.
We show that on average the new instruction set reduces the number of
clock cycles for our benchmark set by a factor of 3.

Keywords: Instruction set architecture · Microarchitecture ·
Self-timed · Java processor · Online synthesis

1 Introduction

Most new developments in the area of microprocessors use RISC instruction sets.
The RISC nature of instruction sets eases decoding and creation of pipelines.
On the down side, analyzing such instruction sequences can be very difficult. An
instruction set with higher abstraction level will provide more specialized and
targeted instructions. Thus, it will be easier to reverse engineer the intention of
the programmer.

This is an essential property if we consider dynamic software/hardware
migration. In AMIDAR processors, such online synthesis is one major factor
for an efficient application execution. Existing AMIDAR processors use Java
Bytecode as their instruction set. While we could demonstrate that it is very
suitable for an online synthesis into HW structures, we also found that Bytecode
makes excessive use of the stack and the local variable memory. Many of these
data transports could be avoided.

The motivation to use Java Bytecode as instruction set is twofold: 1) Android
based smartphones are programmed with languages that generate Java Bytecode
c© Springer Nature Switzerland AG 2020
A. Brinkmann et al. (Eds.): ARCS 2020, LNCS 12155, pp. 124–137, 2020.
https://doi.org/10.1007/978-3-030-52794-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52794-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-52794-5_10


Optimized ISA for AMIDAR 125

which is then converted into Dalvik executables. Alternatively, a true Java Byte-
code processor like an AMIDAR processor could be used in such platforms. 2)
Java as programming language has gained a lot of attention for embedded sys-
tems due to its inherent safety features. Consequently, real HW implementations
of Java Bytecode processors exist and are in commercial use.

In this contribution, we present a novel instruction set architecture (ISA)
that preserves the high abstraction level of Java Bytecode, while at the same
time reducing the amount of data transports to a minimum. On average, the
resulting instruction set can be executed with less than one third of the original
AMIDAR clock cycles.

The paper is structured as follows. Section 2 explains the AMIDAR principle.
In Sect. 3 we explain the design of the new ISA (requirements, basic concept,
code generation and binary format). Section 4 presents challenges together with
our solutions for many detail problems with the new ISA. An evaluation of the
new ISA is shown in Sect. 5. Finally, a conclusion and an outlook are given.

2 The AMIDAR Principle

AMIDAR [3] processors are composed of multiple functional units (FUs) which
work independently of each other. Independence of FUs is a major strength of
AMIDAR. It facilitates hardware design and provides opportunities for runtime
reconfiguration. Figure 1 illustrates the structure of a Java processor. The Token
Machine is a special FU which decodes program instructions into tokens and
sends them to FUs using the token distribution network. Tokens contain the
information which operations to execute and where to send the results to. Data
can be exchanged between FUs using a data interconnect.

!!!

Fig. 1. Structure of the processor

In previous versions of AMIDAR processors, tags are used for synchronizing
data with FU operations. Using this technique, every token and data packet
contains a tag number. The receiving FU compares the tags of data packet and
next token to execute. Only if both tags are equal, the data packet is accepted.
Otherwise, the sender has to retry until data transmission is successful. Conse-
quently, no assumptions about the timing of FUs are required and communica-
tion between FUs is self-timed.



126 A. Schwarz and C. Hochberger

Apart from its role as instruction decoder, the Token Machine executes all
operations which change control flow like branches and method invocations.
Furthermore, it provides constants contained in the code. The Frame Stack FU
stores for each thread a stack of method frames. Every frame comprises a section
for local variables and an operand stack. The Object Heap FU stores objects,
arrays and static variables. The Thread Scheduler FU decides which thread to
execute and provides thread synchronization using monitors. Several ALUs exist
for integer and floating point arithmetic. A coarse grained reconfigurable array
(CGRA) is used as flexible hardware accelerator [10].

3 Design of the New ISA

3.1 Motivation

The Frame Stack FU has been identified as bottleneck in previous versions of
AMIDAR processors, which use Java Bytecode as their instruction set. Most
instructions access the operand stack for reading or writing data. This results in
many transfers from and to the Frame Stack FU. Consequently, reducing these
data transfers is the main motivation for developing a new ISA.

3.2 Requirements

The processor should run Java programs on a high level of abstraction, like the
previous AMIDAR implementation. However, these programs should be executed
with higher performance by eliminating unnecessary data transfers. Reconfigu-
ration features like dynamic software/hardware migration should still be sup-
ported. This leads to the following requirements.

– Data should be transmitted directly between FUs whenever possible without
using intermediate storage. Thereby, execution time and energy consumption
are reduced (see Sect. 5).

– Hardware requirements should be moderate. Reducing hardware requirements
to an absolute minimum is not the goal. Complex FU operations should still
be supported to provide fast execution of programs. On the other hand, com-
plex and energy-consuming techniques for dynamic scheduling and data syn-
chronization should be avoided (see Sects. 4.3 and 4.4).

– Instruction encoding should be compact in order to avoid a bottleneck
between code memory and instruction decoder. However, an increased code
size in comparison to Java Bytecode can hardly be avoided because small code
size is a major strength of Bytecode due to the stack principle (see Sect. 5).

– Arbitrary complex control flow which is expressible in high level languages
should be supported (see Sect. 3.3).

– No assumptions about FU timing behavior should be required, neither during
code generation nor during token generation (See Sect. 4.3).

– The token generator should have the freedom to assign operations to different
FUs as another means for runtime reconfiguration. This assignment should
not be fixed by the programmer or code generator (see Sect. 4.5).



Optimized ISA for AMIDAR 127

3.3 Basic Concept

The basic idea of the new ISA is to specify data flow between instructions explic-
itly instead of using an operand stack. Each instruction which produces a result
specifies another instruction which will receive this result. The four components
of an instruction are shown in Fig. 2. Every instruction specifies the operation
to execute. Some operations require an additional constant. The result reference
specifies the instruction which will receive the result. It consists of an instruc-
tion offset and a port. The offset is relative to the current instruction in order
of execution. A value of 0 references the instruction which is executed next. It is
important to note that the static position in the code is not relevant for this off-
set. Many operations require more than one operand. Therefore, a port number
is used in the result reference to specify which of these operands is sent.

Fig. 2. Assembler representation of one instruction

An example of the resulting code is given in Fig. 3 together with an illus-
tration of control and data flow. The first instruction sends the constant 10 to
port 0 of either the add or the sub instruction. The read instruction in line 2
obtains a value from scratch pad memory address 3 and sends it to port 1 of
the brg instruction in line 4. The next instruction in line 3 sends a value from
scratch pad memory to port 1 of either the add or the sub instruction. The
branch instruction in line 4 determines which of both is executed by comparing
the received value with zero. Both the add and the sub instructions send their
result to port 0 of the mul instruction in line 11. As only one of both is exe-
cuted, the mul instruction receives exactly one value at its port 0. This value is
multiplied with the value read from scratch pad memory address 4. The result
is written back to the same address.

This example shows some important features of this kind of data flow descrip-
tion. Every value which is produced by an instruction must have exactly one
receiver on every possible path of the program. Furthermore, every instruction
must receive exactly one value on each of its ports on every possible path of the
program. Every port of an instruction can behave like a φ function as known
from static single assignment (SSA) forms in compiler engineering. Port 0 of the
mul instruction is an example for this. Either the result of the addition or of the
subtraction is received depending on the previously executed program path.

3.4 Code Generation

Code for the new ISA can be generated from two types of sources. The first type
is assembler code. As the processor operates on a similar level of abstraction as



128 A. Schwarz and C. Hochberger

Fig. 3. Basic code example (black: data flow, blue: control flow) (Color figure online)

Java Bytecode, meta-information like class structures is part of this code. Bodies
of methods are filled with instructions in assembler representation as defined
in Fig. 2. An assembler has been engineered which converts a set of assembler
files to a single binary named New AMIDAR Executable (NAX). This binary
contains all information which is required to execute a program on a hardware
implementation of the processor.

Fig. 4. Code generation from Java source code

The second much more useful type of source code is Java code. The corre-
sponding tool flow is depicted in Fig. 4. A standard Java compiler produces class
files from Java source code. A newly developed transpiler converts a set of class
files to a NAX file. Figure 4 also shows a simplified version of this transpilation
process. The Java analysis and optimization framework Soot is used to convert
Bytecode from class files to an SSA form called Shimple [6]. Instruction selec-
tion creates a control flow graph for each method of the Shimple representation.
Each node of such a control flow graph in turn points to a directed acyclic graph
(DAG) defining data dependencies between instructions in the corresponding



Optimized ISA for AMIDAR 129

block. Instruction scheduling orders the instructions in each block to respect
dependencies implied by the DAG on the one hand and hardware restrictions on
the other hand.

3.5 Binary Format

A binary format for the instructions has already been defined as shown in Fig. 5.
Every instruction has a width of 24 bits. This is the smallest multiple of one byte
which can store all relevant information and leaves small room for extensions.
Code is stored in an external DRAM which is accessed using a 32 bit AXI inter-
face. A sequence of 32 bit words is converted to a sequence of 24 bit instructions
in the instruction fetch stage of the Token Machine.

Fig. 5. Binary format of instructions

Five types of instructions exist. The type is encoded in the highest bits. Bit
21 is reserved for future extensions.

– S-type is used for normal instructions which do not produce results. This is
typically the case for memory store operations. The Funct7 field holds the
operation. Bit 12 distinguishes between 32 bit and 64 bit operations.

– R-type is used for normal instructions which produce results. This type con-
tains the same fields as S-type plus instruction offset and port for specifying
the result reference. Bit 7 is set to 1 if the result should be kept in the output
queue as explained in Sect. 4.1.

– I-type is used for sending constant values. Constants up to 14 bits can be
stored in the Imm14 field. Larger constants must either be computed or stored
in the constant pool. Special operations exist for loading these constants from
the pool.

– J-type is used for unconditional jumps. The Imm21 field holds the address
of the jump target relative to current position in the code.

– B-type is used for conditional branches. The Imm17 field again holds the
relative address of the target. The comparison which decides whether the
branch is taken or not is encoded in field Funct3. Bit 3 is reserved for future
extensions.



130 A. Schwarz and C. Hochberger

4 Challenges

Realization of this ISA has been started by implementing an assembler and a
software simulator. Afterwards, the transpilation process has been developed
to be able to write programs in Java. All design choices have been taken with
possible hardware implementations in mind. This section depicts some of the
challenges which have been encountered on this way and their solutions.

4.1 Duplicating Data

As already mentioned in Sect. 3.3 each result must have exactly one receiving
instruction. However, one value might be required as operand for multiple oper-
ations. Two mechanisms are provided to solve this problem. The first one is a
small scratch pad memory, which is implemented as additional functional unit.
Values can be written to it and can be read multiple times using addresses. Nev-
ertheless, this contradicts the original idea of transferring data directly between
FUs without intermediate storage. Using the second mechanism, instructions
can specify that their result should not be removed from the output queue of
the sending FU. Afterwards, a special send again instruction can be used to
send this value again to another receiver. If instructions are close together and
only few copies are required, the last mechanism is preferred. Otherwise, scratch
pad memory is used. The generic structure of an FU is shown in Fig. 6 and is
explained in Sect. 4.3.

4.2 Discarding Data

Conversely, it is beneficial in some situations to discard data explicitly. For exam-
ple, if control flow branches and a value is only required in one branch, the pro-
cessor must be instructed to discard this value. In register based architectures
this is done implicitly by overwriting registers. In this ISA the nop instruction
can be used for this purpose. When a result is targeted to such an instruction
during execution, the sending FU is informed to remove the value from its output
queue without sending it.

4.3 Data Synchronization

The tag mechanism used for data synchronization in the previous AMIDAR
implementation has several disadvantages. Firstly, data must be resent frequently
in some situations, which results in lost bus cycles. Secondly, concurrency is
limited because only data packets are accepted which match the next token
to execute. Thirdly, depending on size and topology of the interconnect, tag
comparators can be part of a long combinatorial path starting from the sending
FU via the comparator of the receiving FU back to the acknowledgment signal
of the sending FU.



Optimized ISA for AMIDAR 131

Fig. 6. Hardware components for synchronizing data

Consequently, a new synchronization mechanism has been invented. It uses
explicit operation addresses to match data and operations. The important hard-
ware components for this mechanism are depicted in Fig. 6. The first thing to
note is that tokens are transferred to an FU in two parts. The operation code is
sent as soon as the instruction has been decoded. The target information is sent
afterwards when the receiving instruction has been decoded.

It is assumed, that an instruction IN1 has already been decoded which results
in operation OP1 to be executed on FU1. The result of OP1 has already been
computed and stored in the result queue of FU1. IN1 references instruction IN2

as receiver for its result.
Now, the Token Machine decodes IN2 and sends the corresponding opera-

tion OP2 to the operation memory of FU2. A line of this memory consists of
an operation and one data word for each port of FU2. An operation is stored
together with its operands in one line. The address of a line is named operation
address. Operations are written and read cyclically. Before the next operation
can be written to a line, this line must be read and sent to execution. Hence,
operation storage has FIFO semantics. Instructions which are mapped to the
same FU are executed in the order they are decoded. In contrast, operands can
be stored to the memory in any order using operation address and port. An
operation can only be sent to execution when all its operands have been stored
to the memory.

The Token Machine has an operation counter for FU2 which is in sync
with the operation write address of the operation memory. Therefore, the token
machine knows the operation address of OP2. It sends FU address and operation
address of OP2 together with the result port specified in IN1 to the target queue
of FU1. The token machine sends operations and corresponding target informa-
tion in the same order. As a consequence, the entries at the front of result queue
and target queue belong to each other. They are removed simultaneously and
sent via data interconnect to FU2 where the data word is written to the memory
location given by operation address and port.

Decoding is blocked when the target queue is full or no free operation address
is available. As an operation is always sent before the target information pointing
to this operation, it can be guaranteed that free space is always available in the



132 A. Schwarz and C. Hochberger

operation memory when sending a data word. Consequently, no acknowledgment
signal is required from the receiver to the sender.

Sizes of result queues and numbers of lines in the operation memories are free
parameters which still have to be optimized. These parameters must be known
for instruction scheduling. The values assumed during code generation may be
lower than those provided by hardware.

4.4 Target Resolution

After the Token Machine has decoded an instruction and has assigned it to an
FU, it must resolve the result reference and send this target information to the
FU. The required hardware components are illustrated in Fig. 7.

Fig. 7. Hardware components for resolving result references

The main component is the resolution memory. It stores FU and opera-
tion addresses of the instructions which have been decoded last. The number of
addresses in this memory is a free parameter and limits the distance of result
references between instructions. A counter generates the resolution address for
each decoded instruction. It serves as write address for the resolution memory.

Now assume instruction IN1 has just been decoded and assigned to FU1

with resolution address RES1. Its instruction offset points to instruction IN2,
which will be executed by FU2 with resolution address RES2. Port and offset
are directly extracted from the instruction. Adding RES1 to the offset yields
RES2, which is stored in the unresolved target queue of FU1 together with the
port.

When IN2 is decoded, its FU and operation addresses are stored to the
resolution memory at address RES2. At the same time, RES2 is located at the
front of the unresolved target queue. As a consequence, the resolution memory
is read from this address. The circuit detects when FU and operation addresses
of IN2 are available and sends this information together with the port to the
target queue of FU2. The most significant bit of the resolution address is not



Optimized ISA for AMIDAR 133

used for addressing the memory but as tag for the memory contents. This allows
to detect when new information has been written.

4.5 Instruction Scheduling

Instruction scheduling is a more complex task in comparison to register based
architectures. Several constraints beyond data and control dependencies between
instructions must be considered to produce executable code.

– Instruction offsets are limited by the binary instruction format and the size
of the resolution memory in the Token Machine.

– When a result is sent over a branch to different (exclusive) instructions, these
instructions must have the same distance to the sender because the sender
can only specify one instruction offset. This can be seen in Fig. 3. If a nop
would be inserted before the sub instruction, the operands of the subtraction
would not be received.

– The code must be free of deadlocks. If no care is taken, deadlocks are easily
produced, which cause the processor to stop. As this constraint is the most
difficult to handle, it is explained in more detail.

Fig. 8. Deadlock example

Figure 8 shows an example for a deadlock. Inputs of addition and compari-
son are not shown because they are not relevant for the deadlock. Both addition
and comparison are executed on the same FU. Consequently, the result of the
addition is placed at the front of the output queue, the result of the compar-
ison behind it. However, the receiver of the addition result cannot be resolved
because the branch has not been evaluated yet. Therefore, this result cannot be
removed from the output queue. The branch in turn is waiting for the result
of the comparison, which is blocked by the result of the addition. A cycle of
dependencies is produced, which causes the processor to stop. A simple solution
for this deadlock is to change the order of addition and comparison.

There are many more constellations causing deadlocks. They can be statically
detected by building dependency graphs and searching for cycles in these graphs.
Theoretically, a dependency graph must be constructed for each possible execu-
tion path in a program. Calling convention ensures that no deadlocks can appear
across method boundaries. Consequently, methods can be analyzed separately.



134 A. Schwarz and C. Hochberger

Loops still produce an infinite number of paths. However, result references are
limited to the current or the next loop iteration. Therefore, no additional dead-
locks can appear after analyzing two loop iterations. The number of paths can
still grow exponentially. In practice, this problem is solved using a sliding window
algorithm. The window slides along the control flow of the method. Whenever
the next instruction is added to the window, cycles are searched and removed.
Afterwards, instructions which can be proven not to cause new deadlocks are
removed from the window. When the algorithm detects that a window position
has already been encountered, analysis of this path can be finished. While the
problem still has exponential complexity, this algorithm finds all deadlocks in
reasonable time even in methods with very complex control flow.

Different actions for removing deadlocks have been implemented. A suitable
action is chosen depending on the deadlock constellation. In contrast to finding
deadlocks, the problem of removing deadlocks has not been fully solved yet.
In some situations, the scheduler fails to produce code free of deadlocks and
informs the user about it. Current research investigates different approaches for
systematically resolving all deadlocks.

A special forward operation is available to facilitate instruction scheduling. It
just forwards the received input to another instruction. In hardware, forwarding
is done by a separate FU, which helps to fulfill the mentioned constraints.

No new dependencies are introduced if two instructions are executed on dis-
tinct FUs instead of on a single FU. Hence, this cannot cause new deadlocks.
Consequently, exact assignment of operations to FUs is not required for deadlock
analysis. It must only be guaranteed that certain categories of instructions will
not be executed on the same FU.

5 Evaluation

The benchmark set used for evaluation comprises 9 encryption algorithms, 7 hash
algorithms, and 4 image filters. Additionally, ADPCM encoding/decoding, JPEG
encoding, and regular expression matching have been evaluated. Execution times
have been determined using simulators which imitate hardware behavior. FU
timings of the existing hardware implementation are applied. Each benchmark
has been executed once in the simulator for the Bytecode based AMIDAR pro-
cessor and twice in the simulator for the new ISA. In the last case, benchmarks
have been executed with 1 and 2 instructions decoded in parallel. Afterwards,
the speedup has been calculated. For the new ISA, the following parameters have
been chosen, which seem to be minimal values for reasonable execution.

– Resolution Memory Size: 16
– Operation Memory Size (all FUs): 8
– Output Queue Size (all FUs): 4

Figure 9 illustrates the speedups for all benchmarks. An average speedup of
3.69 is achieved in the single issue case and 4.64 in the dual issue case. Hence, a



Optimized ISA for AMIDAR 135

Fig. 9. Speedups achieved in comparison to Bytecode (simulated)

Fig. 10. Data transfers between FUs (left) and code size (right) in comparison to
Bytecode

significant speedup in comparison to Java Bytecode can be noted. Furthermore,
dual issue is clearly advantageous for this ISA.

However, some benchmarks differ from the average. The first exception is
Contrast Filter, which uses floating point operations. As these operations are
time consuming, speedup achieved by an improved ISA is lower. JPEG encode
is a complex, data dominated algorithm, which is split across multiple methods.
This lowers the speedup to 2.55. RegExp is an example for control flow dominated
algorithms with many method invocations. It shows a speedup of 2.14.

The main reason for high speedups is the reduced number of data transfers
between FUs. They are decreased by a factor of 2.98 in average as shown in
Fig. 10. This has been a major design goal as defined in Sect. 3.2. On the other
hand, code size grows by a factor of 4.25 in average, which is caused by an
increased size and number of instructions.

All benchmarks require less than 10 s for code creation from class files, with
the exception of SIMD512 (40 s) and RIPEMD160 (15 s). In this benchmark



136 A. Schwarz and C. Hochberger

set a substantial number of methods from the Java standard library has to be
included in the binary file. Measurement has been carried out on an Intel Core
i7-6700 CPU with 16 GB RAM and a Java 1.8 HotSpot JVM on Ubuntu 16.04.

6 Related Work

AMIDAR processors use principles from dataflow machines [4]. Thus, often a
comparison is made with such processors. In contrast to such machines, AMI-
DAR avoids the known issues with typical dataflow machines [7]:

– Broadcasting of tokens is done only for a handful of FUs. Thus, handling of
tokens is not a problem.

– In a dataflow machine, the availability of input data must be checked for a
huge set of operations concurrently. This is often done using costly content
addressable memories. In AMIDAR, the availability of input data needs to be
checked only localy inside of a functional unit. Thus, it can be implemented
much more efficiently.

– Dataflow machines can suffer from deadlocks, if the program is not composed
in a proper way. Such situations are not easy to detect and thus greatly
complicate the compiler.

Even if dedicated dataflow processors are not longer researched due to the
mentioned problems, dataflow is still used in scientific computing approaches.
Maxeler uses a Java-like language to generate dataflow graphs and a compiler
maps those graphs onto a set of field programmable gate arrays [2]. The big
drawback of this approach is its inability to execute regular code. It is only
efficient in high-throughput computing.

In AMIDAR, FUs synchronize with each other by the exchange of data. In a
similar manor, Transport Triggered Architectures (TTA) [1] use the transport of
data to start new operations. Nevertheless, AMIDAR provides more elasticity,
since it allows arbitrary execution time for an FU without the need to adjust the
microinstructions. In contrast, TTAs require exact knowledge of the FU timing,
since the result of an operation must be moved to its destination at the proper
time. Even worse is the problem of the huge code memory of TTAs. In order
to provide a high degree of parallelism, TTAs must be able to control as many
independent data transports as possible. This results in very wide instructions
which in turn need a large code memory. Unfortunately, the majority of the code
uses only few of the possible transport slots. Approaches have been published
that reduce this memory size by means of compression [5]. AMIDAR avoids the
huge code memory in a different way by generating the token sets on the fly
from a more abstract instruction set.

Finally, one could think about other instruction set architectures than Java
Bytecode. Candidates could be Low Level Bit Code [8] from the LLVM frame-
work, Common Intermediate Language [9] from the .NET framework. They share
approximately the same abstraction level. Yet, it turns out that both come with
severe drawbacks compared to the Java Bytecode. Compute instructions in CIL



Optimized ISA for AMIDAR 137

and LLVM Bit Code do not contain type information. Thus, the required type
of operation (int, float, double) has to be reconstructed from the sources of the
data. In the worst case, they need to be combined with type conversions at
runtime.

7 Conclusion and Future Work

In this work, a promising novel ISA for AMIDAR processors has been presented.
It borrows ideas from data flow architectures and in simulation shows significant
speedups compared to Java Bytecode as ISA. Through thorough engineering we
were able to fulfill almost all requirements that were defined. Only code size
leaves room for improvement. However, we are willing to pay this cost in favor
of the provided advantages.

A hardware implementation is already existing for a number of components
for this new ISA. The remaining components are currently in progress. The full
implementation will then be validated against the simulation. An adaptation of
the synthesis process to the new ISA is also currently in progress.

We believe that our transpiler still has some room for improvement. In order
to support general purpose applicability of the processor, we will need to add
support for multi-threading and for debugging (which both already exist for the
Bytecode based AMIDAR processor).

References

1. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. Wiley, Hoboken
(1997)

2. Gan, L., et al.: A highly-efficient and green data flow engine for solving Euler atmo-
spheric equations. In: 2014 24th International Conference on Field Programmable
Logic and Applications (FPL), pp. 1–6 (2014)

3. Gatzka, S., Hochberger, C.: The AMIDAR class of reconfigurable processors. J.
Supercomput. 32(2), 163–181 (2005). https://doi.org/10.1007/s11227-005-0290-3

4. Gurd, J.R., Kirkham, C.C., Watson, I.: The Manchester prototype dataflow com-
puter. Commun. ACM 28(1), 34–52 (1985)

5. Heikkinen, J., Cilio, A., Takala, J., Corporaal, H.: Dictionary-based program com-
pression on transport triggered architectures. In: IEEE International Symposium
on Circuits and Systems (ISCAS 2005), pp. 1122–1125 (2005)

6. Lam, P., Bodden, E., Lhotak, O., Hendren, L.: The Soot framework for java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infrastructure Work-
shop (CETUS 2011), October 2011

7. Lee, B., Hurson, A.: Issues in dataflow computing. In: Yovits, M.C. (ed.) Advances
in Computers, vol. 37, pp. 285–333. Elsevier, Amsterdam (1993)

8. LLVM Project: LLVM bitcode file format. https://llvm.org/docs/BitCodeFormat.
html

9. Various: Standard ECMA-335 Common Language Infrastructure (CLI). ECMA
International, Geneva, Switzerland (2012)

10. Wolf, D.L., Jung, L.J., Ruschke, T., Li, C., Hochberger, C.: AMIDAR project:
lessons learned in 15 years of researching adaptive processors. In: 2018 13th Inter-
national Symposium on Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC), pp. 1–8, July 2018

https://doi.org/10.1007/s11227-005-0290-3
https://llvm.org/docs/BitCodeFormat.html
https://llvm.org/docs/BitCodeFormat.html

	Engineering an Optimized Instruction Set Architecture for AMIDAR Processors
	1 Introduction
	2 The AMIDAR Principle
	3 Design of the New ISA
	3.1 Motivation
	3.2 Requirements
	3.3 Basic Concept
	3.4 Code Generation
	3.5 Binary Format

	4 Challenges
	4.1 Duplicating Data
	4.2 Discarding Data
	4.3 Data Synchronization
	4.4 Target Resolution
	4.5 Instruction Scheduling

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References




